Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Mini-Review Article

A Complete Sojourn of Monoclonal Antibodies: AI, Rare Diseases / Disorders And Immunotoxic Effects

In Press, (this is not the final "Version of Record"). Available online 29 July, 2024
Author(s): Sonakshi Garg, Gurisha Garg, Preeti Patel*, Ghanshyam Das Gupta and Balak Das Kurmi*
Published on: 29 July, 2024

DOI: 10.2174/0115701646313765240610062419

Price: $95

Abstract

Monoclonal antibodies (mAbs) are magic bullets proved to be a wonder in the pharmaceutical as well as medical fields. These are produced by various methods like hybridoma technology, phage display technology, YAC technology, and transgenic animals and plants. Based on the percentage of animal origin, mAbs are divided into chimeric, murine, humanized, and fully human. This review covers the history and methods of mAb production, immunotoxicity (Immunosuppression, immunostimulant, autoimmunity, hypersensitivity) associated with mAbs, and targets of mAbs. It also compiles mAb production using AI, new modifications, and novel mAbs, with its various clinical trial information ensuring the use of mAbs in rare diseases and disorders.

[3]
Kaufmann, S.H.E. Emil von Behring: Translational medicine at the dawn of immunology. Nat. Rev. Immunol., 2017, 17(6), 341-343.
[http://dx.doi.org/10.1038/nri.2017.37] [PMID: 28393925]
[4]
Santos, M.; Quintilio, W.; Manieri, TM; Tsuruta, LR; Moro, AM. Advances and challenges in therapeutic monoclonal antibodies drug development. Braz. J. Pharm. Sci., 2018, 54, spe.
[5]
Cooper, M.D. The early history of B cells. Nat. Rev. Immunol., 2015, 15(3), 191-197.
[http://dx.doi.org/10.1038/nri3801] [PMID: 25656707]
[6]
Köhler, G.; Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 1975, 256(5517), 495-497.
[http://dx.doi.org/10.1038/256495a0] [PMID: 1172191]
[7]
Norman, D.J.; Shield, CF; Barry, J.; Henell, K.; Funnell, MB; Lemon, J.A. U.S. clinical study of Orthoclone OKT3 in renal transplantation. Transplant. Proc., 1987, 19(2), 21-27.
[PMID: 3105136]
[8]
Hwang, W.Y.K.; Foote, J. Immunogenicity of engineered antibodies. Methods, 2005, 36(1), 3-10.
[http://dx.doi.org/10.1016/j.ymeth.2005.01.001] [PMID: 15848070]
[9]
Harding, F.A.; Stickler, M.M.; Razo, J.; DuBridge, R. The immunogenicity of humanized and fully human antibodies. MAbs, 2010, 2(3), 256-265.
[http://dx.doi.org/10.4161/mabs.2.3.11641] [PMID: 20400861]
[10]
Foster, R.H.; Wiseman, L.R. Abciximab. Drugs, 1998, 56(4), 629-665.
[http://dx.doi.org/10.2165/00003495-199856040-00014] [PMID: 9806109]
[11]
Feugier, P. A review of rituximab, the first anti-CD20 monoclonal antibody used in the treatment of B non-Hodgkin’s lymphomas. Future Oncol., 2015, 11(9), 1327-1342.
[http://dx.doi.org/10.2217/fon.15.57] [PMID: 25952779]
[12]
Jones, P.T.; Dear, P.H.; Foote, J.; Neuberger, M.S.; Winter, G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature, 1986, 321(6069), 522-525.
[http://dx.doi.org/10.1038/321522a0] [PMID: 3713831]
[13]
Almagro, J.C.; Fransson, J. Humanization of antibodies. Front. Biosci., 2008, 13, 1619-1633.
[PMID: 17981654]
[14]
Dang, V.T.; Mandakhalikar, K.D.; Ng, O.W.; Tan, Y.J. A simple methodology for conversion of mouse monoclonal antibody to human-mouse chimeric form. Clin. Dev. Immunol., 2013, 2013, 1-6.
[http://dx.doi.org/10.1155/2013/716961] [PMID: 24078817]
[15]
Chang, K.H.; Kim, M.S.; Hong, G.W.; Shin, Y.N.; Kim, S.H. Conversion of a murine monoclonal antibody A13 targeting epidermal growth factor receptor to a human monoclonal antibody by guided selection. Exp. Mol. Med., 2012, 44(1), 52-59.
[http://dx.doi.org/10.3858/emm.2012.44.1.005] [PMID: 22064379]
[16]
Wang, Z.; Wang, Y.; Li, Z.; Li, J.; Dong, Z. Humanization of a mouse monoclonal antibody neutralizing TNF-α by guided selection. J. Immunol. Methods, 2000, 241(1-2), 171-184.
[http://dx.doi.org/10.1016/S0022-1759(00)00203-9] [PMID: 10915859]
[17]
Frenzel, A.; Schirrmann, T.; Hust, M. Phage display-derived human antibodies in clinical development and therapy. MAbs, 2016, 8(7), 1177-1194.
[http://dx.doi.org/10.1080/19420862.2016.1212149] [PMID: 27416017]
[18]
Mallbris, L.; Davies, J.; Glasebrook, A.; Tang, Y.; Glaesner, W.; Nickoloff, B.J. Molecular insights into fully human and humanized monoclonal antibodies: What are the differences and should dermatologists care? J. Clin. Aesthet. Dermatol., 2016, 9(7), 13-15.
[PMID: 27672407]
[19]
Jakobovits, A. Production of fully human antibodies by transgenic mice. Curr. Opin. Biotechnol., 1995, 6(5), 561-566.
[http://dx.doi.org/10.1016/0958-1669(95)80093-X] [PMID: 7579668]
[20]
Lonberg, N. Human monoclonal antibodies from transgenic mice. Handb. Exp. Pharmacol., 2008, 181(181), 69-97.
[http://dx.doi.org/10.1007/978-3-540-73259-4_4] [PMID: 18071942]
[21]
Tyagi, P.; Chu, E.; Jain, V.K. Recent results and ongoing trials with panitumumab (ABX-EGF), a fully human anti-epidermal growth factor receptor antibody, in metastatic colorectal cancer. Clin. Colorectal Cancer, 2005, 5(1), 21-23.
[http://dx.doi.org/10.1016/S1533-0028(11)70161-X] [PMID: 15929802]
[22]
Reddy, G.K.; Nadler, E.; Jain, V.K. Denosumab (AMG 162), a fully human monoclonal antibody against RANK ligand activity. Support. Cancer Ther., 2005, 3(1), 14-15.
[http://dx.doi.org/10.1016/S1543-2912(13)60114-9] [PMID: 18632429]
[23]
Hirayama, A.; Honarpour, N.; Yoshida, M.; Yamashita, S.; Huang, F.; Wasserman, S.M.; Teramoto, T. Effects of evolocumab (AMG 145), a monoclonal antibody to PCSK9, in hypercholesterolemic, statin-treated Japanese patients at high cardiovascular risk--primary results from the phase 2 YUKAWA study. Circ. J., 2014, 78(5), 1073-1082.
[http://dx.doi.org/10.1253/circj.CJ-14-0130] [PMID: 24662398]
[24]
Chioato, A.; Noseda, E.; Stevens, M.; Gaitatzis, N.; Kleinschmidt, A.; Picaud, H. Treatment with the interleukin-17A-blocking antibody secukinumab does not interfere with the efficacy of influenza and meningococcal vaccinations in healthy subjects: Results of an open-label, parallel-group, randomized single-center study. Clin. Vaccine Immunol., 2012, 19(10), 1597-1602.
[http://dx.doi.org/10.1128/CVI.00386-12] [PMID: 22875601]
[25]
Papp, K.A.; Leonardi, C.; Menter, A.; Ortonne, J.P.; Krueger, J.G.; Kricorian, G.; Aras, G.; Li, J.; Russell, C.B.; Thompson, E.H.Z.; Baumgartner, S. Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. N. Engl. J. Med., 2012, 366(13), 1181-1189.
[http://dx.doi.org/10.1056/NEJMoa1109017] [PMID: 22455412]
[26]
Antonia, S.; Goldberg, S.B.; Balmanoukian, A.; Chaft, J.E.; Sanborn, R.E.; Gupta, A.; Narwal, R.; Steele, K.; Gu, Y.; Karakunnel, J.J.; Rizvi, N.A. Safety and antitumour activity of durvalumab plus tremelimumab in non-small cell lung cancer: A multicentre, phase 1b study. Lancet Oncol., 2016, 17(3), 299-308.
[http://dx.doi.org/10.1016/S1470-2045(15)00544-6] [PMID: 26858122]
[27]
Tepper, S.; Ashina, M.; Reuter, U.; Brandes, J.L.; Doležil, D.; Silberstein, S.; Winner, P.; Leonardi, D.; Mikol, D.; Lenz, R. Safety and efficacy of erenumab for preventive treatment of chronic migraine: A randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol., 2017, 16(6), 425-434.
[http://dx.doi.org/10.1016/S1474-4422(17)30083-2] [PMID: 28460892]
[28]
Bartlett, B.L.; Tyring, S.K. Ustekinumab for chronic plaque psoriasis. Lancet, 2008, 371(9625), 1639-1640.
[http://dx.doi.org/10.1016/S0140-6736(08)60702-3] [PMID: 18486724]
[29]
Church, L.D.; McDermott, M.F. Canakinumab, a fully-human mAb against IL-1beta for the potential treatment of inflammatory disorders. Curr. Opin. Mol. Ther., 2009, 11(1), 81-89.
[PMID: 19169963]
[30]
Zhou, H.; Jang, H.; Fleischmann, R.M.; Bouman-Thio, E.; Xu, Z.; Marini, J.C.; Pendley, C.; Jiao, Q.; Shankar, G.; Marciniak, S.J.; Cohen, S.B.; Rahman, M.U.; Baker, D.; Mascelli, M.A.; Davis, H.M.; Everitt, D.E. Pharmacokinetics and safety of golimumab, a fully human anti-TNF-alpha monoclonal antibody, in subjects with rheumatoid arthritis. J. Clin. Pharmacol., 2007, 47(3), 383-396.
[http://dx.doi.org/10.1177/0091270006298188] [PMID: 17322150]
[31]
Coiffier, B.; Lepretre, S.; Pedersen, L.M.; Gadeberg, O.; Fredriksen, H.; van Oers, M.H.J.; Wooldridge, J.; Kloczko, J.; Holowiecki, J.; Hellmann, A.; Walewski, J.; Flensburg, M.; Petersen, J.; Robak, T. Safety and efficacy of ofatumumab, a fully human monoclonal anti-CD20 antibody, in patients with relapsed or refractory B-cell chronic lymphocytic leukemia: A phase 1-2 study. Blood, 2008, 111(3), 1094-1100.
[http://dx.doi.org/10.1182/blood-2007-09-111781] [PMID: 18003886]
[32]
Morse, M.A. Technology evaluation: Ipilimumab, Medarex/Bristol-Myers Squibb. Curr. Opin. Mol. Ther., 2005, 7(6), 588-597.
[PMID: 16370382]
[33]
Wolchok, J.D.; Kluger, H.; Callahan, M.K.; Postow, M.A.; Rizvi, N.A.; Lesokhin, A.M.; Segal, N.H.; Ariyan, C.E.; Gordon, R.A.; Reed, K.; Burke, M.M.; Caldwell, A.; Kronenberg, S.A.; Agunwamba, B.U.; Zhang, X.; Lowy, I.; Inzunza, H.D.; Feely, W.; Horak, C.E.; Hong, Q.; Korman, A.J.; Wigginton, J.M.; Gupta, A.; Sznol, M. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med., 2013, 369(2), 122-133.
[http://dx.doi.org/10.1056/NEJMoa1302369] [PMID: 23724867]
[34]
de Weers, M.; Tai, YT.; van der Veer, MS.; Bakker, JM.; Vink, T.; Jacobs, DC.; Oomen, LA.; Peipp, M.; Valerius, T.; Slootstra, JW.; Mutis, T.; Bleeker, WK.; Anderson, KC.; Lokhorst, HM.; van de Winkel, JG.; Parren, PW. Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J Immunol, 2011, 186(3), 1840-1848.
[http://dx.doi.org/10.4049/jimmunol.1003032]
[35]
Chiorean, E.G.; Sweeney, C.; Youssoufian, H.; Qin, A.; Dontabhaktuni, A.; Loizos, N.; Nippgen, J.; Amato, R. A phase I study of olaratumab, an anti-platelet-derived growth factor receptor alpha (PDGFRα) monoclonal antibody, in patients with advanced solid tumors. Cancer Chemother. Pharmacol., 2014, 73(3), 595-604.
[http://dx.doi.org/10.1007/s00280-014-2389-9] [PMID: 24452395]
[36]
Roth, E.M.; Diller, P. Alirocumab for hyperlipidemia: Physiology of PCSK9 inhibition, pharmacodynamics and Phase I and II clinical trial results of a PCSK9 monoclonal antibody. Future Cardiol., 2014, 10(2), 183-199.
[http://dx.doi.org/10.2217/fca.13.107] [PMID: 24762246]
[37]
Wenzel, S.; Ford, L.; Pearlman, D.; Spector, S.; Sher, L.; Skobieranda, F.; Wang, L.; Kirkesseli, S.; Rocklin, R.; Bock, B.; Hamilton, J.; Ming, J.E.; Radin, A.; Stahl, N.; Yancopoulos, G.D.; Graham, N.; Pirozzi, G. Dupilumab in persistent asthma with elevated eosinophil levels. N. Engl. J. Med., 2013, 368(26), 2455-2466.
[http://dx.doi.org/10.1056/NEJMoa1304048] [PMID: 23688323]
[38]
Huizinga, T.W.J.; Fleischmann, R.M.; Jasson, M.; Radin, A.R.; van Adelsberg, J.; Fiore, S.; Huang, X.; Yancopoulos, G.D.; Stahl, N.; Genovese, M.C. Sarilumab, a fully human monoclonal antibody against IL-6Rα in patients with rheumatoid arthritis and an inadequate response to methotrexate: Efficacy and safety results from the randomised SARIL-RA-MOBILITY Part A trial. Ann. Rheum. Dis., 2014, 73(9), 1626-1634.
[http://dx.doi.org/10.1136/annrheumdis-2013-204405] [PMID: 24297381]
[39]
Migden, M.R.; Rischin, D.; Schmults, C.D.; Guminski, A.; Hauschild, A.; Lewis, K.D.; Chung, C.H.; Hernandez-Aya, L.; Lim, A.M.; Chang, A.L.S.; Rabinowits, G.; Thai, A.A.; Dunn, L.A.; Hughes, B.G.M.; Khushalani, N.I.; Modi, B.; Schadendorf, D.; Gao, B.; Seebach, F.; Li, S.; Li, J.; Mathias, M.; Booth, J.; Mohan, K.; Stankevich, E.; Babiker, H.M.; Brana, I.; Gil-Martin, M.; Homsi, J.; Johnson, M.L.; Moreno, V.; Niu, J.; Owonikoko, T.K.; Papadopoulos, K.P.; Yancopoulos, G.D.; Lowy, I.; Fury, M.G. PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. N. Engl. J. Med., 2018, 379(4), 341-351.
[http://dx.doi.org/10.1056/NEJMoa1805131] [PMID: 29863979]
[40]
Bai, G.; Sun, C.; Guo, Z.; Wang, Y.; Zeng, X.; Su, Y.; Zhao, Q.; Ma, B. Accelerating antibody discovery and design with artificial intelligence: Recent advances and prospects. Semin. Cancer Biol., 2023, 95, 13-24.
[http://dx.doi.org/10.1016/j.semcancer.2023.06.005] [PMID: 37355214]
[41]
Manis, J.P.; Feldweg, A.M. Overview of therapeutic monoclonal antibodies. UpToDate Waltham; UpToDate Inc: MA, 2020.
[43]
FDA. Coronavirus (COVID-19) Update: FDA authorizes new monoclonal antibody for treatment of COVID-19 that retains activity against omicron variant. Available From: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-new-monoclonal-antibody-treatment-covid-19-retains#:~:text=The%20FDA%20is%20carefully%20monitoring,2%20omicron%20subvariant
[44]
FDA. Update: FDA authorizes new long-acting monoclonal antibodies for pre-exposure prevention of COVID-19 in certain individuals. Available From: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-new-long-acting-monoclonal-antibodies-pre-exposure
[45]
Lu, R.M.; Hwang, Y.C.; Liu, I.J.; Lee, C.C.; Tsai, H.Z.; Li, H.J.; Wu, H.C. Development of therapeutic antibodies for the treatment of diseases. J. Biomed. Sci., 2020, 27(1), 1.
[http://dx.doi.org/10.1186/s12929-019-0592-z] [PMID: 31894001]
[46]
Lim, S.M.; Peters, S.; Ortega Granados, A.L.; Pinto, G.J.; Fuentes, C.S.; Lo Russo, G.; Schenker, M.; Ahn, J.S.; Reck, M.; Szijgyarto, Z.; Huseinovic, N.; Zografos, E.; Buss, E.; Stjepanovic, N.; O’Donnell, S.; de Marinis, F. Dostarlimab or pembrolizumab plus chemotherapy in previously untreated metastatic non-squamous non-small cell lung cancer: The randomized PERLA phase II trial. Nat. Commun., 2023, 14(1), 7301.
[http://dx.doi.org/10.1038/s41467-023-42900-4] [PMID: 37951954]
[47]
Maude, S.L.; Barrett, D.; Teachey, D.T.; Grupp, S.A. Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J., 2014, 20(2), 119-122.
[http://dx.doi.org/10.1097/PPO.0000000000000035] [PMID: 24667956]
[48]
Actor, JK A functional overview of the immune system and immune components. In: Introductory Immunology; , 2019; pp. 1-16.
[49]
Cruse, J.M.; Lewis, R.E.; Wang, H.; Geziena, M.; Marsh, S.G.; Kennedy, L.J. Cluster of differentiation (CD) antigens. In: Immunology guidebook; Elsevier, 2004; pp. 47-124.
[50]
Janeway, C.; Travers, P.; Walport, M.; Shlomchik, M.J. Immunobiology: the immune system in health and disease; New York: Garland Publisher, 2001, 2, p. 154.
[51]
Singh, S.; Kumar, N.K.; Dwiwedi, P.; Charan, J.; Kaur, R.; Sidhu, P.; Chugh, V.K. Monoclonal antibodies: A review. Curr. Clin. Pharmacol., 2018, 13(2), 85-99.
[http://dx.doi.org/10.2174/1574884712666170809124728] [PMID: 28799485]
[52]
Shahrabi, S.; Ghanavat, M.; Maleki Behzad, M.; Purrahman, D.; Saki, N. CD markers polymorphisms as prognostic biomarkers in hematological malignancies. Oncol. Rev., 2020, 14(2), 466.
[http://dx.doi.org/10.4081/oncol.2020.466] [PMID: 32782727]
[53]
Vaillant, J; Qurie, A. Interleukin; StatPearls Publishing: Treasure Island (FL), 2023.
[54]
Baselga, J. The EGFR as a target for anticancer therapy--focus on cetuximab. Eur. J. Cancer, 2001, 37(Suppl 4), S16-S22.
[55]
LiverTox. Clinical and Research Information on Drug-Induced Liver Injury; NIDDK: Bethesda, MD, 2012.
[56]
Nahta, R.; Hung, M.C.; Esteva, F.J. The HER-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Res., 2004, 64(7), 2343-2346.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3856] [PMID: 15059883]
[57]
Ramucirumab Available From: https://go.drugbank.com/drugs/DB05578
[58]
Collins, J.M.; Gulley, J.L. Product review: Avelumab, an anti-PD-L1 antibody. Hum. Vaccin. Immunother., 2019, 15(4), 891-908.
[http://dx.doi.org/10.1080/21645515.2018.1551671] [PMID: 30481100]
[59]
Guo, L.; Zhang, H.; Chen, B. Nivolumab as programmed death-1 (PD-1) inhibitor for targeted immunotherapy in tumor. J. Cancer, 2017, 8(3), 410-416.
[http://dx.doi.org/10.7150/jca.17144] [PMID: 28261342]
[60]
Dang, T.O.; Ogunniyi, A.; Barbee, M.S.; Drilon, A. Pembrolizumab for the treatment of PD-L1 positive advanced or metastatic non-small cell lung cancer. Expert Rev. Anticancer Ther., 2016, 16(1), 13-20.
[http://dx.doi.org/10.1586/14737140.2016.1123626] [PMID: 26588948]
[61]
Parikh, R.R.; Breve, F.; Magnusson, P.; Behzadi, P.; Pergolizzi, J. The use of monoclonal antibody-based proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors in the treatment of hypercholesterolemia. Cureus, 2022, 14(6), e25641.
[http://dx.doi.org/10.7759/cureus.25641] [PMID: 35795514]
[62]
Guagnozzi, D.; Caprilli, R. Natalizumab in the treatment of Crohn’s disease. Biologics, 2008, 2(2), 275-284.
[PMID: 19707360]
[63]
Besendorf, L.; Müller, T.M.; Geppert, C.I.; Schneider, I.; Mühl, L.; Atreya, I.; Vitali, F.; Atreya, R.; Neurath, M.F.; Zundler, S. Vedolizumab blocks α4β7 integrin-mediated T cell adhesion to MAdCAM-1 in microscopic colitis. Therap. Adv. Gastroenterol., 2022, 15
[http://dx.doi.org/10.1177/17562848221098899] [PMID: 35784193]
[64]
Kawakami, T.; Blank, U. From IgE to omalizumab. J. Immunol., 2016, 197(11), 4187-4192.
[http://dx.doi.org/10.4049/jimmunol.1601476]
[65]
Mohd, A.B.; Mohd, O.B.; Alabdallat, Y.J.; Al Dwairy, S.Y.; Ghannam, R.A.; Hanaqtah, B.M.; Albakri, K.A. Safety and efficacy of dinutuximab in the treatment of neuroblastoma: A review. J. Res. Med. Sci., 2023, 28, 71.
[PMID: 38116487]
[66]
Familial Hypercholesterolemia. Available From: https://rarediseases.org/rare-diseases/familial-hypercholesterolemia/
[67]
Begley, K.J. Monoclonal antibodies for the treatment of hypercholesterolemia. US Pharm., 2016, 41(2), 17-20.
[68]
Shamsudeen, I.; McCrindle, BW.; Hegele, RA. Treatment of homozygous familial hypercholesterolemia with ANGPTL3 inhibitor, evinacumab. JCEM Case Reports, 2023, 1(3), luad058.
[69]
Wiegman, A.; Greber-Platzer, S.; Ali, S.; Reijman, M.D.; Brinton, E.A.; Charng, M.J.; Srinivasan, S.; Baker-Smith, C.; Baum, S.; Brothers, J.A.; Hartz, J.; Moriarty, P.M.; Mendell, J.; Bihorel, S.; Banerjee, P.; George, R.T.; Hirshberg, B.; Pordy, R. Evinacumab for pediatric patients with homozygous familial hypercholesterolemia. Circulation, 2024, 149(5), 343-353.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.123.065529] [PMID: 37860863]
[70]
Thrombotic thrombocytopenic purpura. Available From: https://rarediseases.org/rare-diseases/thrombotic-thrombocytopenic-purpura/
[71]
Scully, M.; Cataland, S.R.; Peyvandi, F.; Coppo, P.; Knöbl, P.; Kremer Hovinga, J.A.; Metjian, A.; de la Rubia, J.; Pavenski, K.; Callewaert, F.; Biswas, D.; De Winter, H.; Zeldin, R.K. HERCULES Investigators. Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura. N. Engl. J. Med., 2019, 380(4), 335-346.
[http://dx.doi.org/10.1056/NEJMoa1806311] [PMID: 30625070]
[72]
[73]
FDA. FDA approves new treatment for rare hereditary disease. Available From: https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-new-treatment-rare-hereditary-disease
[74]
Maurer, M.; Lumry, WR.; Li, HH.; Aygören-Pürsün, E.; Busse, PJ.; Jacobs, J.; Nurse, C.; Ahmed, MA.; Watt, M.; Yu, M SPRING investigators. Lanadelumab in patients 2 to less than 12 years old with hereditary angioedema: Results from the phase 3 SPRING study. JACI, 2024, 12(1), 201-211.
[75]
[76]
Pipe, S.W.; Shima, M.; Lehle, M.; Shapiro, A.; Chebon, S.; Fukutake, K.; Key, N.S.; Portron, A.; Schmitt, C.; Podolak-Dawidziak, M.; Selak Bienz, N.; Hermans, C.; Campinha-Bacote, A.; Kiialainen, A.; Peerlinck, K.; Levy, G.G.; Jiménez-Yuste, V. Efficacy, safety, and pharmacokinetics of emicizumab prophylaxis given every 4 weeks in people with haemophilia A (HAVEN 4): A multicentre, open-label, non-randomised phase 3 study. Lancet Haematol., 2019, 6(6), e295-e305.
[http://dx.doi.org/10.1016/S2352-3026(19)30054-7] [PMID: 31003963]
[78]
Veopoz™ (pozelimab-bbfg) receives fda approval as the first treatment for children and adults with chaple disease. Available From: https://investor.regeneron.com/news-releases/news-release-details/veopoztm-pozelimab-bbfg-receives-fda-approval-first-treatment
[79]
Pozelimab Pozelimab (Internet). Available From: https://go.drugbank.com/drugs/DB15218
[80]
Hoy, S.M. Pozelimab: First approval. Drugs, 2023, 83(16), 1551-1557.
[http://dx.doi.org/10.1007/s40265-023-01955-9] [PMID: 37856038]
[81]
Song, Y.; Zhou, K.; Zou, D.; Zhou, J.; Hu, J.; Yang, H.; Zhang, H.; Ji, J.; Xu, W.; Jin, J.; Lv, F.; Feng, R.; Gao, S.; Guo, H.; Zhou, L.; Huang, J.; Novotny, W.; Kim, P.; Yu, Y.; Wu, B.; Zhu, J. Zanubrutinib in relapsed/refractory mantle cell lymphoma: Long-term efficacy and safety results from a phase 2 study. Blood, 2022, 139(21), 3148-3158.
[http://dx.doi.org/10.1182/blood.2021014162] [PMID: 35303070]
[82]
Impact innovation predictability access, FDA’s center for drug evaluation and research january 2020. 2020. Available From: https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/new-drug-therapy-approvals-2019#acceleratedapprovalprogram
[83]
WHO. Guidelines for the production and quality control of monoclonal antibodies and related products intended for medicinal use. 2022. Available From: https://www.who.int/publications/m/item/guideline-for-the-safe-production-and-quality-control-of-monoclonal-antibodies
[84]
Descotes, J. Immunotoxicity of monoclonal antibodies. MAbs, 2009, 1(2), 104-111.
[http://dx.doi.org/10.4161/mabs.1.2.7909] [PMID: 20061816]
[85]
Keane, J.; Gershon, S.; Wise, R.P.; Mirabile-Levens, E.; Kasznica, J.; Schwieterman, W.D.; Siegel, J.N.; Braun, M.M. Tuberculosis associated with infliximab, a tumor necrosis factor α-neutralizing agent. N. Engl. J. Med., 2001, 345(15), 1098-1104.
[http://dx.doi.org/10.1056/NEJMoa011110] [PMID: 11596589]
[86]
Ellis, C.R.; Azmat, C. Adalimumab; Treasure Island (FL): StatPearls Publishing, 2020.
[87]
Li, J.; Zhang, Z.; Wu, X.; Zhou, J.; Meng, D.; Zhu, P. Risk of adverse events after anti-TNF treatment for inflammatory rheumatological disease. A meta-analysis. Front. Pharmacol., 2021, 12, 746396.
[http://dx.doi.org/10.3389/fphar.2021.746396] [PMID: 34790122]
[88]
Harrold, L.R.; Litman, H.J.; Saunders, K.C.; Dandreo, K.J.; Gershenson, B.; Greenberg, J.D.; Low, R.; Stark, J.; Suruki, R.; Jaganathan, S.; Kremer, J.M.; Yassine, M. One-year risk of serious infection in patients treated with certolizumab pegol as compared with other TNF inhibitors in a real-world setting: Data from a national U.S. rheumatoid arthritis registry. Arthritis Res. Ther., 2018, 20(1), 2.
[http://dx.doi.org/10.1186/s13075-017-1496-5] [PMID: 29329557]
[89]
Sieper, J.; Landewé, R.; Rudwaleit, M.; van der Heijde, D.; Dougados, M.; Mease, PJ.; Braun, J.; Deodhar, A.; Kivitz, A.; Walsh, J.; Hoepken, B.; Nurminen, T.; Maksymowych, WP. Effect of certolizumab pegol over ninety-six weeks in patients with axial spondyloarthritis: results from a phase III randomized trial. A&R, 2015, 67(3), 668-677.
[90]
Ziyadeh, N.J.; Geldhof, A.; Noël, W.; Otero-Lobato, M.; Esslinger, S.; Chakravarty, S.D.; Wang, Y.; Seeger, J.D. Post-approval safety surveillance study of golimumab in the treatment of rheumatic disease using a united states healthcare claims database. Clin. Drug Investig., 2020, 40(11), 1021-1040.
[http://dx.doi.org/10.1007/s40261-020-00959-7] [PMID: 32779120]
[91]
Guarnera, C.; Bramanti, P.; Mazzon, E. Alemtuzumab: A review of efficacy and risks in the treatment of relapsing remitting multiple sclerosis. Ther. Clin. Risk Manag., 2017, 13, 871-879.
[http://dx.doi.org/10.2147/TCRM.S134398] [PMID: 28761351]
[92]
Fraser, G.; Smith, C.A.; Imrie, K.; Meyer, R. Alemtuzumab in chronic lymphocytic leukemia. Curr. Oncol., 2007, 14(3), 96-109.
[http://dx.doi.org/10.3747/co.2007.118] [PMID: 17593982]
[93]
Descotes, J.; Vial, T. Flu-like syndrome and cytokines. Flu-Like Syndrome and Cytokines, 2007, 193-204.
[94]
Wing, M. Monoclonal antibody first dose cytokine release syndromes-mechanisms and prediction. J. Immunotoxicol., 2008, 5(1), 11-15.
[http://dx.doi.org/10.1080/15476910801897433] [PMID: 18382853]
[95]
Hansel, T.T.; Kropshofer, H.; Singer, T.; Mitchell, J.A.; George, A.J.T. The safety and side effects of monoclonal antibodies. Nat. Rev. Drug Discov., 2010, 9(4), 325-338.
[http://dx.doi.org/10.1038/nrd3003] [PMID: 20305665]
[96]
Alamo, A.; Condorelli, R.A.; La Vignera, S.; Calogero, A.E. Autoimmune thyroid disease following treatment with alemtuzumab for multiple sclerosis. Int. J. Immunopathol. Pharmacol., 2019, 33
[http://dx.doi.org/10.1177/2058738419843690] [PMID: 30968726]
[97]
Ozkan, C.; Altinova, AE.; Cerit, ET.; Yalcin, MM.; Toruner, FB.; Akturk, M.; Cakir, N. Infliximab-induced destructive thyroiditis followed by hypothyroidism: A case report. Endocr. Abstr, 2014, 20(11), e207-e210.
[98]
Cerniglia, B.; Judson, M.A. Infliximab-Induced Hypothyroidism: A Novel Case and Postulations concerning the Mechanism. Case Rep. Med., 2013, 2013, 1-2.
[http://dx.doi.org/10.1155/2013/216939] [PMID: 24348571]
[99]
Delivanis, D.A.; Gustafson, M.P.; Bornschlegl, S.; Merten, M.M.; Kottschade, L.; Withers, S.; Dietz, A.B.; Ryder, M. Pembrolizumab-induced thyroiditis: Comprehensive clinical review and insights into underlying involved mechanisms. J. Clin. Endocrinol. Metab., 2017, 102(8), 2770-2780.
[http://dx.doi.org/10.1210/jc.2017-00448] [PMID: 28609832]
[100]
Peiró, I.; Palmero, R.; Iglesias, P.; Díez, J.J.; Simó-Servat, A.; Marín, J.A.; Jiménez, L.; Domingo-Domenech, E.; Mancho-Fora, N.; Nadal, E.; Villabona, C. Thyroid dysfunction induced by nivolumab: Searching for disease patterns and outcomes. Endocrine, 2019, 64(3), 605-613.
[http://dx.doi.org/10.1007/s12020-019-01871-7] [PMID: 30805887]
[101]
Azmat, U.; Liebner, D.; Joehlin-Price, A.; Agrawal, A.; Nabhan, F. Treatment of Ipilimumab Induced Graves’ Disease in a Patient with Metastatic Melanoma. Case Rep. Endocrinol., 2016, 2016, 1-4.
[http://dx.doi.org/10.1155/2016/2087525] [PMID: 26881150]
[102]
Kosche, C.; Owen, J.L.; Choi, J.N. Widespread subacute cutaneous lupus erythematosus in a patient receiving checkpoint inhibitor immunotherapy with ipilimumab and nivolumab. Dermatol. Online J., 2019, 25(10), 13030/qt4md713j8.
[http://dx.doi.org/10.5070/D32510045821] [PMID: 31735010]
[103]
Kang, M.J.; Lee, Y.H.; Lee, J. Etanercept-induced systemic lupus erythematosus in a patient with rheumatoid arthritis. J. Korean Med. Sci., 2006, 21(5), 946-949.
[http://dx.doi.org/10.3346/jkms.2006.21.5.946] [PMID: 17043436]
[104]
Wilkerson, E.; Hazey, M.A.; Bahrami, S.; Callen, J.P. Golimumab-exacerbated subacute cutaneous lupus erythematosus. Arch. Dermatol., 2012, 148(10), 1186-1190.
[http://dx.doi.org/10.1001/archdermatol.2012.1856] [PMID: 23069957]
[105]
Bongartz, T.; Sutton, A.J.; Sweeting, M.J.; Buchan, I.; Matteson, E.L.; Montori, V. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: Systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA, 2006, 295(19), 2275-2285.
[http://dx.doi.org/10.1001/jama.295.19.2275] [PMID: 16705109]
[106]
Bar-Ad, V.; Zhang, Q.E.; Harari, P.M.; Axelrod, R.; Rosenthal, D.I.; Trotti, A.; Jones, C.U.; Garden, A.S.; Song, G.; Foote, R.L.; Raben, D.; Shenouda, G.; Spencer, S.A.; Harris, J.; Le, Q.T. Correlation between the severity of cetuximab-induced skin rash and clinical outcome for head and neck cancer patients: The RTOG experience. Int. J. Radiat. Oncol. Biol. Phys., 2016, 95(5), 1346-1354.
[http://dx.doi.org/10.1016/j.ijrobp.2016.03.011] [PMID: 27212198]
[107]
Gemmete, J.J.; Mukherji, S.K. Panitumumab (Vectibix): Fig 1. AJNR Am. J. Neuroradiol., 2011, 32(6), 1002-1003.
[http://dx.doi.org/10.3174/ajnr.A2601] [PMID: 21596817]
[108]
Joensuu, H.; Kellokumpu-Lehtinen, P.L.; Bono, P.; Alanko, T.; Kataja, V.; Asola, R.; Utriainen, T.; Kokko, R.; Hemminki, A.; Tarkkanen, M.; Turpeenniemi-Hujanen, T.; Jyrkkiö, S.; Flander, M.; Helle, L.; Ingalsuo, S.; Johansson, K.; Jääskeläinen, A.S.; Pajunen, M.; Rauhala, M.; Kaleva-Kerola, J.; Salminen, T.; Leinonen, M.; Elomaa, I.; Isola, J. Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N. Engl. J. Med., 2006, 354(8), 809-820.
[http://dx.doi.org/10.1056/NEJMoa053028] [PMID: 16495393]
[109]
Isabwe, G.A.C.; Garcia Neuer, M.; de las Vecillas Sanchez, L.; Lynch, D.M.; Marquis, K.; Castells, M. Hypersensitivity reactions to therapeutic monoclonal antibodies: Phenotypes and endotypes. J. Allergy Clin. Immunol., 2018, 142(1), 159-170.e2.
[http://dx.doi.org/10.1016/j.jaci.2018.02.018] [PMID: 29518427]
[110]
Baldo, B.A. Immune- and non-immune-mediated adverse effects of monoclonal antibody therapy: A survey of 110 approved antibodies. Antibodies, 2022, 11(1), 17.
[http://dx.doi.org/10.3390/antib11010017] [PMID: 35323191]
[111]
Abbas, M.; Moussa, M.; Akel, H. Type I Hypersensitivity Reaction; StatPearls Publishing: Treasure Island (FL), 2023.
[112]
Bajwa, S.F.; Mohammed, R.H. Type II Hypersensitivity Reaction; StatPearls Publishing: Treasure Island (FL), 2023.
[113]
Usman, N.; Annamaraju, P. Type III Hypersensitivity Reaction; StatPearls Publishing: Treasure Island (FL), 2023.
[114]
Rive, C.M.; Bourke, J.; Phillips, E.J. Testing for drug hypersensitivity syndromes. Clin. Biochem. Rev., 2013, 34(1), 15-38.
[PMID: 23592889]
[115]
Daver, N.; McClain, K.; Allen, C.E.; Parikh, S.A.; Otrock, Z.; Rojas-Hernandez, C.; Blechacz, B.; Wang, S.; Minkov, M.; Jordan, M.B.; La Rosée, P.; Kantarjian, H.M. A consensus review on malignancy-associated hemophagocytic lymphohistiocytosis in adults. Cancer, 2017, 123(17), 3229-3240.
[http://dx.doi.org/10.1002/cncr.30826] [PMID: 28621800]
[116]
Malissen, N.; Lacotte, J.; Du-Thanh, A.; Gaudy-Marqueste, C.; Guillot, B.; Grob, J.J. Macrophage activation syndrome: A new complication of checkpoint inhibitors. Eur. J. Cancer, 2017, 77, 88-89.
[http://dx.doi.org/10.1016/j.ejca.2017.02.016] [PMID: 28365531]
[117]
Cortese, I.; Reich, D.S.; Nath, A. Progressive multifocal leukoencephalopathy and the spectrum of JC virus-related disease. Nat. Rev. Neurol., 2021, 17(1), 37-51.
[http://dx.doi.org/10.1038/s41582-020-00427-y] [PMID: 33219338]
[118]
Feske, S. Posterior reversible encephalopathy syndrome: A review. Semin. Neurol., 2011, 31(2), 202-215.
[http://dx.doi.org/10.1055/s-0031-1277990] [PMID: 21590625]
[119]
Elinoff, J.M.; Salit, R.B.; Ackerman, H.C. The tumor lysis syndrome. N. Engl. J. Med., 2011, 365(6), 571-574.
[http://dx.doi.org/10.1056/NEJMc1106641] [PMID: 21830982]
[120]
Kaukonen, K.M.; Bailey, M.; Pilcher, D.; Cooper, D.J.; Bellomo, R. Systemic inflammatory response syndrome criteria in defining severe sepsis. N. Engl. J. Med., 2015, 372(17), 1629-1638.
[http://dx.doi.org/10.1056/NEJMoa1415236] [PMID: 25776936]
[121]
Druey, K.M.; Greipp, P.R. Narrative review: The systemic capillary leak syndrome. Ann. Intern. Med., 2010, 153(2), 90-98.
[http://dx.doi.org/10.7326/0003-4819-153-2-201007200-00005] [PMID: 20643990]
[122]
Abdeldaim, D.T.; Schindowski, K. Fc-engineered therapeutic antibodies: Recent advances and future directions. Pharmaceutics, 2023, 15(10), 2402.
[http://dx.doi.org/10.3390/pharmaceutics15102402] [PMID: 37896162]
[123]
Lazar, G.A.; Dang, W.; Karki, S.; Vafa, O.; Peng, J.S.; Hyun, L.; Chan, C.; Chung, H.S.; Eivazi, A.; Yoder, S.C.; Vielmetter, J.; Carmichael, D.F.; Hayes, R.J.; Dahiyat, B.I. Engineered antibody Fc variants with enhanced effector function. Proc. Natl. Acad. Sci. USA, 2006, 103(11), 4005-4010.
[http://dx.doi.org/10.1073/pnas.0508123103] [PMID: 16537476]
[124]
Kassem, S.; Diallo, B.K.; El-Murr, N.; Carrié, N.; Tang, A.; Fournier, A.; Bonnevaux, H.; Nicolazzi, C.; Cuisinier, M.; Arnould, I.; Sidhu, S.S.; Corre, J.; Avet-Loiseau, H.; Teillaud, J.L.; van de Velde, H.; Wiederschain, D.; Chiron, M.; Martinet, L.; Virone-Oddos, A. SAR442085, a novel anti-CD38 antibody with enhanced antitumor activity against multiple myeloma. Blood, 2022, 139(8), 1160-1176.
[http://dx.doi.org/10.1182/blood.2021012448] [PMID: 35201323]
[125]
Sasso, J.M.; Tenchov, R.; Bird, R.; Iyer, K.A.; Ralhan, K.; Rodriguez, Y.; Zhou, Q.A. The evolving landscape of antibody–drug conjugates: In depth analysis of recent research progress. Bioconjug. Chem., 2023, 34(11), 1951-2000.
[http://dx.doi.org/10.1021/acs.bioconjchem.3c00374] [PMID: 37821099]
[126]
Liu, K.; Li, M.; Li, Y.; Li, Y.; Chen, Z.; Tang, Y.; Yang, M.; Deng, G.; Liu, H. A review of the clinical efficacy of FDA-approved antibody‒drug conjugates in human cancers. Mol. Cancer, 2024, 23(1), 62.
[http://dx.doi.org/10.1186/s12943-024-01963-7] [PMID: 38519953]
[127]
Quinteros, D.A.; Bermúdez, J.M.; Ravetti, S.; Cid, A.; Allemandi, D.A.; Palma, S.D. Therapeutic use of monoclonal antibodies: General aspects and challenges for drug delivery. Nanostructures for Drug Delivery, 2017, 2017, 807-833.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy