Note! Please note that this article is currently in the "Article in Press" stage and is not the final "Version of record". While it has been accepted, copy-edited, and formatted, however, it is still undergoing proofreading and corrections by the authors. Therefore, the text may still change before the final publication. Although "Articles in Press" may not have all bibliographic details available, the DOI and the year of online publication can still be used to cite them. The article title, DOI, publication year, and author(s) should all be included in the citation format. Once the final "Version of record" becomes available the "Article in Press" will be replaced by that.
Abstract
Background: Osteosarcoma (OS) is the leading cancer-associated mortality in childhood and adolescence. Increasing evidence has demonstrated the key function of microRNAs (miRNAs) in OS development and chemoresistance. Among them, miRNA-605-3p acted as an important tumor suppressor and was frequently down-regulated in multiple cancers. However, the function of miR-650-3p in OS has not been reported.
Objective: The aim of this work is to explore the novel role of miR-605-3p in osteosarcoma and its possible involvement in OS chemotherapy resistance. Method: The expression levels of miR-605-3p in OS tissues and cells were assessed by reverse transcription quantitative PCR (RT-qPCR). The relevance of miR-605-3p with the prognosis of OS patients was determined by the Kaplan-Meier analysis. Additionally, the influence of miR-605-3p on OS cell growth was analyzed using the cell counting kit-8, colony formation assay, and flow cytometry. The mRNA and protein expression of RAF1 were detected by RT-qPCR and western blot. The binding of miR-605-3p with the 3’-UTR of RAF1 was confirmed by dual-luciferase reporter assay. Results: Our results showed that miR-605-3p was markedly decreased in OS tissues and cells. A lower level of miR-605-3p was strongly correlated with lymph node metastasis and poor 5-year overall survival rate of OS patients. In vitro assay found that miR-605-3p suppressed OS cell proliferation and promoted cell apoptosis. Mechanistically, the proto-oncogene RAF1 was seen as a target of miR-605-3p and strongly suppressed by miR-605-3p in OS cells. Restoration of RAF1 markedly eliminated the inhibitory effect of miR-605-3p on OS progression, suggesting RAF1 as a key mediator of miR-605-3p. Consistent with the decreased level of RAF1, miR-605-3p suppressed the activation of both MEK and ERK in OS cells, which are the targets of RAF1. Moreover, lower levels of miR-605-3p were found in chemoresistant OS patients, and downregulated miR-605-3p increased the resistance of OS cells to therapeutic agents. Conclusion: Our data revealed that miR-605-3p serves as a tumor suppressor gene by regulating RAF1 and increasing the chemosensitivity of OS cells, which provided the novel working mechanism of miR-605-3p in OS. Engineering stable nanovesicles that could efficiently deliver miR-605-3p with therapeutic activity into tumors could be a promising therapeutic approach for the treatment of OS.[1]
Gazouli, I.; Kyriazoglou, A.; Kotsantis, I.; Anastasiou, M.; Pantazopoulos, A.; Prevezanou, M.; Chatzidakis, I.; Kavourakis, G.; Economopoulou, P.; Kontogeorgakos, V.; Papagelopoulos, P.; Psyrri, A. Systematic review of recurrent osteosarcoma systemic therapy. Cancers, 2021, 13(8), 1757.
[http://dx.doi.org/10.3390/cancers13081757] [PMID: 33917001]
[http://dx.doi.org/10.3390/cancers13081757] [PMID: 33917001]
[2]
Zhao, X.; Wu, Q.; Gong, X.; Liu, J.; Ma, Y. Osteosarcoma: A review of current and future therapeutic approaches. Biomed. Eng. Online, 2021, 20(1), 24.
[http://dx.doi.org/10.1186/s12938-021-00860-0] [PMID: 33653371]
[http://dx.doi.org/10.1186/s12938-021-00860-0] [PMID: 33653371]
[3]
Jiang, Z.Y.; Liu, J.B.; Wang, X.F.; Ma, Y.S.; Fu, D. Current status and prospects of clinical treatment of osteosarcoma. Technol. Cancer Res. Treat., 2022, 21, 15330338221124696.
[http://dx.doi.org/10.1177/15330338221124696] [PMID: 36128851]
[http://dx.doi.org/10.1177/15330338221124696] [PMID: 36128851]
[4]
Stefani, G.; Slack, F.J. Small non-coding RNAs in animal development. Nat. Rev. Mol. Cell Biol., 2008, 9(3), 219-230.
