Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Neurological Manifestations Following Traumatic Brain Injury: Role of Behavioral, Neuroinflammation, Excitotoxicity, Nrf-2 and Nitric Oxide

In Press, (this is not the final "Version of Record"). Available online 30 July, 2024
Author(s): Lav Goyal and Shamsher Singh*
Published on: 30 July, 2024

DOI: 10.2174/0118715273318552240708055413

Price: $95

Abstract

Traumatic Brain Injury (TBI) is attributed to a forceful impact on the brain caused by sharp, penetrating bodies, like bullets and any sharp object. Some popular instances like falls, traffic accidents, physical assaults, and athletic injuries frequently cause TBI. TBI is the primary cause of both mortality and disability among young children and adults. Several individuals experience psychiatric problems, including cognitive dysfunction, depression, post-traumatic stress disorder, and anxiety, after primary injury. Behavioral changes post TBI include cognitive deficits and emotional instability (anxiety, depression, and post-traumatic stress disorder). These alterations are linked to neuroinflammatory processes. On the other hand, the direct impact mitigates inflammation insult by the release of pro-inflammatory cytokines, namely IL-1β, IL-6, and TNF-α, exacerbating neuronal injury and contributing to neurodegeneration. During the excitotoxic phase, activation of glutamate subunits like NMDA enhances the influx of Ca2+ and leads to mitochondrial metabolic impairment and calpain-mediated cytoskeletal disassembly. TBI pathological insult is also linked to transcriptional response suppression Nrf-2, which plays a critical role against TBI-induced oxidative stress. Activation of NRF-2 enhances the expression of anti-oxidant enzymes, providing neuroprotection. A possible explanation for the elevated levels of NO is that the stimulation of NMDA receptors by glutamate leads to the influx of calcium in the postsynaptic region, activating NOS's constitutive isoforms.

[1]
Rana A, Singh S, Deshmukh R, Kumar A. Pharmacological potential of tocopherol and doxycycline against traumatic brain injury-induced cognitive/motor impairment in rats. Brain Inj 2020; 34(8): 1039-50.
[http://dx.doi.org/10.1080/02699052.2020.1772508] [PMID: 32493074]
[2]
Iaccarino C, Carretta A, Nicolosi F, Morselli C. Epidemiology of severe traumatic brain injury. J Neurosurg Sci 2018; 62(5): 535-41.
[http://dx.doi.org/10.23736/S0390-5616.18.04532-0] [PMID: 30182649]
[3]
Siebold L, Obenaus A, Goyal R. Criteria to define mild, moderate, and severe traumatic brain injury in the mouse controlled cortical impact model. Exp Neurol 2018; 310: 48-57.
[http://dx.doi.org/10.1016/j.expneurol.2018.07.004] [PMID: 30017882]
[4]
Werner C, Engelhard K. Pathophysiology of traumatic brain injury. Br J Anaesth 2007; 99(1): 4-9.
[http://dx.doi.org/10.1093/bja/aem131] [PMID: 17573392]
[5]
Wortzel HS, Arciniegas DB. Treatment of post-traumatic cognitive impairments. Curr Treat Options Neurol 2012; 14(5): 493-508.
[http://dx.doi.org/10.1007/s11940-012-0193-6] [PMID: 22865461]
[6]
Ietswaart M, Milders M, Crawford JR, Currie D, Scott CL. Longitudinal aspects of emotion recognition in patients with traumatic brain injury. Neuropsychologia 2008; 46(1): 148-59.
[http://dx.doi.org/10.1016/j.neuropsychologia.2007.08.002] [PMID: 17915263]
[7]
Silver JM, McAllister TW, Arciniegas DB. Depression and cognitive complaints following mild traumatic brain injury. Am J Psychiatry 2009; 166(6): 653-61.
[http://dx.doi.org/10.1176/appi.ajp.2009.08111676] [PMID: 19487401]
[8]
Loane DJ, Byrnes KR. Role of microglia in neurotrauma. Neurotherapeutics 2010; 7(4): 366-77.
[http://dx.doi.org/10.1016/j.nurt.2010.07.002] [PMID: 20880501]
[9]
Rodney T, Osier N, Gill J. Pro- and anti-inflammatory biomarkers and traumatic brain injury outcomes: A review. Cytokine 2018; 110: 248-56.
