Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

Formulation of Garlic Essential Oil-assisted Silver Nanoparticles and Mechanistic Evaluation of their Antimicrobial Activity against a Spectrum of Pathogenic Microorganisms

In Press, (this is not the final "Version of Record"). Available online 31 July, 2024
Author(s): Ashirbad Sarangi, Bhabani Shankar Das, Lipsa Leena Panigrahi, Manoranjan Arakha* and Debapriya Bhattacharya*
Published on: 31 July, 2024

DOI: 10.2174/0115680266322180240712055727

Price: $95

Abstract

Background: The synthesis of nanoparticles using the principle of green chemistry has achieved huge potential in nanomedicine. Here, we report the synthesis of silver nanoparticles (Ag- NPs) employing garlic essential oil (GEO) due to wide applications of GEO in the biomedical and pharmaceutical industry.

Objective: This study aimed to synthesise garlic essential oil-assisted silver nanoparticles and present their antimicrobial and antibiofilm activities with mechanistic assessment.

Method: Initially, the formulation of AgNPs was confirmed using different optical techniques, such as XRD, FT-IR, DLS, zeta potential, SEM, and EDX analysis, which confirmed the formulation of well-dispersed, stable, and spherical AgNPs. The antimicrobial and antibiofilm activity of GEO-assisted AgNPs was evaluated against a spectrum of pathogenic microorganisms, such as Gram-positive (S. aureus and B. subtilis) and Gram-negative (E. coli and P. aeruginosa) bacteria.

Results: The AgNPs exhibited remarkable antimicrobial and anti-biofilm activity against all tested strains. The mechanism behind the antimicrobial activity of AgNPs was explored by estimating the amount of reactive oxygen species (ROS) generated due to the interaction of AgNP with bacterial cells and observing the morphological changes of bacteria upon AgNP interaction.

Conclusion: The findings of this study concluded that ROS generation due to the interaction of AgNPs with bacterial cells put stress on bacterial membranes, altering the morphology of bacteria, exhibiting remarkable antimicrobial activity, and preventing biofilm formation.

[1]
Adorjan, B.; Buchbauer, G. Biological properties of essential oils: An updated review. Flavour Fragrance J., 2010, 25(6), 407-426.
[http://dx.doi.org/10.1002/ffj.2024]
[2]
Alboofetileh, M.; Rezaei, M.; Hosseini, H.; Abdollahi, M. Antimicrobial activity of alginate/clay nanocomposite films enriched with essential oils against three common foodborne pathogens. Food Cont, 2014, 36(1), 1-7.
[http://dx.doi.org/10.1016/j.foodcont.2013.07.037]
[3]
Bilia, A.R.; Guccione, C.; Isacchi, B.; Righeschi, C.; Firenzuoli, F.; Bergonzi, M.C. Essential oils loaded in nanosystems: A developing strategy for a successful therapeutic approach. Evid. Based Complement. Alternat. Med., 2014, 2014, 1-14.
[http://dx.doi.org/10.1155/2014/651593] [PMID: 24971152]
[4]
Hassan, A.M. Antibacterial efficacy of garlic oil nano-emulsion. AIMS Agric. Food, 2019, 4, 194-205.
[http://dx.doi.org/10.3934/agrfood.2019.1.194]
[5]
Liu, M.; Pan, Y.; Feng, M.; Guo, W.; Fan, X.; Feng, L.; Huang, J.; Cao, Y. Garlic essential oil in water nanoemulsion prepared by high-power ultrasound: Properties, stability and its antibacterial mechanism against MRSA isolated from pork. Ultrason. Sonochem., 2022, 90, 106201.
[http://dx.doi.org/10.1016/j.ultsonch.2022.106201] [PMID: 36244094]
[6]
Zhang, H.; Wang, J. Constituents of the essential oils of garlic and citronella and their vapor-phase inhibition mechanism against <i>S.aureus</i>. Food Sci. Technol. Res., 2019, 25(1), 65-74.
[http://dx.doi.org/10.3136/fstr.25.65]
[7]
Feng, S.; Eucker, T.P.; Holly, M.K.; Konkel, M.E.; Lu, X.; Wang, S. Investigating the responses of Cronobacter sakazakii to garlic-drived organosulfur compounds: A systematic study of pathogenic-bacterium injury by use of high-throughput whole-transcriptome sequencing and confocal micro-raman spectroscopy. Appl. Environ. Microbiol., 2014, 80(3), 959-971.
[http://dx.doi.org/10.1128/AEM.03460-13] [PMID: 24271174]
[8]
Yang, F.L.; Li, X.G.; Zhu, F.; Lei, C.L. Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Agric. Food Chem., 2009, 57(21), 10156-10162.
[http://dx.doi.org/10.1021/jf9023118] [PMID: 19835357]
[9]
Guidotti-Takeuchi, M.; de Morais Ribeiro, L.N.M.; dos Santos, F.A.L.; Rossi, D.A.; Lucia, F.D.; de Melo, R.T. Essential oil-based nanoparticles as antimicrobial agents in the food industry. Microorganisms, 2022, 10(8), 1504.
[http://dx.doi.org/10.3390/microorganisms10081504] [PMID: 35893562]
[10]
Morsy, M.K.; Khalaf, H.H.; Sharoba, A.M.; El-Tanahi, H.H.; Cutter, C.N. Incorporation of essential oils and nanoparticles in pullulan films to control foodborne pathogens on meat and poultry products. J. Food Sci., 2014, 79(4), M675-M684.
[http://dx.doi.org/10.1111/1750-3841.12400] [PMID: 24621108]
[11]
Moosavy, M.H.; de la Guardia, M.; Mokhtarzadeh, A.; Khatibi, S.A.; Hosseinzadeh, N.; Hajipour, N. Green synthesis, characterization, and biological evaluation of gold and silver nanoparticles using Mentha spicata essential oil. Sci. Rep., 2023, 13(1), 7230.
[http://dx.doi.org/10.1038/s41598-023-33632-y] [PMID: 37142621]
[12]
Santajit, S.; Indrawattana, N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Res. Int., 2016, 2016, 1-8.
[http://dx.doi.org/10.1155/2016/2475067] [PMID: 27274985]
[13]
Kim, J.W.; Kim, Y.S.; Kyung, K.H. Inhibitory activity of essential oils of garlic and onion against bacteria and yeasts. J. Food Prot., 2004, 67(3), 499-504.
[http://dx.doi.org/10.4315/0362-028X-67.3.499] [PMID: 15035364]
[14]
Sarangi, A.; Das, B.S.; Patnaik, G.; Sarkar, S.; Debnath, M.; Mohan, M.; Bhattacharya, D. Potent anti-mycobacterial and immunomodulatory activity of some bioactive molecules of Indian ethnomedicinal plants that have the potential to enter in TB management. J. Appl. Microbiol., 2021, 131(4), 1578-1599.
[http://dx.doi.org/10.1111/jam.15088] [PMID: 33772980]
[15]
Yasin, G.; Jasim, S.A.; Mahmudiono, T. Investigating the Effect of Garlic (Allium sativum) Essential Oil on Foodborne Pathogenic Microorganisms. In: Food Sci Technol; , 2022; 42, p. 3822.
[16]
Das, M.C.; Paul, S.; Gupta, P.; Tribedi, P.; Sarkar, S.; Manna, D.; Bhattacharjee, S. 3-Amino-4-aminoximidofurazan derivatives: Small molecules possessing antimicrobial and antibiofilm activity against Staphylococcus aureus and Pseudomonas aeruginosa. J. Appl. Microbiol., 2016, 120(4), 842-859.
[http://dx.doi.org/10.1111/jam.13063] [PMID: 26785169]
[17]
Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing: Twenty-fourth informational supplements M100. 2013. Available From: https://clsi.org/media/1930/m100ed28_sample.pdf
[18]
Das Mahapatra, A.; Patra, C.; Pal, K.; Mondal, J.; Sinha, C.; Chattopadhyay, D. Green synthesis of AgNPs from aqueous extract of Oxalis corniculata and its antibiofilm and antimicrobial activity. J. Indian Chem. Soc., 2022, 99(7), 100529.
[http://dx.doi.org/10.1016/j.jics.2022.100529]
[19]
Dubois, J.M.; Ouanounou, G.; Rouzaire-Dubois, B. The Boltzmann equation in molecular biology. Prog. Biophys. Mol. Biol., 2009, 99(2-3), 87-93.
[http://dx.doi.org/10.1016/j.pbiomolbio.2009.07.001] [PMID: 19616022]
[20]
Urbain, F.; Tang, P.; Carretero, N.M.; Andreu, T.; Arbiol, J.; Morante, J.R. Tailoring Copper foam with silver dendrite catalysts for highly selective carbon dioxide conversion into carbon monoxide. ACS Appl. Mater. Interfaces, 2018, 10(50), 43650-43660.
[http://dx.doi.org/10.1021/acsami.8b15379] [PMID: 30480996]
[21]
Long, Y.; Huang, W.; Wang, Q.; Yang, G. Green synthesis of garlic oil nanoemulsion using ultrasonication technique and its mechanism of antifungal action against Penicillium italicum. Ultrason. Sonochem., 2020, 64, 104970.
[http://dx.doi.org/10.1016/j.ultsonch.2020.104970] [PMID: 32014757]
[22]
Lu, X.; Rasco, B.A.; Jabal, J.M.F.; Aston, D.E.; Lin, M.; Konkel, M.E. Investigating antibacterial effects of garlic (Allium sativum) concentrate and garlic-derived organosulfur compounds on Campylobacter jejuni by using Fourier transform infrared spectroscopy, Raman spectroscopy, and electron microscopy. Appl. Environ. Microbiol., 2011, 77(15), 5257-5269.
[http://dx.doi.org/10.1128/AEM.02845-10] [PMID: 21642409]
[23]
Sim, W.; Barnard, R.T.; Blaskovich, M.A.T.; Ziora, Z.M. Antimicrobial silver in medicinal and consumer applications: A patent review of the past decade (2007–2017). Antibiotics (Basel), 2018, 7(4), 93.
[http://dx.doi.org/10.3390/antibiotics7040093] [PMID: 30373130]
[24]
Takáč, P.; Michalková, R.; Čižmáriková, M.; Bedlovičová, Z.; Balážová, Ľ.; Takáčová, G. The role of silver nanoparticles in the diagnosis and treatment of cancer: Are there any perspectives for the future? Life, 2023, 13(2), 466.
[http://dx.doi.org/10.3390/life13020466] [PMID: 36836823]
[25]
Vinicius de Oliveira Brisola Maciel, M.; da Rosa Almeida, A.; Machado, M.H.; Elias, W.C.; Gonçalves da Rosa, C.; Teixeira, G.L.; Noronha, C.M.; Bertoldi, F.C.; Nunes, M.R.; Dutra de Armas, R.; Manique Barreto, P.L. Green synthesis, characteristics and antimicrobial activity of silver nanoparticles mediated by essential oils as reducing agents. Biocatal. Agric. Biotechnol., 2020, 28, 101746.
[http://dx.doi.org/10.1016/j.bcab.2020.101746]
[26]
Al-Zahrani, S.; Astudillo-Calderón, S.; Pintos, B.; Pérez-Urria, E.; Manzanera, J.A.; Martín, L.; Gomez-Garay, A. Role of synthetic plant extracts on the production of silver-derived nanoparticles. Plants, 2021, 10(8), 1671.
[http://dx.doi.org/10.3390/plants10081671] [PMID: 34451715]
[27]
Sarangi, A.; Das, B.S.; Rout, S.S.; Sahoo, A.; Gir, S.; Bhattacharya, D. Antimycobacterial and antibiofilm activity of garlic essential oil using vapor phase techniques. J. Appl. Biol. Biotechnol., 2022, 11, 66-72.
[http://dx.doi.org/10.7324/JABB.2023.110109]
[28]
Patterson, A.L. The Scherrer Formula for x-ray particle size determination. Phys. Rev., 1939, 56(10), 978-982.
[http://dx.doi.org/10.1103/PhysRev.56.978]
[29]
Choi, H.J.; Ahn, J.; Jung, B.K.; Choi, Y.K.; Park, T.; Bang, J.; Park, J.; Yang, Y.; Son, G.; Oh, S.J. Highly conductive and sensitive wearable strain sensors with metal/nanoparticle double layer for noninterference voice detection. ACS Appl. Mater. Interfaces, 2023, 15(36), 42836-42844.
[http://dx.doi.org/10.1021/acsami.3c08050]
[30]
Tavares, L.; Santos, L.; Noreña, C.P.Z. Microencapsulation of organosulfur compounds from garlic oil using β-cyclodextrin and complex of soy protein isolate and chitosan as wall materials: A comparative study. Powder Technol., 2021, 390, 103-111.
[http://dx.doi.org/10.1016/j.powtec.2021.05.080]
[31]
Vishwanath, R.; Negi, B. Conventional and green methods of synthesis of silver nanoparticles and their antimicrobial properties. Curr Res Green Sust Chem, 2021, 4, 100205.
[http://dx.doi.org/10.1016/j.crgsc.2021.100205]
[32]
Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res., 2016, 7(1), 17-28.
[http://dx.doi.org/10.1016/j.jare.2015.02.007] [PMID: 26843966]
[33]
Bhattacharjee, S. DLS and zeta potential – What they are and what they are not? J. Control. Release, 2016, 235, 337-351.
[http://dx.doi.org/10.1016/j.jconrel.2016.06.017] [PMID: 27297779]
[34]
Al-Momani, H.; Almasri, M.; Al Balawi, D.A.; Hamed, S.; Albiss, B.A.; Aldabaibeh, N.; Ibrahim, L.; Albalawi, H.; Al Haj Mahmoud, S.; Khasawneh, A.I.; Kilani, M.; Aldhafeeri, M.; Bani-Hani, M.; Wilcox, M.; Pearson, J.; Ward, C. The efficacy of biosynthesized silver nanoparticles against Pseudomonas aeruginosa isolates from cystic fibrosis patients. Sci. Rep., 2023, 13(1), 8876.
[http://dx.doi.org/10.1038/s41598-023-35919-6] [PMID: 37264060]
[35]
Hamida, R.S.; Ali, M.A.; Goda, D.A.; Khalil, M.I.; Al-Zaban, M.I. Novel biogenic silver nanoparticle-induced reactive oxygen species inhibit the biofilm formation and virulence activities of methicillin-resistant Staphylococcus aureus (MRSA) strain. Front. Bioeng. Biotechnol., 2020, 8, 433.
[http://dx.doi.org/10.3389/fbioe.2020.00433] [PMID: 32548095]
[36]
Hsueh, Y.H.; Lin, K.S.; Ke, W.J.; Hsieh, C.T.; Chiang, C.L.; Tzou, D.Y.; Liu, S.T. The antimicrobial properties of silver nanoparticles in Bacillus subtilis are mediated by released Ag+ Ions. PLoS One, 2015, 10(12), e0144306.
[http://dx.doi.org/10.1371/journal.pone.0144306] [PMID: 26669836]
[37]
Li, W.R.; Xie, X.B.; Shi, Q.S.; Duan, S.S.; Ouyang, Y.S.; Chen, Y.B. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals, 2011, 24(1), 135-141.
[http://dx.doi.org/10.1007/s10534-010-9381-6] [PMID: 20938718]
[38]
Campo-Beleño, C.; Villamizar-Gallardo, R.A.; López-Jácome, L.E.; González, E.E.; Muñoz-Carranza, S.; Franco, B.; Morales-Espinosa, R.; Coria-Jimenez, R.; Franco-Cendejas, R.; Hernández-Durán, M.; Lara-Martínez, R.; Jiménez-García, L.F.; Fernández-Presas, A.M.; García-Contreras, R. Biologically synthesized silver nanoparticles as potent antibacterial effective against multidrug-resistant Pseudomonas aeruginosa. Lett. Appl. Microbiol., 2022, 75(3), 680-688.
[http://dx.doi.org/10.1111/lam.13759] [PMID: 35687297]
[39]
Selem, E.; Mekky, A.F.; Hassanein, W.A.; Reda, F.M.; Selim, Y.A. Antibacterial and antibiofilm effects of silver nanoparticles against the uropathogen Escherichia coli U12. Saudi J. Biol. Sci., 2022, 29(11), 103457.
[http://dx.doi.org/10.1016/j.sjbs.2022.103457] [PMID: 36267912]
[40]
Ravindra Kumar, S.; Imlay, J.A. How Escherichia coli tolerates profuse hydrogen peroxide formation by a catabolic pathway. J. Bacteriol., 2013, 195(20), 4569-4579.
[http://dx.doi.org/10.1128/JB.00737-13] [PMID: 23913322]
[41]
Godoy-Gallardo, M.; Eckhard, U.; Delgado, L.M.; de Roo Puente, Y.J.D.; Hoyos-Nogués, M.; Gil, F.J.; Perez, R.A. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications. Bioact. Mater., 2021, 6(12), 4470-4490.
[http://dx.doi.org/10.1016/j.bioactmat.2021.04.033] [PMID: 34027235]
[42]
Rai, M.K.; Deshmukh, S.D.; Ingle, A.P.; Gade, A.K. Silver nanoparticles: The powerful nanoweapon against multidrug-resistant bacteria. J. Appl. Microbiol., 2012, 112(5), 841-852.
[http://dx.doi.org/10.1111/j.1365-2672.2012.05253.x] [PMID: 22324439]
[43]
Dutt, Y.; Dhiman, R.; Singh, T.; Vibhuti, A.; Gupta, A.; Pandey, R.P.; Raj, V.S.; Chang, C.M.; Priyadarshini, A. The association between biofilm formation and antimicrobial resistance with possible ingenious bio-remedial approaches. Antibiotics (Basel), 2022, 11(7), 930.
[http://dx.doi.org/10.3390/antibiotics11070930] [PMID: 35884186]
[44]
Qiu, Z.; Qiao, Y.; Zhang, B.; Sun-Waterhouse, D.; Zheng, Z. Bioactive polysaccharides and oligosaccharides from garlic ( Allium sativum L.): Production, physicochemical and biological properties, and structure–function relationships. Compr. Rev. Food Sci. Food Saf., 2022, 21(4), 3033-3095.
[http://dx.doi.org/10.1111/1541-4337.12972] [PMID: 35765769]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy