Note! Please note that this article is currently in the "Article in Press" stage and is not the final "Version of record". While it has been accepted, copy-edited, and formatted, however, it is still undergoing proofreading and corrections by the authors. Therefore, the text may still change before the final publication. Although "Articles in Press" may not have all bibliographic details available, the DOI and the year of online publication can still be used to cite them. The article title, DOI, publication year, and author(s) should all be included in the citation format. Once the final "Version of record" becomes available the "Article in Press" will be replaced by that.
[1]
Katyal KD, Johannes MS, Kellis S, Aflalo T, Klaes C, McGee TG, Eds. A collaborative BCI approach to autonomous control of a prosthetic limb system. 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC). San Diego, CA, USA 05-08 October. 2014; pp. 1479-82.
[http://dx.doi.org/10.1109/SMC.2014.6974124]
[http://dx.doi.org/10.1109/SMC.2014.6974124]
[2]
Gasser BW. Design of an Upper-limb Exoskeleton for Functional Assistance of Bimanual Activities of Daily Living. Vanderbilt University 2019.
[3]
Pyun KR, Kwon K, Yoo MJ, et al. Machine-learned wearable sensors for real-time hand-motion recognition: toward practical applications. Natl Sci Rev 2024; 11(2): nwad298.
[http://dx.doi.org/10.1093/nsr/nwad298] [PMID: 38213520]
[http://dx.doi.org/10.1093/nsr/nwad298] [PMID: 38213520]
[4]
Zhao ZP, Nie C, Jiang CT, et al. Modulating brain activity with invasive brain–computer interface: A narrative review. Brain Sci 2023; 13(1): 134.
[http://dx.doi.org/10.3390/brainsci13010134] [PMID: 36672115]
[http://dx.doi.org/10.3390/brainsci13010134] [PMID: 36672115]
[5]
Jaber W, Jaber HA, Jaber R, Saleh Z. The convergence of AI and BCIs: A new era of brain-machine interfaces. In: Artificial Intelligence in the Age of Nanotechnology. Hershey, PA: IGI Global 2024; pp. 98-113.
[6]
Cimolato A, Driessen JJM, Mattos LS, De Momi E, Laffranchi M, De Michieli L. EMG-driven control in lower limb prostheses: A topic-based systematic review. J Neuroeng Rehabil 2022; 19(1): 43.
[http://dx.doi.org/10.1186/s12984-022-01019-1] [PMID: 35526003]
[http://dx.doi.org/10.1186/s12984-022-01019-1] [PMID: 35526003]
[7]
Wang Z, He B, Zhou Y, et al. Incorporating EEG and EMG patterns to evaluate BCI-based long-term motor training. IEEE Trans Hum Mach Syst 2022; 52(4): 648-57.
[http://dx.doi.org/10.1109/THMS.2022.3168425]
[http://dx.doi.org/10.1109/THMS.2022.3168425]
[8]
EMG/EEG controlled prosthetic.. 2023. Available from: https://isn.ucsd.edu/courses/beng186b/project/2021/Lu_MNguyen_YNguyen_Steinberg_Tcheng_EMG_EEG_Controlled_Prosthetic pdf Assessed on 20 December
[9]
Alshamsi H, Jaffar S, Li M. Development of a local prosthetic limb using artificial intelligence. IJIRCCE 2016; 4(9)
[10]
Dong Y, Wang S, Huang Q, Berg RW, Li G, He J. Neural decoding for intracortical brain-computer interfaces. Cyborg Bionic Syst 2023; 4: 0044.
[http://dx.doi.org/10.34133/cbsystems.0044]
[http://dx.doi.org/10.34133/cbsystems.0044]
[11]
Lv Z, Qiao L, Wang Q, Piccialli F. Advanced machine-learning methods for brain-computer interfacing. IEEE/ACM Trans Comput Biol Bioinformatics 2021; 18(5): 1688-98.
[http://dx.doi.org/10.1109/TCBB.2020.3010014] [PMID: 32750892]
[http://dx.doi.org/10.1109/TCBB.2020.3010014] [PMID: 32750892]
[12]
Lupenko S, Butsiy R, Shakhovska N. Advanced modeling and signal processing methods in brain–computer interfaces based on a vector of cyclic rhythmically connected random processes. Sensors 2023; 23(2): 760.
[http://dx.doi.org/10.3390/s23020760] [PMID: 36679557]
[http://dx.doi.org/10.3390/s23020760] [PMID: 36679557]
[13]
Miah MO, Habiba U, Kabir MF. ODL-BCI: Optimal deep learning model for brain-computer interface to classify students confusion via hyperparameter tuning. Brain Disorders 2024; 13: 100121.
[http://dx.doi.org/10.1016/j.dscb.2024.100121]
[http://dx.doi.org/10.1016/j.dscb.2024.100121]
[14]
Parajuli N, Sreenivasan N, Bifulco P, et al. Real-time EMG based pattern recognition control for hand prostheses: A review on existing methods, challenges and future implementation. Sensors 2019; 19(20): 4596.
[http://dx.doi.org/10.3390/s19204596] [PMID: 31652616]
[http://dx.doi.org/10.3390/s19204596] [PMID: 31652616]
[15]
Nayak S, Das RK. Application of artificial intelligence (AI) in prosthetic and orthotic rehabilitation. In: Service Robotics. IntechOpen 2020.
[16]
Malcangi M. AI-based methods and technologies to develop wearable devices for prosthetics and predictions of degenerative diseases. Methods Mol Biol 2021; 2190: 337-54.
[http://dx.doi.org/10.1007/978-1-0716-0826-5_17] [PMID: 32804375]
[http://dx.doi.org/10.1007/978-1-0716-0826-5_17] [PMID: 32804375]
[17]
Menduiña GM, De La Chica Ruiz-Ruano R. Prosthetic valve thrombosis in a patient with antiphospholipid syndrome. Report of one case. Rev Med Chil 2010; 138(3): 330-3.
[PMID: 20556336]
[PMID: 20556336]
[18]
Luu DK, Nguyen AT, Jiang M, et al. Artificial intelligence enables real-time and intuitive control of prostheses via nerve interface. IEEE Trans Biomed Eng 2022; 69(10): 3051-63.
[http://dx.doi.org/10.1109/TBME.2022.3160618] [PMID: 35302937]
[http://dx.doi.org/10.1109/TBME.2022.3160618] [PMID: 35302937]
[19]
Moreno J, Gross ML, Becker J, Hereth B, Shortland ND III, Evans NG. The ethics of AI-assisted warfighter enhancement research and experimentation: Historical perspectives and ethical challenges. Front Big Data 2022; 5: 978734.
[http://dx.doi.org/10.3389/fdata.2022.978734] [PMID: 36156934]
[http://dx.doi.org/10.3389/fdata.2022.978734] [PMID: 36156934]
[20]
Zhang X, Ma Z, Zheng H, et al. The combination of brain-computer interfaces and artificial intelligence: Applications and challenges. Ann Transl Med 2020; 8(11): 712.
[http://dx.doi.org/10.21037/atm.2019.11.109] [PMID: 32617332]
[http://dx.doi.org/10.21037/atm.2019.11.109] [PMID: 32617332]
[21]
Berridge C, Demiris G, Kaye J. Domain experts on dementia-care technologies: Mitigating risk in design and implementation. Sci Eng Ethics 2021; 27(1): 14.
[http://dx.doi.org/10.1007/s11948-021-00286-w] [PMID: 33599847]
[http://dx.doi.org/10.1007/s11948-021-00286-w] [PMID: 33599847]