[http://dx.doi.org/10.1038/nrm2347] [PMID: 18270516]
[http://dx.doi.org/10.1038/nrm2347] [PMID: 18270516]
[5]
Bartel, D.P. MicroRNAs. Cell, 2004, 116(2), 281-297.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[6]
Fabian, M.R.; Sonenberg, N.; Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem., 2010, 79(1), 351-379.
[http://dx.doi.org/10.1146/annurev-biochem-060308-103103] [PMID: 20533884]
[http://dx.doi.org/10.1146/annurev-biochem-060308-103103] [PMID: 20533884]
[7]
Fasoulakis, Z.; Daskalakis, G.; Diakosavvas, M.; Papapanagiotou, I.; Theodora, M.; Bourazan, A. MicroRNAs determining carcinogenesis by regulating oncogenes and tumor suppressor genes during cell cycle. MicroRNA, 2019, 9(2), 82-92.
[http://dx.doi.org/10.2174/2211536608666190919161849] [PMID: 31538910]
[http://dx.doi.org/10.2174/2211536608666190919161849] [PMID: 31538910]
[8]
Farazi, T.A.; Spitzer, J.I.; Morozov, P.; Tuschl, T. miRNAs in human cancer. J. Pathol., 2011, 223(2), 102-115.
[http://dx.doi.org/10.1002/path.2806] [PMID: 21125669]
[http://dx.doi.org/10.1002/path.2806] [PMID: 21125669]
[9]
Asadzadeh, Z.; Mansoori, B.; Mohammadi, A.; Aghajani, M.; Haji-Asgarzadeh, K.; Safarzadeh, E. microRNAs in cancer stem cells: Biology, pathways, and therapeutic opportunities. J. Cell. Physiol., 2018, 234(7), 10002-10017.
[http://dx.doi.org/10.1002/jcp.27885] [PMID: 30537109]
[http://dx.doi.org/10.1002/jcp.27885] [PMID: 30537109]
[10]
Dong, Z.; Liao, Z.; He, Y.; Wu, C.; Meng, Z.; Qin, B.; Xu, G.; Li, Z.; Sun, T.; Wen, Y.; Li, G. Advances in the biological functions and mechanisms of miRNAs in the development of osteosarcoma. Technol. Cancer Res. Treat., 2022, 21, 15330338221117386.
[http://dx.doi.org/10.1177/15330338221117386] [PMID: 35950243]
[http://dx.doi.org/10.1177/15330338221117386] [PMID: 35950243]
[11]
Fan, L.; Zhong, Z.; Lin, Y.; Li, J. Non-coding RNAs as potential biomarkers in osteosarcoma. Front. Genet., 2022, 13, 1028477.
[http://dx.doi.org/10.3389/fgene.2022.1028477] [PMID: 36338952]
[http://dx.doi.org/10.3389/fgene.2022.1028477] [PMID: 36338952]
[12]
Liu, J.; Shang, G. The roles of noncoding rnas in the development of osteosarcoma stem cells and potential therapeutic targets. Front. Cell Dev. Biol., 2022, 10, 773038.
[http://dx.doi.org/10.3389/fcell.2022.773038] [PMID: 35252166]
[http://dx.doi.org/10.3389/fcell.2022.773038] [PMID: 35252166]
[13]
Scuderi, S.A.; Calabrese, G.; Paterniti, I.; Campolo, M.; Lanza, M.; Capra, A.P.; Pantaleo, L.; Munaò, S.; Colarossi, L.; Forte, S.; Cuzzocrea, S.; Esposito, E. The biological function of MicroRNAs in bone tumors. Int. J. Mol. Sci., 2022, 23(4), 2348.
[http://dx.doi.org/10.3390/ijms23042348] [PMID: 35216464]
[http://dx.doi.org/10.3390/ijms23042348] [PMID: 35216464]
[14]
Soghli, N.; Ferns, G.A.; Sadeghsoltani, F.; Qujeq, D.; Yousefi, T.; Vaghari-Tabari, M. MicroRNAs and osteosarcoma: Potential targets for inhibiting metastasis and increasing chemosensitivity. Biochem. Pharmacol., 2022, 201, 115094.
[http://dx.doi.org/10.1016/j.bcp.2022.115094] [PMID: 35588853]
[http://dx.doi.org/10.1016/j.bcp.2022.115094] [PMID: 35588853]
[15]
Pan, M.Z.; Song, Y.L.; Gao, F. MiR-605-3p inhibits malignant progression of prostate cancer by up-regulating EZH2. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(20), 8795-8805.
[http://dx.doi.org/10.26355/eurrev_201910_19274] [PMID: 31696466]
[http://dx.doi.org/10.26355/eurrev_201910_19274] [PMID: 31696466]
[16]
Hu, Y.L.; Feng, Y.; Chen, Y.Y.; Liu, J.Z.; Su, Y.; Li, P.; Huang, H.; Mao, Q.S.; Xue, W.J. SNHG16/miR‐605‐3p/TRAF6/NF‐κB feedback loop regulates hepatocellular carcinoma metastasis. J. Cell. Mol. Med., 2020, 24(13), 7637-7651.
[http://dx.doi.org/10.1111/jcmm.15399] [PMID: 32436333]
[http://dx.doi.org/10.1111/jcmm.15399] [PMID: 32436333]
[17]
Pan, M.Z.; Song, Y.L.; Gao, F. MiR-605-3p inhibits malignant progression of prostate cancer by up-regulating EZH2. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(5), 2156.
[http://dx.doi.org/10.26355/eurrev_202103_25197] [PMID: 33755945]
[http://dx.doi.org/10.26355/eurrev_202103_25197] [PMID: 33755945]
[18]
Su, Y.Z.; Cui, M.F.; Du, J.; Song, B. LncRNA DCST1-AS1 regulated cell proliferation, migration, invasion and apoptosis in gastric cancer by targeting miR-605-3p. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(3), 1158-1167.
[http://dx.doi.org/10.26355/eurrev_202002_20167] [PMID: 32096164]
[http://dx.doi.org/10.26355/eurrev_202002_20167] [PMID: 32096164]
[19]
Liu, N.; Hu, G.; Wang, H.; Wang, Y.; Guo, Z. LncRNA BLACAT1 regulates VASP expression via binding to miR‐605‐3p and promotes giloma development. J. Cell. Physiol., 2019, 234(12), 22144-22152.
[http://dx.doi.org/10.1002/jcp.28778] [PMID: 31093978]
[http://dx.doi.org/10.1002/jcp.28778] [PMID: 31093978]
[20]
Rosic, G. Cancer signaling, cell/gene therapy, diagnosis and role of nanobiomaterials. Adv. Biol. Earth Sci., 2024, 9(Special Issue), 11-34.
[http://dx.doi.org/10.62476/abes9s11]
[http://dx.doi.org/10.62476/abes9s11]
[21]
Khalilov, R.K. Future prospects of biomaterials in nanomedicine. Adv. Biol. Earth Sci., 2024, 9, 5-10.
[http://dx.doi.org/10.62476/abes.9s5]
[http://dx.doi.org/10.62476/abes.9s5]
[22]
Huseynov, E. Novel nanomaterials for hepatobiliary diseases treatment and future perspectives. Adv. Biol. Earth Sci., 2024, 9, 81-91.
[http://dx.doi.org/10.62476/abes9s81]
[http://dx.doi.org/10.62476/abes9s81]
[23]
Miwa, W.; Yasuda, J.; Yashima, K.; Makino, R.; Sekiya, T. Absence of activating mutations of the RAF1 protooncogene in human lung cancer. Biol. Chem. Hoppe Seyler, 1994, 375(10), 705-710.
[http://dx.doi.org/10.1515/bchm3.1994.375.10.705] [PMID: 7888083]
[http://dx.doi.org/10.1515/bchm3.1994.375.10.705] [PMID: 7888083]
[24]
Borovski, T.; Vellinga, T.T.; Laoukili, J.; Santo, E.E.; Fatrai, S.; van Schelven, S.; Verheem, A.; Marvin, D.L.; Ubink, I.; Borel Rinkes, I.H.M.; Kranenburg, O. Inhibition of RAF1 kinase activity restores apicobasal polarity and impairs tumour growth in human colorectal cancer. Gut, 2017, 66(6), 1106-1115.
[http://dx.doi.org/10.1136/gutjnl-2016-311547] [PMID: 27670374]
[http://dx.doi.org/10.1136/gutjnl-2016-311547] [PMID: 27670374]
[25]
Tian, H.; Yin, L.; Ding, K.; Xia, Y.Y.; Wang, X.H.; Wu, J.Z.; He, X. Raf1 is a prognostic factor for progression in patients with non small cell lung cancer after radiotherapy. Oncol. Rep., 2018, 39(4), 1966-1974.
[http://dx.doi.org/10.3892/or.2018.6277] [PMID: 29484414]
[http://dx.doi.org/10.3892/or.2018.6277] [PMID: 29484414]
[26]
Zhang, L.; Pattanayak, A.; Li, W.; Ko, H.K.; Fowler, G.; Gordon, R. A multi-functional therapy approach for cancer: Targeting Raf1- mediated inhibition of cell motility, growth and interaction with the microenvironment. Mol. Cancer Ther., 2019, 19(1), 39-51.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-0222] [PMID: 31582531]
[http://dx.doi.org/10.1158/1535-7163.MCT-19-0222] [PMID: 31582531]
[27]
Yang, G.; Wu, Y.; Wan, R.; Sang, H.; Liu, H.; Huang, W. The role of non coding RNAs in the regulation, diagnosis, prognosis and treatment of osteosarcoma (Review). Int. J. Oncol., 2021, 59(3), 69.
[http://dx.doi.org/10.3892/ijo.2021.5249] [PMID: 34296296]
[http://dx.doi.org/10.3892/ijo.2021.5249] [PMID: 34296296]
[28]
Zeng, Z.; Zhou, W.; Duan, L.; Zhang, J.; Lu, X.; Jin, L.; Yu, Y. Circular RNA circ‐VANGL1 as a competing endogenous RNA contributes to bladder cancer progression by regulating miR‐605‐3p/VANGL1 pathway. J. Cell. Physiol., 2019, 234(4), 3887-3896.
[http://dx.doi.org/10.1002/jcp.27162] [PMID: 30146736]
[http://dx.doi.org/10.1002/jcp.27162] [PMID: 30146736]
[29]
Chen, L.; Wang, Q.; Wang, G.; Wang, H.; Huang, Y.; Liu, X.; Cai, X. miR‐16 inhibits cell proliferation by targeting IGF1R and the Raf1–MEK1/2–ERK1/2 pathway in osteosarcoma. FEBS Lett., 2013, 587(9), 1366-1372.
[http://dx.doi.org/10.1016/j.febslet.2013.03.007] [PMID: 23507142]
[http://dx.doi.org/10.1016/j.febslet.2013.03.007] [PMID: 23507142]
[30]
Chai, J.; Wang, S.; Han, D.; Dong, W.; Xie, C.; Guo, H. MicroRNA-455 inhibits proliferation and invasion of colorectal cancer by targeting RAF proto-oncogene serine/threonine-protein kinase. Tumour Biol., 2015, 36(2), 1313-1321.
[http://dx.doi.org/10.1007/s13277-014-2766-3] [PMID: 25355599]
[http://dx.doi.org/10.1007/s13277-014-2766-3] [PMID: 25355599]
[31]
Wang, T.H.; Hsueh, C.; Chen, C.C.; Li, W.S.; Yeh, C.T.; Lian, J.H.; Chang, J.L.; Chen, C.Y. Melatonin inhibits the progression of hepatocellular carcinoma through MicroRNA Let7i-3p mediated RAF1 reduction. Int. J. Mol. Sci., 2018, 19(9), 2687.
[http://dx.doi.org/10.3390/ijms19092687] [PMID: 30201903]
[http://dx.doi.org/10.3390/ijms19092687] [PMID: 30201903]
[32]
Wang, F. Jiang, ; Sun, Q.; Yan, ; Wang, ; Fu, ; Liu, ; Hu, miR-195 is a key regulator of Raf1 in thyroid cancer. OncoTargets Ther., 2015, 8, 3021-3028.
[http://dx.doi.org/10.2147/OTT.S90710] [PMID: 26527888]
[http://dx.doi.org/10.2147/OTT.S90710] [PMID: 26527888]
[33]
Tao, L.; Zhang, C.Y.; Guo, L.; Li, X.; Han, N.N.; Zhou, Q.; Liu, Z.L. Retracted: MicroRNA‐497 accelerates apoptosis while inhibiting proliferation, migration, and invasion through negative regulation of the MAPK/ERK signaling pathway via RAF‐1. J. Cell. Physiol., 2018, 233(10), 6578-6588.
[http://dx.doi.org/10.1002/jcp.26272] [PMID: 29150931]
[http://dx.doi.org/10.1002/jcp.26272] [PMID: 29150931]