[http://dx.doi.org/10.1016/j.cyto.2018.01.012] [PMID: 29396048]
[10]
Ahmed SMU, Luo L, Namani A, Wang XJ, Tang X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim Biophys Acta Mol Basis Dis 2017; 1863(2): 585-97.
[http://dx.doi.org/10.1016/j.bbadis.2016.11.005] [PMID: 27825853]
[11]
Dorsett CR, McGuire JL, DePasquale EAK, Gardner AE, Floyd CL, McCullumsmith RE. Glutamate neurotransmission in rodent models of traumatic brain injury. J Neurotrauma 2017; 34(2): 263-72.
[http://dx.doi.org/10.1089/neu.2015.4373] [PMID: 27256113]
[12]
Zhang L, Wang H, Zhou X, Mao L, Ding K, Hu Z. Role of mitochondrial calcium uniporter‐mediated Ca 2+ and iron accumulation in traumatic brain injury. J Cell Mol Med 2019; 23(4): 2995-3009.
[http://dx.doi.org/10.1111/jcmm.14206] [PMID: 30756474]
[13]
Cherian L, Hlatky R, Robertson CS. Nitric oxide in traumatic brain injury. Brain Pathol 2004; 14(2): 195-201.
[http://dx.doi.org/10.1111/j.1750-3639.2004.tb00053.x] [PMID: 15193032]
[14]
Popescu C, Anghelescu A, Daia C, Onose G. Actual data on epidemiological evolution and prevention endeavours regarding traumatic brain injury. J Med Life 2015; 8(3): 272-7.
[PMID: 26351526]
[15]
Kamal VK, Agrawal D, Pandey RM. Epidemiology, clinical characteristics and outcomes of traumatic brain injury: Evidences from integrated level 1 trauma center in India. J Neurosci Rural Pract 2016; 7(4): 515-25.
[http://dx.doi.org/10.4103/0976-3147.188637] [PMID: 27695230]
[16]
Shekhar C, Gupta L, Premsagar I, Sinha M, Kishore J. An epidemiological study of traumatic brain injury cases in a trauma centre of New Delhi (India). J Emerg Trauma Shock 2015; 8(3): 131-9.
[http://dx.doi.org/10.4103/0974-2700.160700] [PMID: 26229295]
[17]
Agrawal A, Munivenkatappa A, Shukla D, et al. Traumatic brain injury related research in India: An overview of published literature. Int J Crit Illn Inj Sci 2016; 6(2): 65-9.
[http://dx.doi.org/10.4103/2229-5151.183025] [PMID: 27308253]
[18]
Corrigan JD, Selassie AW, Orman JAL. The epidemiology of traumatic brain injury. J Head Trauma Rehabil 2010; 25(2): 72-80.
[http://dx.doi.org/10.1097/HTR.0b013e3181ccc8b4] [PMID: 20234226]
[19]
Majdan M, Plancikova D, Maas A, et al. Years of life lost due to traumatic brain injury in Europe: A cross-sectional analysis of 16 countries. PLoS Med 2017; 14(7): e1002331.
[http://dx.doi.org/10.1371/journal.pmed.1002331] [PMID: 28700588]
[20]
Gururaj G. Epidemiology of traumatic brain injuries: Indian scenario. Neurol Res 2002; 24(1): 24-8.
[http://dx.doi.org/10.1179/016164102101199503] [PMID: 11783750]
[21]
Te Ao B, Tobias M, Ameratunga S, et al. Burden of traumatic brain injury in New Zealand: Incidence, prevalence and disability-adjusted life years. Neuroepidemiology 2015; 44(4): 255-61.
[http://dx.doi.org/10.1159/000431043] [PMID: 26088707]
[22]
Barman A, Chatterjee A, Bhide R. Cognitive impairment and rehabilitation strategies after traumatic brain injury. Indian J Psychol Med 2016; 38(3): 172-81.
[http://dx.doi.org/10.4103/0253-7176.183086] [PMID: 27335510]
[23]
Dixon CE, Ma X, Marion DW. Reduced evoked release of acetylcholine in the rodent neocortex following traumatic brain injury. Brain Res 1997; 749(1): 127-30.
[http://dx.doi.org/10.1016/S0006-8993(96)01310-8] [PMID: 9070636]
[24]
Leonard JR, Maris DO, Grady MS. Fluid percussion injury causes loss of forebrain choline acetyltransferase and nerve growth factor receptor immunoreactive cells in the rat. J Neurotrauma 1994; 11(4): 379-92.
[http://dx.doi.org/10.1089/neu.1994.11.379] [PMID: 7837279]
[25]
Lan YL, Li S, Lou JC, Ma XC, Zhang B. The potential roles of dopamine in traumatic brain injury: A preclinical and clinical update. Am J Transl Res 2019; 11(5): 2616-31.
[PMID: 31217842]
[26]
Dhikav V, Anand KS. Hippocampus in health and disease: An overview. Ann Indian Acad Neurol 2012; 15(4): 239-46.
[http://dx.doi.org/10.4103/0972-2327.104323] [PMID: 23349586]
[27]
Bramlett H, Dietrich D. Quantitative structural changes in white and gray matter 1 year following traumatic brain injury in rats. Acta Neuropathol 2002; 103(6): 607-14.
[http://dx.doi.org/10.1007/s00401-001-0510-8] [PMID: 12012093]
[28]
Zhang BL, Chen X, Tan T, et al. Traumatic brain injury impairs synaptic plasticity in hippocampus in rats. Chin Med J (Engl) 2011; 124(5): 740-5.
[PMID: 21518569]
[29]
Gao X, Deng-Bryant Y, Cho W, Carrico KM, Hall ED, Chen J. Selective death of newborn neurons in hippocampal dentate gyrus following moderate experimental traumatic brain injury. J Neurosci Res 2008; 86(10): 2258-70.
[http://dx.doi.org/10.1002/jnr.21677] [PMID: 18381764]
[30]
Li JW, Zong Y, Cao XP, Tan L, Tan L. Microglial priming in Alzheimer’s disease. Ann Transl Med 2018; 6(10): 176.
[http://dx.doi.org/10.21037/atm.2018.04.22] [PMID: 29951498]
[31]
Han K, Chapman SB, Krawczyk DC. Altered amygdala connectivity in individuals with chronic traumatic brain injury and comorbid depressive symptoms. Front Neurol 2015; 6: 231.
[http://dx.doi.org/10.3389/fneur.2015.00231] [PMID: 26581959]
[32]
Fann JR, Hart T, Schomer KG. Treatment for depression after traumatic brain injury: A systematic review. J Neurotrauma 2009; 26(12): 2383-402.
[http://dx.doi.org/10.1089/neu.2009.1091] [PMID: 19698070]
[33]
McGuire JL, Ngwenya LB, McCullumsmith RE. Neurotransmitter changes after traumatic brain injury: An update for new treatment strategies. Mol Psychiatry 2019; 24(7): 995-1012.
[http://dx.doi.org/10.1038/s41380-018-0239-6] [PMID: 30214042]
[34]
Yue J, Burke J, Upadhyayula P, et al. Selective serotonin reuptake inhibitors for treating neurocognitive and neuropsychiatric disorders following traumatic brain injury: An evaluation of current evidence. Brain Sci 2017; 7(8): 93.
[http://dx.doi.org/10.3390/brainsci7080093] [PMID: 28757598]
[35]
Busto R, Dietrich WD, Globus MT, Alonso O, Ginsberg MD. Extracellular release of serotonin following fluid-percussion brain injury in rats. J Neurotrauma 1997; 14(1): 35-42.
[http://dx.doi.org/10.1089/neu.1997.14.35] [PMID: 9048309]
[36]
Chang CC, Yu SC, McQuoid DR, et al. Reduction of dorsolateral prefrontal cortex gray matter in late-life depression. Psychiatry Res Neuroimaging 2011; 193(1): 1-6.
[http://dx.doi.org/10.1016/j.pscychresns.2011.01.003] [PMID: 21596532]
[37]
Goyal N, Siddiqui SV, Chatterjee U, Kumar D, Siddiqui A. Neuropsychology of prefrontal cortex. Indian J Psychiatry 2008; 50(3): 202-8.
[http://dx.doi.org/10.4103/0019-5545.43634] [PMID: 19742233]
[38]
Juengst SB, Kumar RG, Wagner AK. A narrative literature review of depression following traumatic brain injury: Prevalence, impact, and management challenges. Psychol Res Behav Manag 2017; 10: 175-86.
[http://dx.doi.org/10.2147/PRBM.S113264] [PMID: 28652833]
[39]
Bachstetter AD, Bodnar CN, Morganti JM. Depression following a traumatic brain injury: Uncovering cytokine dysregulation as a pathogenic mechanism. Neural Regen Res 2018; 13(10): 1693-704.
[http://dx.doi.org/10.4103/1673-5374.238604] [PMID: 30136679]
[40]
Moore EL, Terryberry-Spohr L, Hope DA. Mild traumatic brain injury and anxiety sequelae: A review of the literature. Brain Inj 2006; 20(2): 117-32.
[http://dx.doi.org/10.1080/02699050500443558] [PMID: 16421060]
[41]
Soo C, Tate RL. Psychological treatment for anxiety in people with traumatic brain injury. Cochrane Database Syst Rev 2007; 2007(3): CD005239.
[http://dx.doi.org/10.1002/14651858.CD005239.pub2]
[42]
Mallya S, Sutherland J, Pongracic S, Mainland B, Ornstein TJ. The manifestation of anxiety disorders after traumatic brain injury: A review. J Neurotrauma 2015; 32(7): 411-21.
[http://dx.doi.org/10.1089/neu.2014.3504] [PMID: 25227240]
[43]
Rodgers KM, Deming YK, Bercum FM, et al. Reversal of established traumatic brain injury-induced, anxiety-like behavior in rats after delayed, post-injury neuroimmune suppression. J Neurotrauma 2014; 31(5): 487-97.
[http://dx.doi.org/10.1089/neu.2013.3090] [PMID: 24041015]
[44]
Van Praag DLG, Cnossen MC, Polinder S, Wilson L, Maas AIR. Post-traumatic stress disorder after civilian traumatic brain injury: A systematic review and meta-analysis of prevalence rates. J Neurotrauma 2019; 36(23): 3220-32.
[http://dx.doi.org/10.1089/neu.2018.5759] [PMID: 31238819]
[45]
Martindale SL, Konst MJ, Bateman JR, Arena A, Rowland JA. The role of PTSD and TBI in post-deployment sleep outcomes. Mil Psychol 2020; 32(2): 212-21.
[http://dx.doi.org/10.1080/08995605.2020.1724595] [PMID: 38536314]
[46]
Chen Y, Huang W. Non-impact, blast-induced mild TBI and PTSD: Concepts and caveats. Brain Inj 2011; 25(7-8): 641-50.
[http://dx.doi.org/10.3109/02699052.2011.580313] [PMID: 21604927]
[47]
Bryant R. Post-traumatic stress disorder vs traumatic brain injury. Dialogues Clin Neurosci 2022; 13(3): 251-62.
[PMID: 22034252]
[48]
Hiott DW, Labbate L. Anxiety disorders associated with traumatic brain injuries. Neuro Rehabil 2002; 17(4): 345-55.
[http://dx.doi.org/10.3233/NRE-2002-17408] [PMID: 12547982]
[49]
Mantua J, Helms SM, Weymann KB. Sleep Quality and Emotion Regulation Interact to Predict Anxiety in Veterans with PTSD. Behav Neurol 2018; 2018: 7940832.
[http://dx.doi.org/10.1155/2018/7940832]
[50]
Morey RA, Gold AL, LaBar KS, et al. Amygdala volume changes in posttraumatic stress disorder in a large case-controlled veterans group. Arch Gen Psychiatry 2012; 69(11): 1169-78.
[http://dx.doi.org/10.1001/archgenpsychiatry.2012.50] [PMID: 23117638]
[51]
Davis LL, Suris A, Lambert MT, Heimberg C, Petty F. Post-traumatic stress disorder and serotonin: New directions for research and treatment. J Psychiatry Neurosci 1997; 22(5): 318-26.
[PMID: 9401312]
[52]
Bachiller S, Jiménez-Ferrer I, Paulus A, et al. Microglia in neurological diseases: A road map to brain-disease dependent-inflammatory response. Front Cell Neurosci 2018; 12: 488.
[http://dx.doi.org/10.3389/fncel.2018.00488] [PMID: 30618635]
[53]
Donat CK, Scott G, Gentleman SM, Sastre M. Microglial activation in traumatic brain injury. Front Aging Neurosci 2017; 9: 208.
[http://dx.doi.org/10.3389/fnagi.2017.00208] [PMID: 28701948]
[54]
Hernandez-Ontiveros DG, Tajiri N, Acosta S, Giunta B, Tan J, Borlongan CV. Microglia activation as a biomarker for traumatic brain injury. Front Neurol 2013; 4: 30.
[http://dx.doi.org/10.3389/fneur.2013.00030] [PMID: 23531681]
[55]
Karve IP, Taylor JM, Crack PJ. The contribution of astrocytes and microglia to traumatic brain injury. Br J Pharmacol 2016; 173(4): 692-702.
[http://dx.doi.org/10.1111/bph.13125] [PMID: 25752446]
[56]
Younger D, Murugan M, Rama Rao KV, Wu LJ, Chandra N. Microglia receptors in animal models of traumatic brain injury. Mol Neurobiol 2019; 56(7): 5202-28.
[http://dx.doi.org/10.1007/s12035-018-1428-7] [PMID: 30554385]
[57]
Loane DJ, Kumar A. Microglia in the TBI brain: The good, the bad, and the dysregulated. Exp Neurol 2016; 275(0 3): 316-27.
[http://dx.doi.org/10.1016/j.expneurol.2015.08.018] [PMID: 26342753]
[58]
Chen Z, Trapp BD. Microglia and neuroprotection. J Neurochem 2016; 136(S1) (Suppl. 1): 10-7.
[http://dx.doi.org/10.1111/jnc.13062] [PMID: 25693054]
[59]
Lindholm D, Castrén E, Kiefer R, Zafra F, Thoenen H. Transforming growth factor-beta 1 in the rat brain: Increase after injury and inhibition of astrocyte proliferation. J Cell Biol 1992; 117(2): 395-400.
[http://dx.doi.org/10.1083/jcb.117.2.395] [PMID: 1560032]
[60]
Zhou Z, Peng X, Hagshenas J, Insolera R, Fink DJ, Mata M. A novel cell–cell signaling by microglial transmembrane TNFα with implications for neuropathic pain. Pain 2010; 151(2): 296-306.
[http://dx.doi.org/10.1016/j.pain.2010.06.017] [PMID: 20609516]
[61]
Woodcock T, Morganti-Kossmann MC. The role of markers of inflammation in traumatic brain injury. Front Neurol 2013; 4: 18.
[http://dx.doi.org/10.3389/fneur.2013.00018] [PMID: 23459929]
[62]
Dinarello CA. Proinflammatory Cytokines. Chest 2000; 118(2): 503-8.
[http://dx.doi.org/10.1378/chest.118.2.503] [PMID: 10936147]
[63]
Vaillant AA, Qurie A. Interleukin. Treasure Island, FL: StatPearls Publishing 2021.
[64]
Garlanda C, Dinarello CA, Mantovani A. The interleukin-1 family: Back to the future. Immunity 2013; 39(6): 1003-18.
[http://dx.doi.org/10.1016/j.immuni.2013.11.010] [PMID: 24332029]
[65]
Dinarello CA, van der Meer JW. Treating inflammation by blocking interleukin-1 in humans. Semin Immunol 2013; 25(6): 1469-84.
[http://dx.doi.org/10.1016/j.smim.2013.10.008]
[66]
Erta M, Quintana A, Hidalgo J. Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci 2012; 8(9): 1254-66.
[http://dx.doi.org/10.7150/ijbs.4679] [PMID: 23136554]
[67]
Kumar RG, Diamond ML, Boles JA, et al. Acute CSF interleukin-6 trajectories after TBI: Associations with neuroinflammation, polytrauma, and outcome. Brain Behav Immun 2015; 45: 253-62.
[http://dx.doi.org/10.1016/j.bbi.2014.12.021] [PMID: 25555531]
[68]
Zhou Y, Fan R, Botchway BOA, Zhang Y, Liu X. Infliximab can improve traumatic brain injury by suppressing the tumor necrosis factor alpha pathway. Mol Neurobiol 2021; 58(6): 2803-11.
[http://dx.doi.org/10.1007/s12035-021-02293-1] [PMID: 33501626]
[69]
Rempe RG, Hartz AMS, Bauer B. Matrix metalloproteinases in the brain and blood–brain barrier: Versatile breakers and makers. J Cereb Blood Flow Metab 2016; 36(9): 1481-507.
[http://dx.doi.org/10.1177/0271678X16655551] [PMID: 27323783]
[70]
Fokin VF, Shabalina AA, Ponomareva NV, Medvedev RB, Lagoda OV, Tanashyan MM. Interleukin dynamics during cognitive stress in patients with chronic cerebral ischemia. Bull Russian State Med Univ 2020; 2020(6): 90-6.
[http://dx.doi.org/10.24075/brsmu.2020.085]
[71]
Sabat R, Grütz G, Warszawska K, et al. Biology of interleukin-10. Cytokine Growth Factor Rev 2010; 21(5): 331-44.
[http://dx.doi.org/10.1016/j.cytogfr.2010.09.002] [PMID: 21115385]
[72]
Thompson CD, Zurko JC, Hanna BF, Hellenbrand DJ, Hanna A. The therapeutic role of interleukin-10 after spinal cord injury. J Neurotrauma 2013; 30(15): 1311-24.
[http://dx.doi.org/10.1089/neu.2012.2651] [PMID: 23731227]
[73]
Song J, Cheon S, Jung W, Lee W, Lee J. Resveratrol induces the expression of interleukin-10 and brain-derived neurotrophic factor in BV2 microglia under hypoxia. Int J Mol Sci 2014; 15(9): 15512-29.
[http://dx.doi.org/10.3390/ijms150915512] [PMID: 25184950]
[74]
Burnett AF, Biju PG, Lui H, Hauer-Jensen M. Oral interleukin 11 as a countermeasure to lethal total-body irradiation in a murine model. Radiat Res 2013; 180(6): 595-602.
[http://dx.doi.org/10.1667/RR13330.1] [PMID: 24219324]
[75]
Opal SM, DePalo VA. Anti-inflammatory cytokines. Chest 2000; 117(4): 1162-72.
[http://dx.doi.org/10.1378/chest.117.4.1162] [PMID: 10767254]
[76]
Pu H, Zheng X, Jiang X, et al. Interleukin-4 improves white matter integrity and functional recovery after murine traumatic brain injury via oligodendroglial PPARγ. J Cereb Blood Flow Metab 2021; 41(3): 511-29.
[http://dx.doi.org/10.1177/0271678X20941393] [PMID: 32757740]
[77]
Liu X, Liu J, Zhao S, et al. Interleukin-4 is essential for microglia/macrophage M2 polarization and long-term recovery after cerebral ischemia. Stroke 2016; 47(2): 498-504.
[http://dx.doi.org/10.1161/STROKEAHA.115.012079] [PMID: 26732561]
[78]
Xiong X, Barreto GE, Xu L, Ouyang YB, Xie X, Giffard RG. Increased brain injury and worsened neurological outcome in interleukin-4 knockout mice after transient focal cerebral ischemia. Stroke 2011; 42(7): 2026-32.
[http://dx.doi.org/10.1161/STROKEAHA.110.593772] [PMID: 21597016]
[79]
Weber JT. Altered calcium signaling following traumatic brain injury. Front Pharmacol 2012; 3: 60.
[http://dx.doi.org/10.3389/fphar.2012.00060] [PMID: 22518104]
[80]
Gurkoff G, Shahlaie K, Lyeth B, Berman R. Voltage-gated calcium channel antagonists and traumatic brain injury. Pharmaceuticals 2013; 6(7): 788-812.
[http://dx.doi.org/10.3390/ph6070788] [PMID: 24276315]
[81]
Liu L, Kearns KN, Eli I, et al. Microglial calcium waves during the hyperacute phase of ischemic stroke. Stroke 2021; 52(1): 274-83.
[http://dx.doi.org/10.1161/STROKEAHA.120.032766] [PMID: 33161850]
[82]
Nazıroğlu M, Şenol N, Ghazizadeh V, Yürüker V. Neuroprotection induced by N-acetylcysteine and selenium against traumatic brain injury-induced apoptosis and calcium entry in hippocampus of rat. Cell Mol Neurobiol 2014; 34(6): 895-903.
[http://dx.doi.org/10.1007/s10571-014-0069-2] [PMID: 24842665]
[83]
Zalewska T, Kanje M, Edstro¨m A. A calcium-activated neutral protease in the frog nervous system which degrades rapidly transported axonal proteins. Brain Res 1986; 381(1): 58-62.
[http://dx.doi.org/10.1016/0006-8993(86)90689-X] [PMID: 2428432]
[84]
Kamakura K, Ishiura S, Imajoh S, Nagata N, Sugita H. Distribution of calcium‐activated neutral protease inhibitor in the central nervous system of the rat. J Neurosci Res 1992; 31(3): 543-8.
[http://dx.doi.org/10.1002/jnr.490310318] [PMID: 1640505]
[85]
Leonard SE, Kirby R. The role of glutamate, calcium and magnesium in secondary brain injury. J Vet Emerg Crit Care 2002; 12(1): 17-32.
[http://dx.doi.org/10.1046/j.1534-6935.2002.00003.x]
[86]
Pandya JD, Nukala VN, Sullivan PG. Concentration dependent effect of calcium on brain mitochondrial bioenergetics and oxidative stress parameters. Front Neuroenergetics 2013; 5: 10.
[http://dx.doi.org/10.3389/fnene.2013.00010] [PMID: 24385963]
[87]
Baracaldo-Santamaría D, Ariza-Salamanca DF, Corrales-Hernández MG, Pachón-Londoño MJ, Hernandez-Duarte I, Calderon-Ospina CA. Revisiting excitotoxicity in traumatic brain injury: From bench to bedside. Pharmaceutics 2022; 14(1): 152.
[http://dx.doi.org/10.3390/pharmaceutics14010152] [PMID: 35057048]
[88]
Chamoun R, Suki D, Gopinath SP, Goodman JC, Robertson C. Role of extracellular glutamate measured by cerebral microdialysis in severe traumatic brain injury. J Neurosurg 2010; 113(3): 564-70.
[http://dx.doi.org/10.3171/2009.12.JNS09689] [PMID: 20113156]
[89]
Guerriero RM, Giza CC, Rotenberg A. Glutamate and GABA imbalance following traumatic brain injury. Curr Neurol Neurosci Rep 2015; 15(5): 27.
[http://dx.doi.org/10.1007/s11910-015-0545-1] [PMID: 25796572]
[90]
Zhuang Z, Shen Z, Chen Y, et al. Mapping the changes of glutamate using glutamate chemical exchange saturation transfer (GluCEST) technique in a traumatic brain injury model: A longitudinal pilot study. ACS Chem Neurosci 2019; 10(1): 649-57.
[http://dx.doi.org/10.1021/acschemneuro.8b00482] [PMID: 30346712]
[91]
Dorsett CR, McGuire JL, Niedzielko TL, et al. Traumatic brain injury induces alterations in cortical glutamate uptake without a reduction in glutamate transporter-1 protein expression. J Neurotrauma 2017; 34(1): 220-34.
[http://dx.doi.org/10.1089/neu.2015.4372] [PMID: 27312729]
[92]
Raghavendra Rao VL, Başkaya MK, Doğan A, Rothstein JD, Dempsey RJ. Traumatic brain injury down-regulates glial glutamate transporter (GLT-1 and GLAST) proteins in rat brain. J Neurochem 1998; 70(5): 2020-7.
[http://dx.doi.org/10.1046/j.1471-4159.1998.70052020.x] [PMID: 9572288]
[93]
Jin W, Wang H, Yan W, et al. Role of Nrf2 in protection against traumatic brain injury in mice. J Neurotrauma 2009; 26(1): 131-9.
[http://dx.doi.org/10.1089/neu.2008.0655] [PMID: 19125683]
[94]
Wang J, Fields J, Zhao C, et al. Role of Nrf2 in protection against intracerebral hemorrhage injury in mice. Free Radic Biol Med 2007; 43(3): 408-14.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.04.020] [PMID: 17602956]
[95]
Yan W, Wang HD, Hu ZG, Wang QF, Yin HX. Activation of Nrf2–ARE pathway in brain after traumatic brain injury. Neurosci Lett 2008; 431(2): 150-4.
[http://dx.doi.org/10.1016/j.neulet.2007.11.060] [PMID: 18162315]
[96]
Dong W, Yang B, Wang L, et al. Curcumin plays neuroprotective roles against traumatic brain injury partly via Nrf2 signaling. Toxicol Appl Pharmacol 2018; 346: 28-36.
[http://dx.doi.org/10.1016/j.taap.2018.03.020] [PMID: 29571711]
[97]
Lu XY, Wang HD, Xu JG, Ding K, Li T. Deletion of Nrf2 exacerbates oxidative stress after traumatic brain injury in mice. Cell Mol Neurobiol 2015; 35(5): 713-21.
[http://dx.doi.org/10.1007/s10571-015-0167-9] [PMID: 25732597]
[98]
Zhang L, Wang H. Targeting the NF-E2-related factor 2 pathway: A novel strategy for traumatic brain injury. Mol Neurobiol 2018; 55(2): 1773-85.
[http://dx.doi.org/10.1007/s12035-017-0456-z] [PMID: 28224478]
[99]
Xu J, Wang H, Ding K, et al. Luteolin provides neuroprotection in models of traumatic brain injury via the Nrf2–ARE pathway. Free Radic Biol Med 2014; 71: 186-95.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.03.009] [PMID: 24642087]
[100]
Ding H, Wang H, Zhu L, Wei W. Ursolic acid ameliorates early brain injury after experimental traumatic brain injury in mice by activating the Nrf2 pathway. Neurochem Res 2017; 42(2): 337-46.
[http://dx.doi.org/10.1007/s11064-016-2077-8] [PMID: 27734181]
[101]
Liu X, Li M, Zhu J, Huang W, Song J. Sestrin2 protects against traumatic brain injury by reinforcing the activation of Nrf2 signaling. Hum Exp Toxicol 2021; 40(7): 1095-111.
[http://dx.doi.org/10.1177/0960327120984224] [PMID: 33375867]
[102]
Zhang M, An C, Gao Y, Leak RK, Chen J, Zhang F. Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog Neurobiol 2013; 100: 30-47.
[http://dx.doi.org/10.1016/j.pneurobio.2012.09.003] [PMID: 23025925]
[103]
Wada K, Chatzipanteli K, Busto R, Dietrich WD. Role of nitric oxide in traumatic brain injury in the rat. J Neurosurg 1998; 89(5): 807-18.
[http://dx.doi.org/10.3171/jns.1998.89.5.0807] [PMID: 9817419]
[104]
Hlatky R, Goodman JC, Valadka AB, Robertson CS. Role of nitric oxide in cerebral blood flow abnormalities after traumatic brain injury. J Cereb Blood Flow Metab 2003; 23(5): 582-8.
[http://dx.doi.org/10.1097/01.WCB.0000059586.71206.F3] [PMID: 12771573]
[105]
Orihara Y, Ikematsu K, Tsuda R, Nakasono I. Induction of nitric oxide synthase by traumatic brain injury. Forensic Sci Int 2001; 123(2-3): 142-9.
[http://dx.doi.org/10.1016/S0379-0738(01)00537-0] [PMID: 11728740]
[106]
Sinz EH, Kochanek PM, Dixon CE, et al. Inducible nitric oxide synthase is an endogenous neuroprotectant after traumatic brain injury in rats and mice. J Clin Invest 1999; 104(5): 647-56.
[http://dx.doi.org/10.1172/JCI6670] [PMID: 10487779]
[107]
Garry PS, Ezra M, Rowland MJ, Westbrook J, Pattinson KTS. The role of the nitric oxide pathway in brain injury and its treatment — From bench to bedside. Exp Neurol 2015; 263: 235-43.
[http://dx.doi.org/10.1016/j.expneurol.2014.10.017] [PMID: 25447937]
[108]
Villalba N, Sonkusare SK, Longden TA, et al. Traumatic brain injury disrupts cerebrovascular tone through endothelial inducible nitric oxide synthase expression and nitric oxide gain of function. J Am Heart Assoc 2014; 3(6): e001474.
[http://dx.doi.org/10.1161/JAHA.114.001474] [PMID: 25527626]
[109]
Moro M, Almeida A, Bolaños J, Lizasoain I. Mitochondrial respiratory chain and free radical generation in stroke. Free Radic Biol Med 2005; 39(10): 1291-304.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.07.010] [PMID: 16257638]
[110]
Schwedhelm E, Maas R, Freese R, et al. Pharmacokinetic and pharmacodynamic properties of oral L‐citrulline and L‐arginine: Impact on nitric oxide metabolism. Br J Clin Pharmacol 2008; 65(1): 51-9.
[http://dx.doi.org/10.1111/j.1365-2125.2007.02990.x] [PMID: 17662090]
[111]
Jeter CB, Hergenroeder GW, Ward NH III, Moore AN, Dash PK. Human traumatic brain injury alters circulating L-arginine and its metabolite levels: Possible link to cerebral blood flow, extracellular matrix remodeling, and energy status. J Neurotrauma 2012; 29(1): 119-27.
[http://dx.doi.org/10.1089/neu.2011.2029] [PMID: 21942884]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy