Note! Please note that this article is currently in the "Article in Press" stage and is not the final "Version of record". While it has been accepted, copy-edited, and formatted, however, it is still undergoing proofreading and corrections by the authors. Therefore, the text may still change before the final publication. Although "Articles in Press" may not have all bibliographic details available, the DOI and the year of online publication can still be used to cite them. The article title, DOI, publication year, and author(s) should all be included in the citation format. Once the final "Version of record" becomes available the "Article in Press" will be replaced by that.
Abstract
Background: Colorectal cancer remains to be the third leading cause of cancer mortality rates. Despite the diverse effects of the miRNA cluster located in PVT1 of 8q24.21 across various tumors, the specific biological function in colorectal cancer has not been clarified.
Methods: The amplification of the miR-1204 cluster was analyzed with the cBioPortal database, while the expression and survival analysis of the miRNAs in the cluster were obtained from several GEO databases of colorectal cancer. To investigate the functional role of miR-1204 in colorectal cancer, overexpression and silencing experiments were performed by miR-1204 mimic and inhibitor transfection in colorectal cancer cell lines, respectively. Then, the effects of miR-1204 on cell proliferation were assessed through CCK-8, colony formation, and Edu assay. In addition, cell migration was evaluated using wound healing and Transwell assay. Moreover, candidate genes identified through RNA sequencing and predicted databases were identified and validated using PCR and western blot. A Dual-luciferase reporter experiment was conducted to identify MASPIN as the target gene of miR-1204. Result: In colorectal cancer, the miR-1204 cluster exhibited high amplification, and the expression levels of several cluster miRNAs were also significantly increased. Furthermore, miR-1204 was found to be significantly associated with disease-specific survival according to the analysis of GSE17536. Functional experiments demonstrated that transfection of miR-1204 mimic or inhibitor could enhance or decrease cancer cell proliferation and migration. MASPIN was identified as a target of miR-1204. Additionally, the overexpression of MASPIN partially rescued the effect of miR-1204 mimics on tumorigenic abilities in LOVO cells. Conclusion: miR-1204 positioning in 8q24.21 promotes the proliferation and migration of colorectal cancer cells by targeting MASPIN.[1]
Li, C.G.; Eccles, M.R. PAX genes in cancer; friends or foes? Front. Genet., 2012, 3, 6.
[http://dx.doi.org/10.3389/fgene.2012.00006] [PMID: 22303411]
[http://dx.doi.org/10.3389/fgene.2012.00006] [PMID: 22303411]
[2]
Ghoussaini, M.; Song, H.; Koessler, T.; Al Olama, A.A.; Kote-Jarai, Z.; Driver, K.E.; Pooley, K.A.; Ramus, S.J.; Kjaer, S.K.; Hogdall, E.; DiCioccio, R.A.; Whittemore, A.S.; Gayther, S.A.; Giles, G.G.; Guy, M.; Edwards, S.M.; Morrison, J.; Donovan, J.L.; Hamdy, F.C.; Dearnaley, D.P.; Ardern-Jones, A.T.; Hall, A.L.; O’Brien, L.T.; Gehr-Swain, B.N.; Wilkinson, R.A.; Brown, P.M.; Hopper, J.L.; Neal, D.E.; Pharoah, P.D.P.; Ponder, B.A.J.; Eeles, R.A.; Easton, D.F.; Dunning, A.M. Multiple loci with different cancer specificities within the 8q24 gene desert. J. Natl. Cancer Inst., 2008, 100(13), 962-966.
[http://dx.doi.org/10.1093/jnci/djn190] [PMID: 18577746]
[http://dx.doi.org/10.1093/jnci/djn190] [PMID: 18577746]
[3]
Haerian, M.S.; Baum, L.; Haerian, B.S. Association of 8q24.21 loci with the risk of colorectal cancer: A systematic review and meta-analysis. J. Gastroenterol. Hepatol., 2011, 26(10), 1475-1484.
[http://dx.doi.org/10.1111/j.1440-1746.2011.06831.x] [PMID: 21722176]
[http://dx.doi.org/10.1111/j.1440-1746.2011.06831.x] [PMID: 21722176]
[4]
Wilson, C.; Kanhere, A. 8q24.21 locus: A paradigm to link non-coding rnas, genome polymorphisms and cancer. Int. J. Mol. Sci., 2021, 22(3), 1094.
[http://dx.doi.org/10.3390/ijms22031094] [PMID: 33499210]
[http://dx.doi.org/10.3390/ijms22031094] [PMID: 33499210]
[5]
Haiman, C.A.; Patterson, N.; Freedman, M.L.; Myers, S.R.; Pike, M.C.; Waliszewska, A.; Neubauer, J.; Tandon, A.; Schirmer, C.; McDonald, G.J.; Greenway, S.C.; Stram, D.O.; Le Marchand, L.; Kolonel, L.N.; Frasco, M.; Wong, D.; Pooler, L.C.; Ardlie, K.; Oakley-Girvan, I.; Whittemore, A.S.; Cooney, K.A.; John, E.M.; Ingles, S.A.; Altshuler, D.; Henderson, B.E.; Reich, D. Multiple regions within 8q24 independently affect risk for prostate cancer. Nat. Genet., 2007, 39(5), 638-644.
[http://dx.doi.org/10.1038/ng2015] [PMID: 17401364]
[http://dx.doi.org/10.1038/ng2015] [PMID: 17401364]
[6]
Chin, K.; DeVries, S.; Fridlyand, J.; Spellman, P.T.; Roydasgupta, R.; Kuo, W.L.; Lapuk, A.; Neve, R.M.; Qian, Z.; Ryder, T.; Chen, F.; Feiler, H.; Tokuyasu, T.; Kingsley, C.; Dairkee, S.; Meng, Z.; Chew, K.; Pinkel, D.; Jain, A.; Ljung, B.M.; Esserman, L.; Albertson, D.G.; Waldman, F.M.; Gray, J.W. Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell, 2006, 10(6), 529-541.
[http://dx.doi.org/10.1016/j.ccr.2006.10.009] [PMID: 17157792]
[http://dx.doi.org/10.1016/j.ccr.2006.10.009] [PMID: 17157792]
[7]
Douglas, E.J.; Fiegler, H.; Rowan, A.; Halford, S.; Bicknell, D.C.; Bodmer, W.; Tomlinson, I.P.M.; Carter, N.P. Array comparative genomic hybridization analysis of colorectal cancer cell lines and primary carcinomas. Cancer Res., 2004, 64(14), 4817-4825.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0328] [PMID: 15256451]
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0328] [PMID: 15256451]
[8]
Arakawa, N.; Sugai, T.; Habano, W.; Eizuka, M.; Sugimoto, R.; Akasaka, R.; Toya, Y.; Yamamoto, E.; Koeda, K.; Sasaki, A.; Matsumoto, T.; Suzuki, H. Genome-wide analysis of DNA copy number alterations in early and advanced gastric cancers. Mol. Carcinog., 2017, 56(2), 527-537.
[http://dx.doi.org/10.1002/mc.22514] [PMID: 27312513]
[http://dx.doi.org/10.1002/mc.22514] [PMID: 27312513]
[9]
van Duin, M.; van Marion, R.; Vissers, K.; Watson, J.E.V.; van Weerden, W.M.; Schröder, F.H.; Hop, W.C.J.; van der Kwast, T.H.; Collins, C.; van Dekken, H. High-resolution array comparative genomic hybridization of chromosome arm 8q: Evaluation of genetic progression markers for prostate cancer. Genes Chromosomes Cancer, 2005, 44(4), 438-449.
[http://dx.doi.org/10.1002/gcc.20259] [PMID: 16130124]
[http://dx.doi.org/10.1002/gcc.20259] [PMID: 16130124]
[10]
Taylor, B.S.; Schultz, N.; Hieronymus, H.; Gopalan, A.; Xiao, Y.; Carver, B.S.; Arora, V.K.; Kaushik, P.; Cerami, E.; Reva, B.; Antipin, Y.; Mitsiades, N.; Landers, T.; Dolgalev, I.; Major, J.E.; Wilson, M.; Socci, N.D.; Lash, A.E.; Heguy, A.; Eastham, J.A.; Scher, H.I.; Reuter, V.E.; Scardino, P.T.; Sander, C.; Sawyers, C.L.; Gerald, W.L. Integrative genomic profiling of human prostate cancer. Cancer Cell, 2010, 18(1), 11-22.
[http://dx.doi.org/10.1016/j.ccr.2010.05.026] [PMID: 20579941]
[http://dx.doi.org/10.1016/j.ccr.2010.05.026] [PMID: 20579941]
[11]
Pomerantz, M.M.; Ahmadiyeh, N.; Jia, L.; Herman, P.; Verzi, M.P.; Doddapaneni, H.; Beckwith, C.A.; Chan, J.A.; Hills, A.; Davis, M.; Yao, K.; Kehoe, S.M.; Lenz, H.J.; Haiman, C.A.; Yan, C.; Henderson, B.E.; Frenkel, B.; Barretina, J.; Bass, A.; Tabernero, J.; Baselga, J.; Regan, M.M.; Manak, J.R.; Shivdasani, R.; Coetzee, G.A.; Freedman, M.L. The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer. Nat. Genet., 2009, 41(8), 882-884.
