Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Research Article

Crocetin Enhances Temozolomide Efficacy in Glioblastoma Therapy Through Multiple Pathway Suppression

In Press, (this is not the final "Version of Record"). Available online 01 August, 2024
Author(s): Wei-En Tsai, Yen-Tsen Liu, Fu-Hsuan Kuo, Wen-Yu Cheng, Chiung-Chyi Shen, Ming-Tsang Chiao, Yu-Fen Huang, Yea-Jiuen Liang, Yi-Chin Yang, Wan-Yu Hsieh, Jun-Peng Chen, Szu-Yuan Liu and Cheng-Di Chiu*
Published on: 01 August, 2024

DOI: 10.2174/0115672026332275240731054001

Price: $95

Abstract

Background: Glioblastoma multiforme (GBM) is an aggressive type of brain tumor that is difficult to remove surgically. Research suggests that substances from saffron, namely crocetin and crocin, could be effective natural treatments, showing abilities to kill cancer cells.

Methods: Our study focused on evaluating the effects of crocetin on glioma using the U87 cell line. We specifically investigated how crocetin affects the survival, growth, and spread of glioma cells, exploring its impact at concentrations ranging from 75-150 μM. The study also included experiments combining crocetin with the chemotherapy drug Temozolomide (TMZ) to assess potential synergistic effects.

Results: Crocetin significantly reduced the viability, proliferation, and migration of glioma cells. It achieved these effects by decreasing the levels of Matrix Metallopeptidase 9 (MMP-9) and Ras homolog family member A (RhoA), proteins that are critical for cancer progression. Additionally, crocetin inhibited the formation of cellular structures necessary for tumor growth. It blocked multiple points of the Ak Strain Transforming (AKT) signaling pathway, which is vital for cancer cell survival. This treatment led to increased cell death and disrupted the cell cycle in the glioma cells. When used in combination with TMZ, crocetin not only enhanced the reduction of cancer cell growth but also promoted cell death and reduced cell replication. This combination therapy further decreased levels of high mobility group box 1 (HMGB1) and Receptor for Advanced Glycation End-products (RAGE), proteins linked to inflammation and tumor progression. It selectively inhibited certain pathways involved in the cellular stress response without affecting others.

Conclusion: Our results underscore the potential of crocetin as a treatment for glioma. It targets various mechanisms involved in tumor growth and spread, offering multiple avenues for therapy. Further studies are essential to fully understand and utilize crocetin’s benefits in treating glioma.

[1]
Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352(10): 987-96.
[http://dx.doi.org/10.1056/NEJMoa043330] [PMID: 15758009]
[2]
Ma W, Li N, An Y, Zhou C, Bo C, Zhang G. Effects of temozolomide and radiotherapy on brain metastatic tumor: A systematic review and meta-analysis. World Neurosurg 2016; 92: 197-205.
[http://dx.doi.org/10.1016/j.wneu.2016.04.011] [PMID: 27072333]
[3]
Hosseinzadeh H, Younesi HM. Antinociceptive and anti-inflammatory effects of Crocus sativus L. stigma and petal extracts in mice. BMC Pharmacol 2002; 2(1): 7.
[http://dx.doi.org/10.1186/1471-2210-2-7] [PMID: 11914135]
[4]
Bolhassani A, Khavari A, Bathaie SZ. Saffron and natural carotenoids: Biochemical activities and anti-tumor effects. Biochim Biophys Acta 2014; 1845(1): 20-30.
[PMID: 24269582]
[5]
Salahshoor MR, Khashiadeh M, Roshankhah S, Kakabaraei S, Jalili C. Protective effect of crocin on liver toxicity induced by morphine. Res Pharm Sci 2016; 11(2): 120-9.
[PMID: 27168751]
[6]
Hosseinzadeh H, Sadeghnia HR, Ghaeni FA, Motamedshariaty VS, Mohajeri SA. Effects of saffron (Crocus sativus L.) and its active constituent, crocin, on recognition and spatial memory after chronic cerebral hypoperfusion in rats. Phytother Res 2012; 26(3): 381-6.
