Note! Please note that this article is currently in the "Article in Press" stage and is not the final "Version of record". While it has been accepted, copy-edited, and formatted, however, it is still undergoing proofreading and corrections by the authors. Therefore, the text may still change before the final publication. Although "Articles in Press" may not have all bibliographic details available, the DOI and the year of online publication can still be used to cite them. The article title, DOI, publication year, and author(s) should all be included in the citation format. Once the final "Version of record" becomes available the "Article in Press" will be replaced by that.
Abstract
Introduction: This research aims to create a gel formulation of Brassica juncea leaf extract and assess its anti-inflammatory properties using an in silico study. The anti-inflamma-tory activity has been compared with Diclofenac molecules in PDB id: 4Z69. Further, the Ab-sorption, Distribution, Metabolism, Excretion, and Toxicity analysis has been performed to en-sure the therapeutic potential and safety of the drug development process. The Quality by De-sign tool has been applied to optimize formulation development.
Methods: The extracted gel is characterized by performing Fourier transformer infrared, zeta potential, particle size, Scanning Electron Microscope, and entrapment efficiency. Further, the formulation is evaluated by examining its viscosity, spreadability, and pH measurement. An In-vitro study of all nine extract suspensions was conducted to determine the drug contents at 276 nm. Results: The optimized suspension has shown the maximum percentage of drug release (82%) in 10 hours of study. Animal study for anti-inflammatory activity was performed, and results of all five groups of animals compared the % inhibition of paw edema at three hours; gel (56.70 %), standard (47.86 %), and (39.72 %) were found. Conclusion: The research could conclude that the anti-inflammatory activity of gel formulation is high compared to extract, and a molecular docking study validates the anti-inflammatory ther-apeutic effects. ADMET analysis ensures the therapeutic effects and their safety.[1]
Tian, Y.; Deng, F. Phytochemistry and biological activity of mustard ( Brassica juncea ): A review. CYTA J. Food, 2020, 18(1), 704-718.
[http://dx.doi.org/10.1080/19476337.2020.1833988]
[http://dx.doi.org/10.1080/19476337.2020.1833988]
[2]
Lin, L.Z.; Sun, J.; Chen, P.; Harnly, J. UHPLC-PDA-ESI/HRMS/MS(n) analysis of anthocyanins, flavonol glycosides, and hydroxycinnamic acid derivatives in red mustard greens (Brassica juncea Coss variety). J. Agric. Food Chem., 2011, 59(22), 12059-12072.
[http://dx.doi.org/10.1021/jf202556p] [PMID: 21970730]
[http://dx.doi.org/10.1021/jf202556p] [PMID: 21970730]
[3]
Verma, S.; Tiwari, B.K.; Jaiswal, N.; Pandey, F.K. Evaluation of antimicrobial activity of Brassica juncea leaves against different strains of bacteria. Bio Science Research Bulletin, 2022, 38(1), 26-34.
[http://dx.doi.org/10.5958/2320-3161.2022.00003.7]
[http://dx.doi.org/10.5958/2320-3161.2022.00003.7]
[4]
Muhammad, A.P.; Pinkey, R.; Ramesh, C.; Chaitra, G. Evaluation of Antidiarrheal properties of ethanol extract of Brassica juncea in experimental animals. J. Drug Deliv. Ther., 2021, 11(2-S), 19-23.
[http://dx.doi.org/10.22270/jddt.v11i2-S.4615]
[http://dx.doi.org/10.22270/jddt.v11i2-S.4615]
[5]
Flourat, A.L.; Willig, G.; Teixeira, A.R.S.; Allais, F. Eco-friendly extraction of sinapine from residues of mustard production. Front. Sustain. Food Syst., 2019, 3, 12.
[http://dx.doi.org/10.3389/fsufs.2019.00012]
[http://dx.doi.org/10.3389/fsufs.2019.00012]
[6]
Kwon, H.Y.; Choi, S.I.; Park, H.I.; Choi, S.H.; Sim, W.S.; Yeo, J.H.; Cho, J.H.; Lee, O.H. Comparative analysis of the nutritional components and antioxidant activities of different Brassica juncea cultivars. Foods, 2020, 9(6), 840.
[http://dx.doi.org/10.3390/foods9060840] [PMID: 32604920]
[http://dx.doi.org/10.3390/foods9060840] [PMID: 32604920]
[7]
Dua, A.; Chander, S.; Agrawal, S.; Mahajan, R. Antioxidants from defatted Indian Mustard (Brassica juncea) protect biomolecules against in vitro oxidation. Physiol. Mol. Biol. Plants, 2014, 20(4), 539-543.
[http://dx.doi.org/10.1007/s12298-014-0260-4] [PMID: 25320478]
[http://dx.doi.org/10.1007/s12298-014-0260-4] [PMID: 25320478]
[8]
Lakshmanan, D.K.; Murugesan, S.; Rajendran, S.; Ravichandran, G.; Elangovan, A.; Raju, K.; Prathiviraj, R.; Pandiyan, R.; Thilagar, S. Brassica juncea (L.) Czern. leaves alleviate adjuvant-induced rheumatoid arthritis in rats via modulating the finest disease targets - IL2RA, IL18 and VEGFA. J. Biomol. Struct. Dyn., 2022, 40(18), 8155-8168.
[http://dx.doi.org/10.1080/07391102.2021.1907226] [PMID: 33792526]
[http://dx.doi.org/10.1080/07391102.2021.1907226] [PMID: 33792526]
[9]
Parikh, H.; Pandita, N.; Khanna, A. Phytoextract of Indian mustard seeds acts by suppressing the generation of ROS against acetaminophen-induced hepatotoxicity in HepG2 cells. Pharm. Biol., 2015, 53(7), 975-984.
[http://dx.doi.org/10.3109/13880209.2014.950675] [PMID: 25489640]
[http://dx.doi.org/10.3109/13880209.2014.950675] [PMID: 25489640]
[10]
Chandrashekar, S.; Vijayakumar, R.; Chelliah, R.; Daliri, E.B.M.; Madar, I.H.; Sultan, G.; Rubab, M.; Elahi, F.; Yeon, S.J.; Oh, D.H. In vitro and in silico screening and characterization of antimicrobial napin bioactive protein in Brassica juncea and Moringa oleifera. Molecules, 2021, 26(7), 2080.
[http://dx.doi.org/10.3390/molecules26072080] [PMID: 33916405]
[http://dx.doi.org/10.3390/molecules26072080] [PMID: 33916405]
[11]
Yokozawa, T.; Kim, H.Y.; Cho, E.J.; Choi, J.S.; Chung, H.Y. Antioxidant effects of isorhamnetin 3,7-di-O-β-D-glucopyranoside isolated from mustard leaf (Brassica juncea) in rats with streptozotocin-induced diabetes. J. Agric. Food Chem., 2002, 50(19), 5490-5495.
[http://dx.doi.org/10.1021/jf0202133] [PMID: 12207497]
[http://dx.doi.org/10.1021/jf0202133] [PMID: 12207497]
[12]
Zou, Y.; Kim, A.R.; Kim, J.E.; Choi, J.S.; Chung, H.Y. Peroxynitrite scavenging activity of sinapic acid (3,5-dimethoxy-4-hydroxycinnamic acid) isolated from Brassica juncea. J. Agric. Food Chem., 2002, 50(21), 5884-5890.
[http://dx.doi.org/10.1021/jf020496z] [PMID: 12358454]
[http://dx.doi.org/10.1021/jf020496z] [PMID: 12358454]
[13]
Jung, H.A.; Woo, J.J.; Jung, M.J.; Hwang, G.S.; Choi, J.S. Kaempferol glycosides with antioxidant activity from Brassica juncea. Arch. Pharm. Res., 2009, 32(10), 1379-1384.
[http://dx.doi.org/10.1007/s12272-009-2006-3] [PMID: 19898800]
[http://dx.doi.org/10.1007/s12272-009-2006-3] [PMID: 19898800]
[14]
Mayengbam, S.; Aachary, A.; Thiyam-Holländer, U. Endogenous phenolics in hulls and cotyledons of mustard and canola: A comparative study on its sinapates and antioxidant capacity. Antioxidants, 2014, 3(3), 544-558.
[http://dx.doi.org/10.3390/antiox3030544] [PMID: 26785070]
[http://dx.doi.org/10.3390/antiox3030544] [PMID: 26785070]
[15]
Xian, Y.F.; Hu, Z.; Ip, S.P.; Chen, J.N.; Su, Z.R.; Lai, X.P.; Lin, Z.X. Comparison of the anti-inflammatory effects of Sinapis alba and Brassica juncea in mouse models of inflammation. Phytomedicine, 2018, 50, 196-204.
[http://dx.doi.org/10.1016/j.phymed.2018.05.010] [PMID: 30466979]
[http://dx.doi.org/10.1016/j.phymed.2018.05.010] [PMID: 30466979]
[16]
Hassan, S.A.; Hagrassi, A.M.E.; Hammam, O.; Soliman, A.M.; Ezzeldin, E.; Aziz, W.M. Brassica juncea L. (Mustard) extract silver nanoparticles and knocking off oxidative stress, proinflammatory cytokine and reverse DNA genotoxicity. Biomolecules, 2020, 10(12), 1650.
[http://dx.doi.org/10.3390/biom10121650] [PMID: 33317112]
[http://dx.doi.org/10.3390/biom10121650] [PMID: 33317112]
[17]
Kwak, Y.; Lee, J.; Ju, J. Anti-cancer activities of Brassica juncea leaves in vitro. EXCLI J., 2016, 15, 699-710.
[PMID: 28337101]
[PMID: 28337101]
[18]
Gasmi, A.; Gasmi Benahmed, A.; Shanaida, M.; Chirumbolo, S.; Menzel, A.; Anzar, W.; Arshad, M.; Cruz-Martins, N.; Lysiuk, R.; Beley, N.; Oliinyk, P.; Shanaida, V.; Denys, A.; Peana, M.; Bjørklund, G. Anticancer activity of broccoli, its organosulfur and polyphenolic compounds. Crit. Rev. Food Sci. Nutr., 2023, 1-19.
[http://dx.doi.org/10.1080/10408398.2023.2195493] [PMID: 37129118]
[http://dx.doi.org/10.1080/10408398.2023.2195493] [PMID: 37129118]
[19]
Sheu, M.J.; Yeh, M.C.; Tsai, M.C.; Wang, C.C.; Chang, Y.L.; Wang, C.J.; Huang, H.P. Glucosinolates extracts from Brassica juncea ameliorate hfd-induced non-alcoholic steatohepatitis. Nutrients, 2023, 15(16), 3497.
[http://dx.doi.org/10.3390/nu15163497] [PMID: 37630688]
[http://dx.doi.org/10.3390/nu15163497] [PMID: 37630688]
[20]
Sharma, A. Phytochemical and elemental analysis of Brassica juncea L. leaves using GC-MS and SEM-EDX. Res. J. Pharm. Technol., 2015, 8(12), 1662-1664.
[21]
Sharma, A.; Rai, P.K.; Prasad, S. GC–MS detection and determination of major volatile compounds in Brassica juncea L. leaves and seeds. Microchem. J., 2018, 138, 488-493.
[http://dx.doi.org/10.1016/j.microc.2018.01.015]
[http://dx.doi.org/10.1016/j.microc.2018.01.015]
[22]
Bassan, P.; Bhushan, S.; Kaur, T.; Arora, R.; Arora, S.; Vig, A.P. Extraction, profiling and bioactivity analysis of volatile glucosinolates present in oil extract of Brassica juncea var. raya. Physiol. Mol. Biol. Plants, 2018, 24(3), 399-409.
[http://dx.doi.org/10.1007/s12298-018-0509-4] [PMID: 29692548]
[http://dx.doi.org/10.1007/s12298-018-0509-4] [PMID: 29692548]
[23]
Oulad El Majdoub, Y.; Alibrando, F.; Cacciola, F.; Arena, K.; Pagnotta, E.; Matteo, R.; Micalizzi, G.; Dugo, L.; Dugo, P.; Mondello, L. Chemical characterization of three accessions of Brassica juncea L. extracts from different plant tissues. Molecules, 2020, 25(22), 5421.
[http://dx.doi.org/10.3390/molecules25225421] [PMID: 33228167]
[http://dx.doi.org/10.3390/molecules25225421] [PMID: 33228167]
[24]
Ibrahim, R.M.; M Eltanany, B.; Pont, L.; Benavente, F.; ElBanna, S.A.; Otify, A.M. Unveiling the functional components and antivirulence activity of mustard leaves using an LC-MS/MS, molecular networking, and multivariate data analysis integrated approach. Food Res. Int., 2023, 168, 112742.
[http://dx.doi.org/10.1016/j.foodres.2023.112742] [PMID: 37120197]
[http://dx.doi.org/10.1016/j.foodres.2023.112742] [PMID: 37120197]
[25]
Jain, P.; Taleuzzaman, M.; Kala, C.; Kumar Gupta, D.; Ali, A.; Aslam, M. Quality by design (Qbd) assisted development of phytosomal gel of aloe vera extract for topical delivery. J. Liposome Res., 2021, 31(4), 381-388.
[http://dx.doi.org/10.1080/08982104.2020.1849279] [PMID: 33183121]
[http://dx.doi.org/10.1080/08982104.2020.1849279] [PMID: 33183121]
[26]
Taleuzzaman, M.; Sartaj, A.; Kumar Gupta, D.; Gilani, S.J.; Mirza, M.A. Phytosomal gel of Manjistha extract (MJE) formulated and optimized with central composite design of quality by design (QbD). J. Dispers. Sci. Technol., 2023, 44(2), 236-244.
[http://dx.doi.org/10.1080/01932691.2021.1942036]
[http://dx.doi.org/10.1080/01932691.2021.1942036]
[27]
Mohapatra, S.; Mirza, M.A.; Ahmad, S.; Farooq, U.; Ansari, M.J.; Kohli, K.; Iqbal, Z. Quality by design assisted optimization and risk assessment of black cohosh loaded ethosomal gel for menopause: Investigating Different Formulation and Process variables. Pharmaceutics, 2023, 15(2), 465.
[http://dx.doi.org/10.3390/pharmaceutics15020465] [PMID: 36839787]
[http://dx.doi.org/10.3390/pharmaceutics15020465] [PMID: 36839787]
[28]
Dhawan, S.; Nanda, S. Implementation of quality by design (QbD) concept for the development of emulsion based nanotailored gel for improved antiphotoageing potential of Silymarin. J. Drug Deliv. Sci. Technol., 2023, 81, 104201.
[http://dx.doi.org/10.1016/j.jddst.2023.104201]
[http://dx.doi.org/10.1016/j.jddst.2023.104201]
[29]
Taleuzzaman, M.; Jain, P.; Verma, R.; Iqbal, Z.; Mirza, M.A. Eugenol as a potential drug candidate: A review. Curr. Top. Med. Chem., 2021, 21(20), 1804-1815.
[http://dx.doi.org/10.2174/1568026621666210701141433] [PMID: 34218781]
[http://dx.doi.org/10.2174/1568026621666210701141433] [PMID: 34218781]
[30]
Moradi, S.Z.; Momtaz, S.; Bayrami, Z.; Farzaei, M.H.; Abdollahi, M. Nanoformulations of herbal extracts in treatment of neurodegenerative disorders. Front. Bioeng. Biotechnol., 2020, 8, 238.
[http://dx.doi.org/10.3389/fbioe.2020.00238] [PMID: 32318551]
[http://dx.doi.org/10.3389/fbioe.2020.00238] [PMID: 32318551]
[31]
Bonifácio, B.V.; Silva, P.B.; Ramos, M.A.; Negri, K.M.; Bauab, T.M.; Chorilli, M. Nanotechnology-based drug delivery systems and herbal medicines: A review. Int. J. Nanomedicine, 2014, 9, 1-15.
[PMID: 24363556]
[PMID: 24363556]
[32]
Verma, S.; Singh, S. Current and future status of herbal medicines. Vet. World, 2008, 2(2), 347-350.
[http://dx.doi.org/10.5455/vetworld.2008.347-350]
[http://dx.doi.org/10.5455/vetworld.2008.347-350]
[33]
Ashenafi, E.; Abula, T.; Abay, S.M.; Arayaselassie, M.; Taye, S.; Muluye, R.A. Analgesic and anti-inflammatory effects of 80% methanol extract and solvent fractions of the leaves of vernonia auriculifera hiern. (Asteraceae). J. Exp. Pharmacol., 2023, 15, 29-40.
[http://dx.doi.org/10.2147/JEP.S398487] [PMID: 36733956]
[http://dx.doi.org/10.2147/JEP.S398487] [PMID: 36733956]
[34]
Mota, A.H.; Prazeres, I.; Mestre, H.; Bento-Silva, A.; Rodrigues, M.J.; Duarte, N.; Serra, A.T.; Bronze, M.R.; Rijo, P.; Gaspar, M.M.; Viana, A.S.; Ascensão, L.; Pinto, P.; Kumar, P.; Almeida, A.J.; Reis, C.P. A newfangled collagenase inhibitor topical formulation based on ethosomes with sambucus nigra l. Extract. Pharmaceuticals, 2021, 14(5), 467.
[http://dx.doi.org/10.3390/ph14050467] [PMID: 34063413]
[http://dx.doi.org/10.3390/ph14050467] [PMID: 34063413]
[35]
Andleeb, M.; Shoaib Khan, H.M.; Daniyal, M. Development, characterization and stability evaluation of topical gel loaded with ethosomes containing Achillea millefolium L. extract. Front. Pharmacol., 2021, 12, 603227.
[http://dx.doi.org/10.3389/fphar.2021.603227] [PMID: 33912036]
[http://dx.doi.org/10.3389/fphar.2021.603227] [PMID: 33912036]
[36]
Alam, P.; Shakeel, F.; Foudah, A.I.; Alshehri, S.; Salfi, R.; Alqarni, M.H.; Aljarba, T.M. Central composite design (CCD) for the optimisation of ethosomal gel formulation of Punica granatum extract: In vitro and in vivo evaluations. Gels, 2022, 8(8), 511.
[http://dx.doi.org/10.3390/gels8080511] [PMID: 36005111]
[http://dx.doi.org/10.3390/gels8080511] [PMID: 36005111]
[37]
Khogta, S.; Patel, J.; Barve, K.; Londhe, V. Herbal nano-formulations for topical delivery. J. Herb. Med., 2020, 20, 100300.
[http://dx.doi.org/10.1016/j.hermed.2019.100300]
[http://dx.doi.org/10.1016/j.hermed.2019.100300]
[38]
Naseri, M.; Mojab, F.; Khodadoost, M.; Kamalinejad, M.; Davati, A.; Choopani, R.; Hasheminejad, A.; Bararpoor, Z.; Shariatpanahi, S.; Emtiazy, M. The study of anti-inflammatory activity of oil-based dill (Anethum graveolens L.) extract used topically in formalin-induced inflammation male rat paw. Iran. J. Pharm. Res., 2012, 11(4), 1169-1174.
[PMID: 24250550]
[PMID: 24250550]
[39]
Moni, J.N.R.; Adnan, M.; Tareq, A.M.; Kabir, M.I.; Reza, A.S.M.A.; Nasrin, M.S.; Chowdhury, K.H.; Sayem, S.A.J.; Rahman, M.A.; Alam, A.H.M.K.; Alam, S.B.; Sakib, M.A.; Oh, K.K.; Cho, D.H.; Capasso, R. Therapeutic potentials of Syzygium fruticosum fruit (Seed) reflected into an array of pharmacological assays and prospective receptors-mediated pathways. Life, 2021, 11(2), 155.
[http://dx.doi.org/10.3390/life11020155] [PMID: 33671381]
[http://dx.doi.org/10.3390/life11020155] [PMID: 33671381]
[40]
Németh, Z.; Csóka, I.; Semnani Jazani, R.; Sipos, B.; Haspel, H.; Kozma, G.; Kónya, Z.; Dobó, D.G. Quality by design-driven zeta potential optimisation study of liposomes with charge imparting membrane additives. Pharmaceutics, 2022, 14(9), 1798.
[http://dx.doi.org/10.3390/pharmaceutics14091798] [PMID: 36145546]
[http://dx.doi.org/10.3390/pharmaceutics14091798] [PMID: 36145546]
[41]
Singh, U.; Jialal, I. Anti‐inflammatory effects of α‐tocopherol. Ann. N. Y. Acad. Sci., 2004, 1031(1), 195-203.
[http://dx.doi.org/10.1196/annals.1331.019] [PMID: 15753145]
[http://dx.doi.org/10.1196/annals.1331.019] [PMID: 15753145]
[42]
Reiter, E.; Jiang, Q.; Christen, S. Anti-inflammatory properties of α- and γ-tocopherol. Mol. Aspects Med., 2007, 28(5-6), 668-691.
[http://dx.doi.org/10.1016/j.mam.2007.01.003] [PMID: 17316780]
[http://dx.doi.org/10.1016/j.mam.2007.01.003] [PMID: 17316780]
[43]
Loganathan, Y.; Jain, M.; Thiyagarajan, S.; Shanmuganathan, S.; Mariappan, S.K.; Kizhakedathil, M.P.J.; Saravanakumar, T. An Insilico evaluation of phytocompounds from Albizia amara and Phyla nodiflora as cyclooxygenase-2 enzyme inhibitors. Daru, 2021, 29(2), 311-320.
[http://dx.doi.org/10.1007/s40199-021-00408-6] [PMID: 34415547]
[http://dx.doi.org/10.1007/s40199-021-00408-6] [PMID: 34415547]
[44]
Krishnamoorthy, K.; Subramaniam, P. Phytochemical profiling of leaf, stem, and tuber parts of Solena amplexicaulis (Lam.) gandhi using GC-MS. Int. Sch. Res. Notices, 2014, 2014, 1-13.
[http://dx.doi.org/10.1155/2014/567409] [PMID: 27379314]
[http://dx.doi.org/10.1155/2014/567409] [PMID: 27379314]
[45]
Othman, A.R.; Abdullah, N.; Ahmad, S.; Ismail, I.S.; Zakaria, M.P. Elucidation of in-vitro anti-inflammatory bioactive compounds isolated from Jatropha curcas L. plant root. BMC Complement. Altern. Med., 2015, 15(1), 11.
[http://dx.doi.org/10.1186/s12906-015-0528-4] [PMID: 25652309]
[http://dx.doi.org/10.1186/s12906-015-0528-4] [PMID: 25652309]
[46]
Umar, M.I.; Asmawi, M.Z.; Sadikun, A.; Abdul Majid, A.M.S.; Atangwho, I.J.; Khadeer Ahamed, M.B.; Altaf, R.; Ahmad, A. Multi-constituent synergism is responsible for anti-inflammatory effect of Azadirachta indica leaf extract. Pharm. Biol., 2014, 52(11), 1411-1422.
[http://dx.doi.org/10.3109/13880209.2014.895017] [PMID: 25026347]
[http://dx.doi.org/10.3109/13880209.2014.895017] [PMID: 25026347]
[47]
Ahmad, M.M.; Akhtar, N.; Khan, S.; Rashid, M.; Athar, M.T.; Ullah, Z.; Taleuzzaman, M. Discovery of novel isonipecotic acid-based heteroaryl amino acid derivatives as potential anticonvulsant agents: Design, synthesis, in-silico ADME study, and molecular docking studies. J. Pharm. Bioallied Sci., 2023, 15(4), 205-211.
[http://dx.doi.org/10.4103/jpbs.jpbs_478_23] [PMID: 38235051]
[http://dx.doi.org/10.4103/jpbs.jpbs_478_23] [PMID: 38235051]
[48]
Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov., 2021, 20(3), 200-216.
[http://dx.doi.org/10.1038/s41573-020-00114-z] [PMID: 33510482]
[http://dx.doi.org/10.1038/s41573-020-00114-z] [PMID: 33510482]
[49]
Dzobo, K. The role of natural products as sources of therapeutic agents for innovative drug discovery; Comprehensive Pharmacology, 2022, p. 408.
[http://dx.doi.org/10.1016/B978-0-12-820472-6.00041-4]
[http://dx.doi.org/10.1016/B978-0-12-820472-6.00041-4]