[http://dx.doi.org/10.1038/ng.403] [PMID: 19561607]
[http://dx.doi.org/10.1038/ng.403] [PMID: 19561607]
[12]
Tuupanen, S.; Turunen, M.; Lehtonen, R.; Hallikas, O.; Vanharanta, S.; Kivioja, T.; Björklund, M.; Wei, G.; Yan, J.; Niittymäki, I.; Mecklin, J.P.; Järvinen, H.; Ristimäki, A.; Di-Bernardo, M.; East, P.; Carvajal-Carmona, L.; Houlston, R.S.; Tomlinson, I.; Palin, K.; Ukkonen, E.; Karhu, A.; Taipale, J.; Aaltonen, L.A. The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling. Nat. Genet., 2009, 41(8), 885-890.
[http://dx.doi.org/10.1038/ng.406] [PMID: 19561604]
[http://dx.doi.org/10.1038/ng.406] [PMID: 19561604]
[13]
Dang, C.V.; O’Donnell, K.A.; Zeller, K.I.; Nguyen, T.; Osthus, R.C.; Li, F. The c-Myc target gene network. Semin. Cancer Biol., 2006, 16(4), 253-264.
[http://dx.doi.org/10.1016/j.semcancer.2006.07.014] [PMID: 16904903]
[http://dx.doi.org/10.1016/j.semcancer.2006.07.014] [PMID: 16904903]
[14]
Singh, A.M.; Dalton, S. The cell cycle and Myc intersect with mechanisms that regulate pluripotency and reprogramming. Cell Stem Cell, 2009, 5(2), 141-149.
[http://dx.doi.org/10.1016/j.stem.2009.07.003] [PMID: 19664987]
[http://dx.doi.org/10.1016/j.stem.2009.07.003] [PMID: 19664987]
[15]
Stine, Z.E.; Walton, Z.E.; Altman, B.J.; Hsieh, A.L.; Dang, C.V. MYC, metabolism, and cancer. Cancer Discov., 2015, 5(10), 1024-1039.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0507] [PMID: 26382145]
[http://dx.doi.org/10.1158/2159-8290.CD-15-0507] [PMID: 26382145]
[16]
Coller, H.A.; Grandori, C.; Tamayo, P.; Colbert, T.; Lander, E.S.; Eisenman, R.N.; Golub, T.R. Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion. Proc. Natl. Acad. Sci. USA, 2000, 97(7), 3260-3265.
[http://dx.doi.org/10.1073/pnas.97.7.3260] [PMID: 10737792]
[http://dx.doi.org/10.1073/pnas.97.7.3260] [PMID: 10737792]
[17]
Ren, D.; Zhuang, X.; Lv, Y.; Zhang, Y.; Xu, J.; Gao, F.; Chen, D.; Wang, Y. FAM84B promotes the proliferation of glioma cells through the cell cycle pathways. World J. Surg. Oncol., 2022, 20(1), 368.
[http://dx.doi.org/10.1186/s12957-022-02831-8] [PMID: 36419094]
[http://dx.doi.org/10.1186/s12957-022-02831-8] [PMID: 36419094]
[18]
Zhang, Y.; Du, P.; Li, Y.; Zhu, Q.; Song, X.; Liu, S.; Hao, J.; Liu, L.; Liu, F.; Hu, Y.; Jiang, L.; Ma, Q.; Lu, W.; Liu, Y. TASP1 promotes gallbladder cancer cell proliferation and metastasis by up-regulating FAM49B via PI3K/AKT pathway. Int. J. Biol. Sci., 2020, 16(5), 739-751.
[http://dx.doi.org/10.7150/ijbs.40516] [PMID: 32071545]
[http://dx.doi.org/10.7150/ijbs.40516] [PMID: 32071545]
[19]
Xie, W.; Han, Z.; Zuo, Z.; Xin, D.; Chen, H.; Huang, J.; Zhu, S.; Lou, H.; Yu, Z.; Chen, C.; Chen, S.; Hu, Y.; Huang, J.; Zhang, F.; Ni, Z.; Shen, X.; Xue, X.; Lin, K. ASAP1 activates the IQGAP1/CDC42 pathway to promote tumor progression and chemotherapy resistance in gastric cancer. Cell Death Dis., 2023, 14(2), 124.
[http://dx.doi.org/10.1038/s41419-023-05648-9] [PMID: 36792578]
[http://dx.doi.org/10.1038/s41419-023-05648-9] [PMID: 36792578]
[20]
Gu, Y.; Lin, X.; Kapoor, A.; Chow, M.J.; Jiang, Y.; Zhao, K.; Tang, D. The oncogenic potential of the centromeric border protein FAM84B of the 8q24.21 gene desert. Genes, 2020, 11(3), 312.
[http://dx.doi.org/10.3390/genes11030312] [PMID: 32183428]
[http://dx.doi.org/10.3390/genes11030312] [PMID: 32183428]
[21]
Tolomeo, D.; Agostini, A.; Visci, G.; Traversa, D.; Storlazzi, C.T. PVT1: A long non-coding RNA recurrently involved in neoplasia-associated fusion transcripts. Gene, 2021, 779, 145497.
[http://dx.doi.org/10.1016/j.gene.2021.145497] [PMID: 33600954]
[http://dx.doi.org/10.1016/j.gene.2021.145497] [PMID: 33600954]
[22]
Ozawa, T.; Matsuyama, T.; Toiyama, Y.; Takahashi, N.; Ishikawa, T.; Uetake, H.; Yamada, Y.; Kusunoki, M.; Calin, G.; Goel, A. CCAT1 and CCAT2 long noncoding RNAs, located within the 8q.24.21 ‘gene desert’, serve as important prognostic biomarkers in colorectal cancer. Ann. Oncol., 2017, 28(8), 1882-1888.
[http://dx.doi.org/10.1093/annonc/mdx248] [PMID: 28838211]
[http://dx.doi.org/10.1093/annonc/mdx248] [PMID: 28838211]
[23]
Dryden, N.H.; Broome, L.R.; Dudbridge, F.; Johnson, N.; Orr, N.; Schoenfelder, S.; Nagano, T.; Andrews, S.; Wingett, S.; Kozarewa, I.; Assiotis, I.; Fenwick, K.; Maguire, S.L.; Campbell, J.; Natrajan, R.; Lambros, M.; Perrakis, E.; Ashworth, A.; Fraser, P.; Fletcher, O. Unbiased analysis of potential targets of breast cancer susceptibility loci by Capture Hi-C. Genome Res., 2014, 24(11), 1854-1868.
[http://dx.doi.org/10.1101/gr.175034.114] [PMID: 25122612]
[http://dx.doi.org/10.1101/gr.175034.114] [PMID: 25122612]
[24]
Martínez-Barriocanal, Á.; Arango, D.; Dopeso, H. PVT1 long non-coding rna in gastrointestinal cancer. Front. Oncol., 2020, 10, 38.
[http://dx.doi.org/10.3389/fonc.2020.00038] [PMID: 32083000]
[http://dx.doi.org/10.3389/fonc.2020.00038] [PMID: 32083000]
[25]
Jin, K.; Wang, S.; Zhang, Y.; Xia, M.; Mo, Y.; Li, X.; Li, G.; Zeng, Z.; Xiong, W.; He, Y. Long non-coding RNA PVT1 interacts with MYC and its downstream molecules to synergistically promote tumorigenesis. Cell. Mol. Life Sci., 2019, 76(21), 4275-4289.
[http://dx.doi.org/10.1007/s00018-019-03222-1] [PMID: 31309249]
[http://dx.doi.org/10.1007/s00018-019-03222-1] [PMID: 31309249]
[26]
Kim, E.A.; Jang, J.H.; Sung, E.G.; Song, I.H.; Kim, J.Y.; Lee, T.J. MiR-1208 increases the sensitivity to cisplatin by targeting TBCK in renal cancer cells. Int. J. Mol. Sci., 2019, 20(14), 3540.
[http://dx.doi.org/10.3390/ijms20143540] [PMID: 31331056]
[http://dx.doi.org/10.3390/ijms20143540] [PMID: 31331056]
[27]
He, F.; Song, Z.; Chen, H.; Chen, Z.; Yang, P.; Li, W.; Yang, Z.; Zhang, T.; Wang, F.; Wei, J.; Wei, F.; Wang, Q.; Cao, J. Long noncoding RNA PVT1-214 promotes proliferation and invasion of colorectal cancer by stabilizing Lin28 and interacting with miR-128. Oncogene, 2019, 38(2), 164-179.
[http://dx.doi.org/10.1038/s41388-018-0432-8] [PMID: 30076414]
[http://dx.doi.org/10.1038/s41388-018-0432-8] [PMID: 30076414]
[28]
Chen, S.; Shen, X. Long noncoding RNAs: Functions and mechanisms in colon cancer. Mol. Cancer, 2020, 19(1), 167.
[http://dx.doi.org/10.1186/s12943-020-01287-2] [PMID: 33246471]
[http://dx.doi.org/10.1186/s12943-020-01287-2] [PMID: 33246471]
[29]
Onagoruwa, O.T.; Pal, G.; Ochu, C.; Ogunwobi, O.O. Oncogenic role of PVT1 and therapeutic implications. Front. Oncol., 2020, 10, 17.
[http://dx.doi.org/10.3389/fonc.2020.00017] [PMID: 32117705]
[http://dx.doi.org/10.3389/fonc.2020.00017] [PMID: 32117705]
[30]
Li, M.; Yue, W.; Li, Q.; Yu, W.; Li, Y.; Cao, X.; Circular, R.N.A. Circular RNA Circ_0000098 elevates ALX4 expression via adsorbing mir-1204 to inhibit the progression of hepatocellular carcinoma. Front. Oncol., 2021, 11, 696078.
[http://dx.doi.org/10.3389/fonc.2021.696078] [PMID: 34900665]
[http://dx.doi.org/10.3389/fonc.2021.696078] [PMID: 34900665]
[31]
Wang, Y.; Li, X.; Liu, W.; Li, B.; Chen, D.; Hu, F.; Wang, L.; Liu, X.M.; Cui, R.; Liu, R. MicroRNA-1205, encoded on chromosome 8q24, targets EGLN3 to induce cell growth and contributes to risk of castration-resistant prostate cancer. Oncogene, 2019, 38(24), 4820-4834.
[http://dx.doi.org/10.1038/s41388-019-0760-3] [PMID: 30808975]
[http://dx.doi.org/10.1038/s41388-019-0760-3] [PMID: 30808975]
[32]
Yu, S.; Wang, M.; Zhang, H.; Guo, X.; Qin, R. Circ_0092367 inhibits EMT and gemcitabine resistance in pancreatic cancer via regulating the miR-1206/ESRP1 axis. Genes, 2021, 12(11), 1701.
[http://dx.doi.org/10.3390/genes12111701] [PMID: 34828307]
[http://dx.doi.org/10.3390/genes12111701] [PMID: 34828307]
[33]
Yan, C.; Chen, Y.; Kong, W.; Fu, L.; Liu, Y.; Yao, Q.; Yuan, Y. PVT 1- derived miR-1207-5p promotes breast cancer cell growth by targeting STAT 6. Cancer Sci., 2017, 108(5), 868-876.
[http://dx.doi.org/10.1111/cas.13212] [PMID: 28235236]
[http://dx.doi.org/10.1111/cas.13212] [PMID: 28235236]
[34]
Hou, X.; Niu, Z.; Liu, L.; Guo, Q.; Li, H.; Yang, X.; Zhang, X. miR-1207-5p regulates the sensitivity of triple-negative breast cancer cells to Taxol treatment via the suppression of LZTS1 expression. Oncol. Lett., 2018.
[http://dx.doi.org/10.3892/ol.2018.9687] [PMID: 30655858]
[http://dx.doi.org/10.3892/ol.2018.9687] [PMID: 30655858]
[35]
Chen, D.; Wang, Z.; Zeng, Z.; Wu, W.; Zhang, D.; Luo, H.; Wang, F.; Qiu, M.; Wang, D.; Ren, C.; Wang, F.; Chiao, L.J.; Pelicano, H.; Huang, P.; Li, Y.; Xu, R. Identification of MicroRNA-214 as a negative regulator of colorectal cancer liver metastasis by way of regulation of fibroblast growth factor receptor 1 expression. Hepatology, 2014, 60(2), 598-609.
[http://dx.doi.org/10.1002/hep.27118] [PMID: 24616020]
[http://dx.doi.org/10.1002/hep.27118] [PMID: 24616020]
[36]
Kassambara, A.; Rème, T.; Jourdan, M.; Fest, T.; Hose, D.; Tarte, K.; Klein, B.; Klein, B. GenomicScape: an easy-to-use web tool for gene expression data analysis. Application to investigate the molecular events in the differentiation of B cells into plasma cells. PLOS Comput. Biol., 2015, 11(1), e1004077.
[http://dx.doi.org/10.1371/journal.pcbi.1004077] [PMID: 25633866]
[http://dx.doi.org/10.1371/journal.pcbi.1004077] [PMID: 25633866]
[37]
Ji, W.; Bian, Z.; Yu, Y.; Yuan, C.; Liu, Y.; Yu, L.; Li, C.; Zhu, J.; Jia, X.; Guan, R.; Zhang, C.; Meng, X.; Jin, Y.; Bai, J.; Yu, J.; Lee, K.Y.; Sun, W.; Fu, S. Expulsion of micronuclei containing amplified genes contributes to a decrease in double minute chromosomes from malignant tumor cells. Int. J. Cancer, 2014, 134(6), 1279-1288.
[http://dx.doi.org/10.1002/ijc.28467] [PMID: 24027017]
[http://dx.doi.org/10.1002/ijc.28467] [PMID: 24027017]
[38]
Zhu, J.; Yu, Y.; Meng, X.; Fan, Y.; Zhang, Y.; Zhou, C.; Yue, Z.; Jin, Y.; Zhang, C.; Yu, L.; Ji, W.; Jia, X.; Guan, R.; Wu, J.; Yu, J.; Bai, J.; Guan, X.Y.; Wang, M.; Lee, K.Y.; Sun, W.; Fu, S. De novo -generated small palindromes are characteristic of amplicon boundary junction of double minutes. Int. J. Cancer, 2013, 133(4), 797-806.
[http://dx.doi.org/10.1002/ijc.28084] [PMID: 23382041]
[http://dx.doi.org/10.1002/ijc.28084] [PMID: 23382041]
[39]
Zhang, M.; Volpert, O.; Shi, Y.H.; Bouck, N. Maspin is an angiogenesis inhibitor. Nat. Med., 2000, 6(2), 196-199.
[http://dx.doi.org/10.1038/72303] [PMID: 10655109]
[http://dx.doi.org/10.1038/72303] [PMID: 10655109]
[40]
Tu, Z.; Li, K.; Ji, Q.; Huang, Y.; Lv, S.; Li, J.; Wu, L.; Huang, K.; Zhu, X. Pan-cancer analysis: predictive role of TAP1 in cancer prognosis and response to immunotherapy. BMC Cancer, 2023, 23(1), 133.
[http://dx.doi.org/10.1186/s12885-022-10491-w] [PMID: 36759763]
[http://dx.doi.org/10.1186/s12885-022-10491-w] [PMID: 36759763]
[41]
Collados Rodríguez, M. The fate of speckled protein 100 (Sp100) during herpesviruses infection. Front. Cell. Infect. Microbiol., 2021, 10, 607526.
[http://dx.doi.org/10.3389/fcimb.2020.607526] [PMID: 33598438]
[http://dx.doi.org/10.3389/fcimb.2020.607526] [PMID: 33598438]
[42]
Fraschilla, I.; Jeffrey, K.L. The Speckled Protein (SP) family: Immunity’s chromatin readers. Trends Immunol., 2020, 41(7), 572-585.
[http://dx.doi.org/10.1016/j.it.2020.04.007] [PMID: 32386862]
[http://dx.doi.org/10.1016/j.it.2020.04.007] [PMID: 32386862]
[43]
Chen, E.I.; Yates, J.R., III Maspin and tumor metastasis. IUBMB Life, 2006, 58(1), 25-29.
[http://dx.doi.org/10.1080/15216540500531721] [PMID: 16540429]
[http://dx.doi.org/10.1080/15216540500531721] [PMID: 16540429]
[44]
Khalkhali-Ellis, Z. Maspin: the new frontier. Clin. Cancer Res., 2006, 12(24), 7279-7283.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1589] [PMID: 17189399]
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1589] [PMID: 17189399]
[45]
Zhang, W.; Shi, H.Y.; Zhang, M. Maspin overexpression modulates tumor cell apoptosis through the regulation of Bcl-2 family proteins. BMC Cancer, 2005, 5(1), 50.
[http://dx.doi.org/10.1186/1471-2407-5-50] [PMID: 15907209]
[http://dx.doi.org/10.1186/1471-2407-5-50] [PMID: 15907209]
[46]
Zhao, X.; Shen, F.; Ma, J.; Zhao, S.; Meng, L.; Wang, X.; Liang, S.; Liang, J.; Hu, C.; Zhang, X. CREB1-induced miR-1204 promoted malignant phenotype of glioblastoma through targeting NR3C2. Cancer Cell Int., 2020, 20(1), 111.
[http://dx.doi.org/10.1186/s12935-020-01176-0] [PMID: 32280303]
[http://dx.doi.org/10.1186/s12935-020-01176-0] [PMID: 32280303]
[47]
Naidoo, M.; Levine, F.; Gillot, T.; Orunmuyi, A.T.; Olapade-Olaopa, E.O.; Ali, T.; Krampis, K.; Pan, C.; Dorsaint, P.; Sboner, A.; Ogunwobi, O.O. MicroRNA-1205 regulation of FRYL in prostate cancer. Front. Cell Dev. Biol., 2021, 9, 647485.
[http://dx.doi.org/10.3389/fcell.2021.647485] [PMID: 34386489]
[http://dx.doi.org/10.3389/fcell.2021.647485] [PMID: 34386489]
[48]
Xu, H.; He, Y.; Lin, L.; Li, M.; Zhou, Z.; Yang, Y. MiR-1207-5p targets PYCR1 to inhibit the progression of prostate cancer. Biochem. Biophys. Res. Commun., 2021, 575, 56-64.
[http://dx.doi.org/10.1016/j.bbrc.2021.08.037] [PMID: 34461437]
[http://dx.doi.org/10.1016/j.bbrc.2021.08.037] [PMID: 34461437]
[49]
Wu, Y.; Dai, F.; Zhang, Y.; Zheng, X.; Li, L.; Zhang, Y.; Cao, J.; Gao, W. miR-1207-5p suppresses laryngeal squamous cell carcinoma progression by downregulating SKA3 and inhibiting epithelial-mesenchymal transition. Mol. Ther. Oncolytics, 2021, 22, 152-165.
[http://dx.doi.org/10.1016/j.omto.2021.08.001] [PMID: 34514096]
[http://dx.doi.org/10.1016/j.omto.2021.08.001] [PMID: 34514096]
[50]
Jiang, N.; Zhao, L.; Zong, D.; Yin, L.; Wu, L.; Chen, C.; Song, X.; Zhang, Q.; Jiang, X.; He, X.; Feng, J. Long non-coding RNA LUADT1 promotes nasopharyngeal carcinoma cell proliferation and invasion by downregulating miR-1207-5p. Bioengineered, 2021, 12(2), 10716-10728.
[http://dx.doi.org/10.1080/21655979.2021.2001952] [PMID: 34738862]
[http://dx.doi.org/10.1080/21655979.2021.2001952] [PMID: 34738862]
[51]
You, L.; Wang, H.; Yang, G.; Zhao, F.; Zhang, J.; Liu, Z.; Zhang, T.; Liang, Z.; Liu, C.; Zhao, Y. Gemcitabine exhibits a suppressive effect on pancreatic cancer cell growth by regulating processing of PVT 1 to miR1207. Mol. Oncol., 2018, 12(12), 2147-2164.
[http://dx.doi.org/10.1002/1878-0261.12393] [PMID: 30341811]
[http://dx.doi.org/10.1002/1878-0261.12393] [PMID: 30341811]
[52]
Shoshani, O.; Brunner, S.F.; Yaeger, R.; Ly, P.; Nechemia-Arbely, Y.; Kim, D.H.; Fang, R.; Castillon, G.A.; Yu, M.; Li, J.S.Z.; Sun, Y.; Ellisman, M.H.; Ren, B.; Campbell, P.J.; Cleveland, D.W. Chromothripsis drives the evolution of gene amplification in cancer. Nature, 2021, 591(7848), 137-141.
[http://dx.doi.org/10.1038/s41586-020-03064-z] [PMID: 33361815]
[http://dx.doi.org/10.1038/s41586-020-03064-z] [PMID: 33361815]
[53]
Matsui, A.; Ihara, T.; Suda, H.; Mikami, H.; Semba, K. Gene amplification: mechanisms and involvement in cancer. Biomol. Concepts, 2013, 4(6), 567-582.
[http://dx.doi.org/10.1515/bmc-2013-0026] [PMID: 25436757]
[http://dx.doi.org/10.1515/bmc-2013-0026] [PMID: 25436757]
[54]
Budakoti, M.; Panwar, A.S.; Molpa, D.; Singh, R.K.; Büsselberg, D.; Mishra, A.P.; Coutinho, H.D.M.; Nigam, M. Micro-RNA: The darkhorse of cancer. Cell. Signal., 2021, 83, 109995.
[http://dx.doi.org/10.1016/j.cellsig.2021.109995] [PMID: 33785398]
[http://dx.doi.org/10.1016/j.cellsig.2021.109995] [PMID: 33785398]
[55]
Lee, Y.S.; Dutta, A. MicroRNAs in Cancer. Annu. Rev. Pathol., 2009, 4(1), 199-227.
[http://dx.doi.org/10.1146/annurev.pathol.4.110807.092222] [PMID: 18817506]
[http://dx.doi.org/10.1146/annurev.pathol.4.110807.092222] [PMID: 18817506]
[56]
Tafrihi, M.; Hasheminasab, E. MiRNAs: Biology, biogenesis, their web-based tools, and databases. MicroRNA, 2018, 8(1), 4-27.
[http://dx.doi.org/10.2174/2211536607666180827111633] [PMID: 30147022]
[http://dx.doi.org/10.2174/2211536607666180827111633] [PMID: 30147022]
[57]
Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell, 2009, 136(2), 215-233.
[http://dx.doi.org/10.1016/j.cell.2009.01.002] [PMID: 19167326]
[http://dx.doi.org/10.1016/j.cell.2009.01.002] [PMID: 19167326]
[58]
Ali Syeda, Z.; Langden, S.S.S.; Munkhzul, C.; Lee, M.; Song, S.J. Regulatory mechanism of MicroRNA expression in cancer. Int. J. Mol. Sci., 2020, 21(5), 1723.
[http://dx.doi.org/10.3390/ijms21051723] [PMID: 32138313]
[http://dx.doi.org/10.3390/ijms21051723] [PMID: 32138313]
[59]
Fabian, M.R.; Sonenberg, N.; Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem., 2010, 79(1), 351-379.
[http://dx.doi.org/10.1146/annurev-biochem-060308-103103] [PMID: 20533884]
[http://dx.doi.org/10.1146/annurev-biochem-060308-103103] [PMID: 20533884]
[60]
Berardi, R.; Morgese, F.; Onofri, A.; Mazzanti, P.; Pistelli, M.; Ballatore, Z.; Savini, A.; De Lisa, M.; Caramanti, M.; Rinaldi, S.; Pagliaretta, S.; Santoni, M.; Pierantoni, C.; Cascinu, S. Role of maspin in cancer. Clin. Transl. Med., 2013, 2(1), e8.
[http://dx.doi.org/10.1186/2001-1326-2-8] [PMID: 23497644]
[http://dx.doi.org/10.1186/2001-1326-2-8] [PMID: 23497644]
[61]
Bodenstine, T.M.; Seftor, R.E.B.; Khalkhali-Ellis, Z.; Seftor, E.A.; Pemberton, P.A.; Hendrix, M.J.C. Maspin: molecular mechanisms and therapeutic implications. Cancer Metastasis Rev., 2012, 31(3-4), 529-551.
[http://dx.doi.org/10.1007/s10555-012-9361-0] [PMID: 22752408]
[http://dx.doi.org/10.1007/s10555-012-9361-0] [PMID: 22752408]
[62]
Umekita, Y.; Ohi, Y.; Souda, M.; Rai, Y.; Sagara, Y.; Sagara, Y.; Tamada, S.; Tanimoto, A. Maspin expression is frequent and correlates with basal markers in triple-negative breast cancer. Diagn. Pathol., 2011, 6(1), 36.
[http://dx.doi.org/10.1186/1746-1596-6-36] [PMID: 21496280]
[http://dx.doi.org/10.1186/1746-1596-6-36] [PMID: 21496280]
[63]
Lonardo, F.; Li, X.; Kaplun, A.; Soubani, A.; Sethi, S.; Gadgeel, S.; Sheng, S. The natural tumor suppressor protein maspin and potential application in non small cell lung cancer. Curr. Pharm. Des., 2010, 16(16), 1877-1881.
[http://dx.doi.org/10.2174/138161210791208974] [PMID: 20337574]
[http://dx.doi.org/10.2174/138161210791208974] [PMID: 20337574]
[64]
Zheng, H.C.; Gong, B.C. The roles of maspin expression in gastric cancer: a meta- and bioinformatics analysis. Oncotarget, 2017, 8(39), 66476-66490.
[http://dx.doi.org/10.18632/oncotarget.20192] [PMID: 29029529]
[http://dx.doi.org/10.18632/oncotarget.20192] [PMID: 29029529]
[65]
Gurzu, S.; Jung, I. Subcellular expression of maspin in colorectal cancer: Friend or foe. Cancers (Basel), 2021, 13(3), 366.
[http://dx.doi.org/10.3390/cancers13030366] [PMID: 33498377]
[http://dx.doi.org/10.3390/cancers13030366] [PMID: 33498377]
[66]
Goulet, B.; Chan, G.; Chambers, A.F.; Lewis, J.D. An emerging role for the nuclear localization of maspin in the suppression of tumor progression and metastasis 1 This article is part of Special Issue entitled Asilomar Chromatin and has undergone the Journal’s usual peer review process. Biochem. Cell Biol., 2012, 90(1), 22-38.
[http://dx.doi.org/10.1139/o11-053] [PMID: 22047058]
[http://dx.doi.org/10.1139/o11-053] [PMID: 22047058]
[67]
Wang, N.; Chang, L.L. Maspin suppresses cell invasion and migration in gastric cancer through inhibiting EMT and angiogenesis via ITGB1/FAK pathway. Hum. Cell, 2020, 33(3), 663-675.
[http://dx.doi.org/10.1007/s13577-020-00345-7] [PMID: 32409959]
[http://dx.doi.org/10.1007/s13577-020-00345-7] [PMID: 32409959]
[68]
Lockett, J.; Yin, S.; Li, X.; Meng, Y.; Sheng, S. Tumor suppressive maspin and epithelial homeostasis. J. Cell. Biochem., 2006, 97(4), 651-660.
[http://dx.doi.org/10.1002/jcb.20721] [PMID: 16329135]
[http://dx.doi.org/10.1002/jcb.20721] [PMID: 16329135]
[69]
Lin, Y.H.; Tsui, K.H.; Chang, K.S.; Hou, C.P.; Feng, T.H.; Juang, H.H. Maspin is a PTEN-upregulated and p53-upregulated tumor suppressor gene and acts as an HDAC1 inhibitor in human bladder cancer. Cancers, 2019, 12(1), 10.
[http://dx.doi.org/10.3390/cancers12010010] [PMID: 31861435]
[http://dx.doi.org/10.3390/cancers12010010] [PMID: 31861435]
[70]
Nehad Abd El-Maqsoud, E.R.T. Loss of maspin expression in bladder cancer: Its relationship with p53 and clinicopathological parameters. J. Egypt. Natl. Canc. Inst., 2010, 22(1), 1-12.
[71]
Zhu, S.; Wu, H.; Wu, F.; Nie, D.; Sheng, S.; Mo, Y.Y. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res., 2008, 18(3), 350-359.
[http://dx.doi.org/10.1038/cr.2008.24] [PMID: 18270520]
[http://dx.doi.org/10.1038/cr.2008.24] [PMID: 18270520]
[72]
Song, J.H.; Meltzer, S.J. MicroRNAs in pathogenesis, diagnosis, and treatment of gastroesophageal cancers. Gastroenterology, 2012, 143(1), 35-47.e2.
[http://dx.doi.org/10.1053/j.gastro.2012.05.003] [PMID: 22580099]
[http://dx.doi.org/10.1053/j.gastro.2012.05.003] [PMID: 22580099]