[http://dx.doi.org/10.1002/ptr.3566] [PMID: 21774008]
[7]
Gutheil WG, Reed G, Ray A, Anant S, Dhar A. Crocetin: an agent derived from saffron for prevention and therapy for cancer. Curr Pharm Biotechnol 2012; 13(1): 173-9.
[http://dx.doi.org/10.2174/138920112798868566] [PMID: 21466430]
[8]
Nasirzadeh M, Rasmi Y, Rahbarghazi R, et al. Crocetin promotes angiogenesis in human endothelial cells through PI3K-Akt-eNOS signaling pathway. EXCLI J 2019; 18: 936-49.
[PMID: 31762720]
[9]
Li S, Jiang S, Jiang W, et al. Anticancer effects of crocetin in human esophageal squamous cell carcinoma KYSE-150 cells. Oncol Lett 2015; 9(3): 1254-60.
[http://dx.doi.org/10.3892/ol.2015.2869] [PMID: 25663893]
[10]
Bathaie SZ, Hoshyar R, Miri H, Sadeghizadeh M. Anticancer effects of crocetin in both human adenocarcinoma gastric cancer cells and rat model of gastric cancer. Biochem Cell Biol 2013; 91(6): 397-403.
[http://dx.doi.org/10.1139/bcb-2013-0014] [PMID: 24219281]
[11]
Gaskell H, Ge X, Nieto N. High-mobility group box-1 and liver disease. Hepatol Commun 2018; 2(9): 1005-20.
[http://dx.doi.org/10.1002/hep4.1223] [PMID: 30202816]
[12]
Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 2005; 5(4): 331-42.
[http://dx.doi.org/10.1038/nri1594] [PMID: 15803152]
[13]
Chiba S, Baghdadi M, Akiba H, et al. Tumor-infiltrating DCs suppress nucleic acid–mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol 2012; 13(9): 832-42.
[http://dx.doi.org/10.1038/ni.2376] [PMID: 22842346]
[14]
Rivera Vargas T, Apetoh L. Danger signals: Chemotherapy enhancers? Immunol Rev 2017; 280(1): 175-93.
[http://dx.doi.org/10.1111/imr.12581] [PMID: 29027217]
[15]
Ito I, Fukazawa J, Yoshida M. Post-translational methylation of high mobility group box 1 (HMGB1) causes its cytoplasmic localization in neutrophils. J Biol Chem 2007; 282(22): 16336-44.
[http://dx.doi.org/10.1074/jbc.M608467200] [PMID: 17403684]
[16]
Taguchi A, Blood DC, del Toro G, et al. Blockade of RAGE–amphoterin signalling suppresses tumour growth and metastases. Nature 2000; 405(6784): 354-60.
[http://dx.doi.org/10.1038/35012626] [PMID: 10830965]
[17]
Wada T, Penninger JM. Mitogen-activated protein kinases in apoptosis regulation. Oncogene 2004; 23(16): 2838-49.
[http://dx.doi.org/10.1038/sj.onc.1207556] [PMID: 15077147]
[18]
Arthur JSC, Ley SC. Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol 2013; 13(9): 679-92.
[http://dx.doi.org/10.1038/nri3495] [PMID: 23954936]
[19]
Schaeffer HJ, Weber MJ. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 1999; 19(4): 2435-44.
[http://dx.doi.org/10.1128/MCB.19.4.2435] [PMID: 10082509]
[20]
Kiefer F, Tibbles LA, Lassam N, Zanke B, Iscove N, Woodgett JR. Novel components of mammalian stress-activated protein kinase cascades. Biochem Soc Trans 1997; 25(2): 491-8.
[http://dx.doi.org/10.1042/bst0250491] [PMID: 9191142]
[21]
Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature 2001; 410(6824): 37-40.
[http://dx.doi.org/10.1038/35065000] [PMID: 11242034]
[22]
Yagoda N, von Rechenberg M, Zaganjor E, et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 2007; 447(7146): 865-9.
[http://dx.doi.org/10.1038/nature05859] [PMID: 17568748]
[23]
Li S, Qu Y, Shen XY, et al. Multiple signal pathways involved in crocetin-induced apoptosis in KYSE-150 cells. Pharmacology 2019; 103(5-6): 263-72.
[http://dx.doi.org/10.1159/000487956] [PMID: 30783055]
[24]
Cheng WY, Chiao MT, Liang YJ, Yang YC, Shen CC, Yang CY. Luteolin inhibits migration of human glioblastoma U-87 MG and T98G cells through downregulation of Cdc42 expression and PI3K/AKT activity. Mol Biol Rep 2013; 40(9): 5315-26.
[http://dx.doi.org/10.1007/s11033-013-2632-1] [PMID: 23677714]
[25]
Sliva D, Labarrere C, Slivova V, Sedlak M, Lloyd FP Jr, Ho NWY. Ganoderma lucidum suppresses motility of highly invasive breast and prostate cancer cells. Biochem Biophys Res Commun 2002; 298(4): 603-12.
[http://dx.doi.org/10.1016/S0006-291X(02)02496-8] [PMID: 12408995]
[26]
Jiang J, Slivova V, Valachovicova T, Harvey K, Sliva D. Ganoderma lucidum inhibits proliferation and induces apoptosis in human prostate cancer cells PC-3. Int J Oncol 2004; 24(5): 1093-9.
[http://dx.doi.org/10.3892/ijo.24.5.1093] [PMID: 15067330]
[27]
Lloyd F Jr, Slivova V, Valachovicova T, Sliva D. Aspirin inhibits highly invasive prostate cancer cells. Int J Oncol 2003; 23(5): 1277-83.
[http://dx.doi.org/10.3892/ijo.23.5.1277] [PMID: 14532966]
[28]
Chou YC, Chang MY, Wang MJ, et al. PEITC inhibits human brain glioblastoma GBM 8401 cell migration and invasion through the inhibition of uPA, Rho A, and Ras with inhibition of MMP-2, -7 and -9 gene expression. Oncol Rep 2015; 34(5): 2489-96.
[http://dx.doi.org/10.3892/or.2015.4260] [PMID: 26352173]
[29]
Guo ZL, Li MX, Li XL, et al. Crocetin: A systematic review. Front Pharmacol 2022; 12: 745683.
[http://dx.doi.org/10.3389/fphar.2021.745683] [PMID: 35095483]
[30]
Freedman V, Shin SI. Cellular tumorigenicity in nude mice: Correlation with cell growth in semi-solid medium. Cell 1974; 3(4): 355-9.
[http://dx.doi.org/10.1016/0092-8674(74)90050-6] [PMID: 4442124]
[31]
Vignjevic D, Montagnac G. Reorganisation of the dendritic actin network during cancer cell migration and invasion. Semin Cancer Biol 2008; 18(1): 12-22.
[http://dx.doi.org/10.1016/j.semcancer.2007.08.001] [PMID: 17928234]
[32]
Palm D, Lang K, Brandt B, Zaenker KS, Entschladen F. In vitro and in vivo imaging of cell migration: Two interdepending methods to unravel metastasis formation. Semin Cancer Biol 2005; 15(5): 396-404.
[http://dx.doi.org/10.1016/j.semcancer.2005.06.008] [PMID: 16054391]
[33]
Ren K, Jin H, Bian C, et al. MR-1 modulates proliferation and migration of human hepatoma HepG2 cells through myosin light chains-2 (MLC2)/focal adhesion kinase (FAK)/Akt signaling pathway. J Biol Chem 2008; 283(51): 35598-605.
[http://dx.doi.org/10.1074/jbc.M802253200] [PMID: 18948272]
[34]
Jones RG, Saibil SD, Pun JM, et al. NF-kappaB couples protein kinase B/Akt signaling to distinct survival pathways and the regulation of lymphocyte homeostasis in vivo. J Immunol 2005; 175(6): 3790-9.
[http://dx.doi.org/10.4049/jimmunol.175.6.3790] [PMID: 16148125]
[35]
Dillon RL, White DE, Muller WJ. The phosphatidyl inositol 3-kinase signaling network: implications for human breast cancer. Oncogene 2007; 26(9): 1338-45.
[http://dx.doi.org/10.1038/sj.onc.1210202] [PMID: 17322919]
[36]
Liu D, Si H, Reynolds KA, Zhen W, Jia Z, Dillon JS. Dehydroepiandrosterone protects vascular endothelial cells against apoptosis through a Galphai protein-dependent activation of phosphatidylinositol 3-kinase/Akt and regulation of antiapoptotic Bcl-2 expression. Endocrinology 2007; 148(7): 3068-76.
[http://dx.doi.org/10.1210/en.2006-1378] [PMID: 17395704]
[37]
Völp K, Brezniceanu ML, Bösser S, et al. Increased expression of high mobility group box 1 (HMGB1) is associated with an elevated level of the antiapoptotic c-IAP2 protein in human colon carcinomas. Gut 2006; 55(2): 234-42.
[http://dx.doi.org/10.1136/gut.2004.062729] [PMID: 16118352]
[38]
Rasmi Y, Khajeh E, Kheradmand F, et al. Crocetin suppresses the growth and migration in HCT-116 human colorectal cancer cells by activating the p-38 MAPK signaling pathway. Res Pharm Sci 2020; 15(6): 592-601.
[http://dx.doi.org/10.4103/1735-5362.301344] [PMID: 33828602]
[39]
Hanif F, Muzaffar K, Perveen K, Malhi SM, Simjee ShU. Glioblastoma Multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J Cancer Prev 2017; 18(1): 3-9.
[PMID: 28239999]
[40]
Yang X, Lv S, Zhou X, et al. The clinical implications of transforming growth factor beta in pathological grade and prognosis of glioma patients: A meta-analysis. Mol Neurobiol 2015; 52(1): 270-6.
[http://dx.doi.org/10.1007/s12035-014-8872-9] [PMID: 25148935]
[41]
Tsai CF, Yeh WL, Huang SM, Tan TW, Lu DY. Wogonin induces reactive oxygen species production and cell apoptosis in human glioma cancer cells. Int J Mol Sci 2012; 13(8): 9877-92.
[http://dx.doi.org/10.3390/ijms13089877] [PMID: 22949836]
[42]
Lin S, Chen Z, Wu Z, et al. Involvement of PI3K/AKT pathway in the rapid antidepressant effects of crocetin in mice with depression-like phenotypes. Neurochem Res 2024; 49(2): 477-91.
[http://dx.doi.org/10.1007/s11064-023-04051-2] [PMID: 37935859]
[43]
Chen S, Luo X, Yang L, Luo L, Hu Z, Wang J. Crocetin protects mouse brain from apoptosis in traumatic brain injury model through activation of autophagy. Brain Inj 2024; 38(7): 524-30.
[http://dx.doi.org/10.1080/02699052.2024.2324022] [PMID: 38433503]
[44]
Fan T, Jiang K, Wang Z, Chang Y, Tian H, Huang J. Crocetin inhibits mast cell-dependent immediate-type allergic reactions through Ca2+/PLC/IP3 and TNF pathway. Int Immunopharmacol 2024; 128: 111583.
[http://dx.doi.org/10.1016/j.intimp.2024.111583] [PMID: 38286072]
[45]
Colapietro A, Mancini A, Vitale F, et al. Crocetin extracted from saffron shows antitumor effects in models of human glioblastoma. Int J Mol Sci 2020; 21(2): 423.
[http://dx.doi.org/10.3390/ijms21020423] [PMID: 31936544]
[46]
Lee SY. Temozolomide resistance in glioblastoma multiforme. Genes Dis 2016; 3(3): 198-210.
[http://dx.doi.org/10.1016/j.gendis.2016.04.007] [PMID: 30258889]
[47]
Liu P, Xue Y, Zheng B, et al. Crocetin attenuates the oxidative stress, inflammation and apoptosis in arsenic trioxide-induced nephrotoxic rats: Implication of PI3K/AKT pathway. Int Immunopharmacol 2020; 88: 106959.
[http://dx.doi.org/10.1016/j.intimp.2020.106959] [PMID: 32919218]
[48]
Lu DY, Chang CS, Yeh WL, et al. The novel phloroglucinol derivative BFP induces apoptosis of glioma cancer through reactive oxygen species and endoplasmic reticulum stress pathways. Phytomedicine 2012; 19(12): 1093-100.
[http://dx.doi.org/10.1016/j.phymed.2012.06.010] [PMID: 22819448]
[49]
Khorasanchi Z, Shafiee M, Kermanshahi F, et al. Crocus sativus a natural food coloring and flavoring has potent anti-tumor properties. Phytomedicine 2018; 43: 21-7.
[http://dx.doi.org/10.1016/j.phymed.2018.03.041] [PMID: 29747750]
[50]
Zang M, Hou J, Huang Y, et al. Crocetin suppresses angiogenesis and metastasis through inhibiting sonic hedgehog signaling pathway in gastric cancer. Biochem Biophys Res Commun 2021; 576: 86-92.
[http://dx.doi.org/10.1016/j.bbrc.2021.08.092] [PMID: 34482028]
[51]
Festuccia C, Mancini A, Gravina GL, et al. Antitumor effects of saffron-derived carotenoids in prostate cancer cell models. BioMed Res Int 2014; 2014: 1-12.
[http://dx.doi.org/10.1155/2014/135048] [PMID: 24900952]
[52]
Wu Q, Ma X, Jin Z, Ni R, Pan Y, Yang G. Zhuidu Formula suppresses the migratory and invasive properties of triple-negative breast cancer cells via dual signaling pathways of RhoA/ROCK and CDC42/MRCK. J Ethnopharmacol 2023; 315: 116644.
[http://dx.doi.org/10.1016/j.jep.2023.116644] [PMID: 37196814]
[53]
Xue Y, He JT, Zhang KK, Chen LJ, Wang Q, Xie XL. Methamphetamine reduces expressions of tight junction proteins, rearranges F-actin cytoskeleton and increases the blood brain barrier permeability via the RhoA/ROCK-dependent pathway. Biochem Biophys Res Commun 2019; 509(2): 395-401.
[http://dx.doi.org/10.1016/j.bbrc.2018.12.144] [PMID: 30594393]
[54]
Xie Y, Shi X, Sheng K, et al. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review). Mol Med Rep 2019; 19(2): 783-91.
[PMID: 30535469]
[55]
Fulda S. Synthetic lethality by co-targeting mitochondrial apoptosis and PI3K/Akt/mTOR signaling. Mitochondrion 2014; 19: 85-7.
[56]
Johnston A, Creighton N, Parkinson J, et al. Ongoing improvements in postoperative survival of glioblastoma in the temozolomide era: a population-based data linkage study. Neurooncol Pract 2020; 7(1): 22-30.
[http://dx.doi.org/10.1093/nop/npz021] [PMID: 32257281]
[57]
Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005; 352(10): 997-1003.
[http://dx.doi.org/10.1056/NEJMoa043331] [PMID: 15758010]
[58]
Li Z, Fu WJ, Chen XQ, et al. Autophagy-based unconventional secretion of HMGB1 in glioblastoma promotes chemosensitivity to temozolomide through macrophage M1-like polarization. J Exp Clin Cancer Res 2022; 41(1): 74.
[http://dx.doi.org/10.1186/s13046-022-02291-8] [PMID: 35193644]
[59]
Inada M, Shindo M, Kobayashi K, et al. Anticancer effects of a non-narcotic opium alkaloid medicine, papaverine, in human glioblastoma cells. PLoS One 2019; 14(5): e0216358.
[http://dx.doi.org/10.1371/journal.pone.0216358] [PMID: 31100066]
[60]
Bianchi ME, Beltrame M, Paonessa G. Specific recognition of cruciform DNA by nuclear protein HMG1. Science 1989; 243(4894): 1056-9.
[http://dx.doi.org/10.1126/science.2922595] [PMID: 2922595]
[61]
Travers AA. Priming the nucleosome: a role for HMGB proteins? EMBO Rep 2003; 4(2): 131-6.
[http://dx.doi.org/10.1038/sj.embor.embor741] [PMID: 12612600]
[62]
Xue J, Suarez JS, Minaai M, et al. HMGB1 as a therapeutic target in disease. J Cell Physiol 2021; 236(5): 3406-19.
[http://dx.doi.org/10.1002/jcp.30125] [PMID: 33107103]
[63]
Luo Y, Chihara Y, Fujimoto K, et al. High mobility group box 1 released from necrotic cells enhances regrowth and metastasis of cancer cells that have survived chemotherapy. Eur J Cancer 2013; 49(3): 741-51.
[http://dx.doi.org/10.1016/j.ejca.2012.09.016] [PMID: 23040637]
[64]
Huang CY, Chiang SF, Chen WTL, et al. HMGB1 promotes ERK-mediated mitochondrial Drp1 phosphorylation for chemoresistance through RAGE in colorectal cancer. Cell Death Dis 2018; 9(10): 1004.
[http://dx.doi.org/10.1038/s41419-018-1019-6] [PMID: 30258050]
[65]
Murao A, Aziz M, Wang H, Brenner M, Wang P. Release mechanisms of major DAMPs. Apoptosis 2021; 26(3-4): 152-62.
[http://dx.doi.org/10.1007/s10495-021-01663-3] [PMID: 33713214]
[66]
Gao XY, Zang J, Zheng MH, et al. Temozolomide Treatment Induces HMGB1 to Promote the Formation of Glioma Stem Cells via the TLR2/NEAT1/Wnt Pathway in Glioblastoma. Front Cell Dev Biol 2021; 9: 620883.
[http://dx.doi.org/10.3389/fcell.2021.620883] [PMID: 33614649]
[67]
Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 2010; 28(1): 367-88.
[http://dx.doi.org/10.1146/annurev.immunol.021908.132603] [PMID: 20192808]
[68]
Wolf P, Schoeniger A, Edlich F. Pro-apoptotic complexes of BAX and BAK on the outer mitochondrial membrane. Biochim Biophys Acta Mol Cell Res 2022; 1869(10): 119317.
[http://dx.doi.org/10.1016/j.bbamcr.2022.119317] [PMID: 35752202]
[69]
Renault TT, Dejean LM, Manon S. A brewing understanding of the regulation of Bax function by Bcl-xL and Bcl-2. Mech Ageing Dev 2017; 161: 201-10.
[http://dx.doi.org/10.1016/j.mad.2016.04.007]
[70]
Moradzadeh M, Sadeghnia HR, Tabarraei A, Sahebkar A. Anti‐tumor effects of crocetin and related molecular targets. J Cell Physiol 2018; 233(3): 2170-82.
[http://dx.doi.org/10.1002/jcp.25953] [PMID: 28407293]
[71]
Rubio-Moraga A, Trapero A, Ahrazem O, Gómez-Gómez L. Crocins transport in Crocus sativus: The long road from a senescent stigma to a newborn corm. Phytochemistry 2010; 71(13): 1506-13.
[http://dx.doi.org/10.1016/j.phytochem.2010.05.026] [PMID: 20573363]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy