Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Microrna-605-3p Inhibited the Growth and Chemoresistance of Osteosarcoma Cells via Negatively Modulating RAF1

In Press, (this is not the final "Version of Record"). Available online 29 July, 2024
Author(s): Mao Wang, Weina Li, Guohui Han, Xiangdong Bai* and Jun Xie*
Published on: 29 July, 2024

DOI: 10.2174/0109298665314658240712051206

Abstract

Background: Osteosarcoma (OS) is the leading cancer-associated mortality in childhood and adolescence. Increasing evidence has demonstrated the key function of microRNAs (miRNAs) in OS development and chemoresistance. Among them, miRNA-605-3p acted as an important tumor suppressor and was frequently down-regulated in multiple cancers. However, the function of miR-650-3p in OS has not been reported.

Objective: The aim of this work is to explore the novel role of miR-605-3p in osteosarcoma and its possible involvement in OS chemotherapy resistance.

Method: The expression levels of miR-605-3p in OS tissues and cells were assessed by reverse transcription quantitative PCR (RT-qPCR). The relevance of miR-605-3p with the prognosis of OS patients was determined by the Kaplan-Meier analysis. Additionally, the influence of miR-605-3p on OS cell growth was analyzed using the cell counting kit-8, colony formation assay, and flow cytometry. The mRNA and protein expression of RAF1 were detected by RT-qPCR and western blot. The binding of miR-605-3p with the 3’-UTR of RAF1 was confirmed by dual-luciferase reporter assay.

Results: Our results showed that miR-605-3p was markedly decreased in OS tissues and cells. A lower level of miR-605-3p was strongly correlated with lymph node metastasis and poor 5-year overall survival rate of OS patients. In vitro assay found that miR-605-3p suppressed OS cell proliferation and promoted cell apoptosis. Mechanistically, the proto-oncogene RAF1 was seen as a target of miR-605-3p and strongly suppressed by miR-605-3p in OS cells. Restoration of RAF1 markedly eliminated the inhibitory effect of miR-605-3p on OS progression, suggesting RAF1 as a key mediator of miR-605-3p. Consistent with the decreased level of RAF1, miR-605-3p suppressed the activation of both MEK and ERK in OS cells, which are the targets of RAF1. Moreover, lower levels of miR-605-3p were found in chemoresistant OS patients, and downregulated miR-605-3p increased the resistance of OS cells to therapeutic agents.

Conclusion: Our data revealed that miR-605-3p serves as a tumor suppressor gene by regulating RAF1 and increasing the chemosensitivity of OS cells, which provided the novel working mechanism of miR-605-3p in OS. Engineering stable nanovesicles that could efficiently deliver miR-605-3p with therapeutic activity into tumors could be a promising therapeutic approach for the treatment of OS.

[1]
Gazouli, I.; Kyriazoglou, A.; Kotsantis, I.; Anastasiou, M.; Pantazopoulos, A.; Prevezanou, M.; Chatzidakis, I.; Kavourakis, G.; Economopoulou, P.; Kontogeorgakos, V.; Papagelopoulos, P.; Psyrri, A. Systematic review of recurrent osteosarcoma systemic therapy. Cancers, 2021, 13(8), 1757.
[http://dx.doi.org/10.3390/cancers13081757] [PMID: 33917001]
[2]
Zhao, X.; Wu, Q.; Gong, X.; Liu, J.; Ma, Y. Osteosarcoma: A review of current and future therapeutic approaches. Biomed. Eng. Online, 2021, 20(1), 24.
[http://dx.doi.org/10.1186/s12938-021-00860-0] [PMID: 33653371]
[3]
Jiang, Z.Y.; Liu, J.B.; Wang, X.F.; Ma, Y.S.; Fu, D. Current status and prospects of clinical treatment of osteosarcoma. Technol. Cancer Res. Treat., 2022, 21, 15330338221124696.
[http://dx.doi.org/10.1177/15330338221124696] [PMID: 36128851]
[4]
Stefani, G.; Slack, F.J. Small non-coding RNAs in animal development. Nat. Rev. Mol. Cell Biol., 2008, 9(3), 219-230.
[http://dx.doi.org/10.1038/nrm2347] [PMID: 18270516]
[5]
Bartel, D.P. MicroRNAs. Cell, 2004, 116(2), 281-297.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[6]
Fabian, M.R.; Sonenberg, N.; Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem., 2010, 79(1), 351-379.
[http://dx.doi.org/10.1146/annurev-biochem-060308-103103] [PMID: 20533884]
[7]
Fasoulakis, Z.; Daskalakis, G.; Diakosavvas, M.; Papapanagiotou, I.; Theodora, M.; Bourazan, A. MicroRNAs determining carcinogenesis by regulating oncogenes and tumor suppressor genes during cell cycle. MicroRNA, 2019, 9(2), 82-92.
[http://dx.doi.org/10.2174/2211536608666190919161849] [PMID: 31538910]
[8]
Farazi, T.A.; Spitzer, J.I.; Morozov, P.; Tuschl, T. miRNAs in human cancer. J. Pathol., 2011, 223(2), 102-115.
[http://dx.doi.org/10.1002/path.2806] [PMID: 21125669]
[9]
Asadzadeh, Z.; Mansoori, B.; Mohammadi, A.; Aghajani, M.; Haji-Asgarzadeh, K.; Safarzadeh, E. microRNAs in cancer stem cells: Biology, pathways, and therapeutic opportunities. J. Cell. Physiol., 2018, 234(7), 10002-10017.
[http://dx.doi.org/10.1002/jcp.27885] [PMID: 30537109]
[10]
Dong, Z.; Liao, Z.; He, Y.; Wu, C.; Meng, Z.; Qin, B.; Xu, G.; Li, Z.; Sun, T.; Wen, Y.; Li, G. Advances in the biological functions and mechanisms of miRNAs in the development of osteosarcoma. Technol. Cancer Res. Treat., 2022, 21, 15330338221117386.
[http://dx.doi.org/10.1177/15330338221117386] [PMID: 35950243]
[11]
Fan, L.; Zhong, Z.; Lin, Y.; Li, J. Non-coding RNAs as potential biomarkers in osteosarcoma. Front. Genet., 2022, 13, 1028477.
[http://dx.doi.org/10.3389/fgene.2022.1028477] [PMID: 36338952]
[12]
Liu, J.; Shang, G. The roles of noncoding rnas in the development of osteosarcoma stem cells and potential therapeutic targets. Front. Cell Dev. Biol., 2022, 10, 773038.
[http://dx.doi.org/10.3389/fcell.2022.773038] [PMID: 35252166]
[13]
Scuderi, S.A.; Calabrese, G.; Paterniti, I.; Campolo, M.; Lanza, M.; Capra, A.P.; Pantaleo, L.; Munaò, S.; Colarossi, L.; Forte, S.; Cuzzocrea, S.; Esposito, E. The biological function of MicroRNAs in bone tumors. Int. J. Mol. Sci., 2022, 23(4), 2348.
[http://dx.doi.org/10.3390/ijms23042348] [PMID: 35216464]
[14]
Soghli, N.; Ferns, G.A.; Sadeghsoltani, F.; Qujeq, D.; Yousefi, T.; Vaghari-Tabari, M. MicroRNAs and osteosarcoma: Potential targets for inhibiting metastasis and increasing chemosensitivity. Biochem. Pharmacol., 2022, 201, 115094.
[http://dx.doi.org/10.1016/j.bcp.2022.115094] [PMID: 35588853]
[15]
Pan, M.Z.; Song, Y.L.; Gao, F. MiR-605-3p inhibits malignant progression of prostate cancer by up-regulating EZH2. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(20), 8795-8805.
[http://dx.doi.org/10.26355/eurrev_201910_19274] [PMID: 31696466]
[16]
Hu, Y.L.; Feng, Y.; Chen, Y.Y.; Liu, J.Z.; Su, Y.; Li, P.; Huang, H.; Mao, Q.S.; Xue, W.J. SNHG16/miR‐605‐3p/TRAF6/NF‐κB feedback loop regulates hepatocellular carcinoma metastasis. J. Cell. Mol. Med., 2020, 24(13), 7637-7651.
[http://dx.doi.org/10.1111/jcmm.15399] [PMID: 32436333]
[17]
Pan, M.Z.; Song, Y.L.; Gao, F. MiR-605-3p inhibits malignant progression of prostate cancer by up-regulating EZH2. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(5), 2156.
[http://dx.doi.org/10.26355/eurrev_202103_25197] [PMID: 33755945]
[18]
Su, Y.Z.; Cui, M.F.; Du, J.; Song, B. LncRNA DCST1-AS1 regulated cell proliferation, migration, invasion and apoptosis in gastric cancer by targeting miR-605-3p. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(3), 1158-1167.
[http://dx.doi.org/10.26355/eurrev_202002_20167] [PMID: 32096164]
[19]
Liu, N.; Hu, G.; Wang, H.; Wang, Y.; Guo, Z. LncRNA BLACAT1 regulates VASP expression via binding to miR‐605‐3p and promotes giloma development. J. Cell. Physiol., 2019, 234(12), 22144-22152.
[http://dx.doi.org/10.1002/jcp.28778] [PMID: 31093978]
[20]
Rosic, G. Cancer signaling, cell/gene therapy, diagnosis and role of nanobiomaterials. Adv. Biol. Earth Sci., 2024, 9(Special Issue), 11-34.
[http://dx.doi.org/10.62476/abes9s11]
[21]
Khalilov, R.K. Future prospects of biomaterials in nanomedicine. Adv. Biol. Earth Sci., 2024, 9, 5-10.
[http://dx.doi.org/10.62476/abes.9s5]
[22]
Huseynov, E. Novel nanomaterials for hepatobiliary diseases treatment and future perspectives. Adv. Biol. Earth Sci., 2024, 9, 81-91.
[http://dx.doi.org/10.62476/abes9s81]
[23]
Miwa, W.; Yasuda, J.; Yashima, K.; Makino, R.; Sekiya, T. Absence of activating mutations of the RAF1 protooncogene in human lung cancer. Biol. Chem. Hoppe Seyler, 1994, 375(10), 705-710.
[http://dx.doi.org/10.1515/bchm3.1994.375.10.705] [PMID: 7888083]
[24]
Borovski, T.; Vellinga, T.T.; Laoukili, J.; Santo, E.E.; Fatrai, S.; van Schelven, S.; Verheem, A.; Marvin, D.L.; Ubink, I.; Borel Rinkes, I.H.M.; Kranenburg, O. Inhibition of RAF1 kinase activity restores apicobasal polarity and impairs tumour growth in human colorectal cancer. Gut, 2017, 66(6), 1106-1115.
[http://dx.doi.org/10.1136/gutjnl-2016-311547] [PMID: 27670374]
[25]
Tian, H.; Yin, L.; Ding, K.; Xia, Y.Y.; Wang, X.H.; Wu, J.Z.; He, X. Raf1 is a prognostic factor for progression in patients with non small cell lung cancer after radiotherapy. Oncol. Rep., 2018, 39(4), 1966-1974.
[http://dx.doi.org/10.3892/or.2018.6277] [PMID: 29484414]
[26]
Zhang, L.; Pattanayak, A.; Li, W.; Ko, H.K.; Fowler, G.; Gordon, R. A multi-functional therapy approach for cancer: Targeting Raf1- mediated inhibition of cell motility, growth and interaction with the microenvironment. Mol. Cancer Ther., 2019, 19(1), 39-51.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-0222] [PMID: 31582531]
[27]
Yang, G.; Wu, Y.; Wan, R.; Sang, H.; Liu, H.; Huang, W. The role of non coding RNAs in the regulation, diagnosis, prognosis and treatment of osteosarcoma (Review). Int. J. Oncol., 2021, 59(3), 69.
[http://dx.doi.org/10.3892/ijo.2021.5249] [PMID: 34296296]
[28]
Zeng, Z.; Zhou, W.; Duan, L.; Zhang, J.; Lu, X.; Jin, L.; Yu, Y. Circular RNA circ‐VANGL1 as a competing endogenous RNA contributes to bladder cancer progression by regulating miR‐605‐3p/VANGL1 pathway. J. Cell. Physiol., 2019, 234(4), 3887-3896.
[http://dx.doi.org/10.1002/jcp.27162] [PMID: 30146736]
[29]
Chen, L.; Wang, Q.; Wang, G.; Wang, H.; Huang, Y.; Liu, X.; Cai, X. miR‐16 inhibits cell proliferation by targeting IGF1R and the Raf1–MEK1/2–ERK1/2 pathway in osteosarcoma. FEBS Lett., 2013, 587(9), 1366-1372.
[http://dx.doi.org/10.1016/j.febslet.2013.03.007] [PMID: 23507142]
[30]
Chai, J.; Wang, S.; Han, D.; Dong, W.; Xie, C.; Guo, H. MicroRNA-455 inhibits proliferation and invasion of colorectal cancer by targeting RAF proto-oncogene serine/threonine-protein kinase. Tumour Biol., 2015, 36(2), 1313-1321.
[http://dx.doi.org/10.1007/s13277-014-2766-3] [PMID: 25355599]
[31]
Wang, T.H.; Hsueh, C.; Chen, C.C.; Li, W.S.; Yeh, C.T.; Lian, J.H.; Chang, J.L.; Chen, C.Y. Melatonin inhibits the progression of hepatocellular carcinoma through MicroRNA Let7i-3p mediated RAF1 reduction. Int. J. Mol. Sci., 2018, 19(9), 2687.
[http://dx.doi.org/10.3390/ijms19092687] [PMID: 30201903]
[32]
Wang, F. Jiang, ; Sun, Q.; Yan, ; Wang, ; Fu, ; Liu, ; Hu, miR-195 is a key regulator of Raf1 in thyroid cancer. OncoTargets Ther., 2015, 8, 3021-3028.
[http://dx.doi.org/10.2147/OTT.S90710] [PMID: 26527888]
[33]
Tao, L.; Zhang, C.Y.; Guo, L.; Li, X.; Han, N.N.; Zhou, Q.; Liu, Z.L. Retracted: MicroRNA‐497 accelerates apoptosis while inhibiting proliferation, migration, and invasion through negative regulation of the MAPK/ERK signaling pathway via RAF‐1. J. Cell. Physiol., 2018, 233(10), 6578-6588.
[http://dx.doi.org/10.1002/jcp.26272] [PMID: 29150931]

© 2024 Bentham Science Publishers | Privacy Policy