Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Synthesis and Characterization of Pyridine-Pyrrole-Modified Carbon Nanotube Derivatives via Ylides

In Press, (this is not the final "Version of Record"). Available online 29 July, 2024
Author(s): Ümit Çalışır*
Published on: 29 July, 2024

DOI: 10.2174/0113852728319336240711055314

Price: $95

Abstract

The high dipolarophile structure of MWCNT compounds enables them to be used as a reactive 2π member in 1,3-dipolar cycloaddition reactions. N-substituted glycine ester compounds and employed 1,3- dipolar cycloaddition reactions involving azomethine-ylides for the synthesis of multiwalled carbon nanotube compounds that underwent covalent modification. Initially, N-substituted glycine esters (3a) and N-substituted glycine compounds were synthesized. N-substituted glycine (4a) and substituted aromatic aldehyde derivatives were reacted with the dipolarophilic MWCNTs, which have regioselectivity only on (6,6)-bonds, via azomethine ylide intermediates over a 1,3-dipolar cycloaddition reaction to obtain the target pyridine-pyrrolemodified carbon nanotube derivatives (6a-g). The compounds' structural characterizations were achieved using FTIR, Raman, NMR, TEM, UV-VIS, and TGA methods. The dispersibility of the compounds was evaluated in various solvents. The activity of each compound's antimicrobial properties against Escherichia coli was assessed. Based on the obtained results, it was concluded that the compounds, by the method employed, adsorbed Escherichia coli bacteria and decreased the bacterial concentration in their film form. According to the results, the compounds can be used in bacterial adsorption-based purification systems (the eradication of water and environmental pollutants) based on the results obtained.

[1]
Avilés-Barreto, S.L.; Suleiman, D. Effect of single-walled carbon nanotubes on the transport properties of sulfonated poly(styrene–isobutylene–styrene) membranes. J. Membr. Sci., 2015, 474, 92-102.
[http://dx.doi.org/10.1016/j.memsci.2014.09.049]
[2]
Prajapati, S.K.; Agnihotri, T.; Gomte, S.S. Surface modification strategies for the carbon nanotubes. In: Chemically modified carbon nanotubes for commercial applications; Aslam, J.; Hussain, C.M.; Aslam, R., Eds.; John Wiley & Sons, Ltd, 2023; pp. 51-74.
[http://dx.doi.org/10.1002/9783527838790.ch2]
[3]
Pandurangappa, M.; Raghu, G.K. Chemically modified carbon nanotubes: Derivatization and their applications. In: Carbon nanotubes applications on electron devices; Marulanda, J.M., Ed.; IntechOpen, 2008; pp. 499-526.
[http://dx.doi.org/10.5772/16635]
[4]
Georgakilas, V.; Tagmatarchis, N.; Pantarotto, D.; Bianco, A.; Briand, J-P.; Prato, M. Amino acid functionalisation of water soluble carbon nanotubes. Chem. Commun. (Camb.), 2002, 2002(24), 3050-3051.
[http://dx.doi.org/10.1039/b209843a]
[5]
Georgakilas, V.; Kordatos, K.; Prato, M.; Guldi, D.M.; Holzinger, M.; Hirsch, A. Organic functionalization of of carbon nanotubes. J. Am. Chem. Soc., 2002, 124(5), 760-761.
[http://dx.doi.org/10.1021/ja016954m]
[6]
Lim, J.K.; Yun, W.S.; Yoon, M.; Lee, S.K.; Kim, C.H.; Kim, K.; Kim, S.K. Selective thiolation of single-walled carbon nanotubes. Synth. Met., 2003, 139(2), 521-527.
[http://dx.doi.org/10.1016/S0379-6779(03)00337-0]
[7]
Lin, Y.; Zhou, B.; Shiral Fernando, K.A.; Liu, P.; Allard, L.F.; Sun, Y-P. Polymeric carbon nanocomposites from carbon nanotubes functionalized with matrix polymer. Macromolecules, 2003, 36(19), 7199-7204.
[http://dx.doi.org/10.1021/ma0348876]
[8]
Hou, P.X.; Liu, C.; Cheng, H.M. Purification of carbon nanotubes. Carbon, 2008, 46(15), 2003-2025.
[http://dx.doi.org/10.1016/j.carbon.2008.09.009]
[9]
Wang, Z.; Wu, Z.; AlMasoud, N.; Weng, L.; Alomar, T.S.; El-Bahy, Z.M.; He, M.; Yang, C.; Sun, M.; Wasnik, P.; Li, H.; Algadi, H.; Annamareddy, S.H.K.; Sridhar, D. Effective three-dimensional thermal conductivity networks in polystyrene/multi-walled carbon nanotubes/aluminum oxide@hexa-gonal boron nitride composites based on synergistic effects and isolated structures. Adv. Compos. Hybrid Mater., 2023, 6(3), 125.
[http://dx.doi.org/10.1007/s42114-023-00702-8]
[10]
Macawile, M.C.; Auresenia, J. Synthesis of acid-base bi-functionalized multiwalled carbon nanotube using supercritical carbon dioxide. J. Chem. Sci., 2023, 135(3), 61.
[http://dx.doi.org/10.1007/s12039-023-02182-1]
[11]
Mishra, S.; Sundaram, B. Efficacy and challenges of carbon nanotube in wastewater and water treatment. Environ. Nanotechnol. Monit. Manag., 2023, 19, 100764.
[http://dx.doi.org/10.1016/j.enmm.2022.100764]
[12]
Jiang, G.; Wang, L.; Chen, C.; Dong, X.; Chen, T.; Yu, H. Study on attachment of highly branched molecules onto multiwalled carbon nanotubes. Mater. Lett., 2005, 59(16), 2085-2089.
[http://dx.doi.org/10.1016/j.matlet.2005.01.085]
[13]
Mostovoy, A.S.; Yakovlev, A.V.; Tseluikin, V.N.; Strilets, A.A. Epoxy nanocomposites modified with functionalized multiwalled carbon nanotubes. Russ. J. Appl. Chem., 2022, 95(1), 76-83.
[http://dx.doi.org/10.1134/S1070427222010104]
[14]
Zhang, S.; Li, W.; Wu, H.; Jiao, J. Multi-optimized flexible graphene oxide/multi-walled carbon nanotubes/ferroferric oxide nanopaper with enhanced electromagnetic wave absorption performance. Adv. Compos. Hybrid Mater., 2023, 6(5), 154.
[http://dx.doi.org/10.1007/s42114-023-00736-y]
[15]
Melchionna, M.; Marchesan, S.; Prato, M.; Fornasiero, P. Carbon nanotubes and catalysis: the many facets of a successful marriage. Catal. Sci. Technol., 2015, 5(8), 3859-3875.
[http://dx.doi.org/10.1039/C5CY00651A]
[16]
Yadav, M.D.; Joshi, H.M.; Sawant, S.V.; Dasgupta, K.; Patwardhan, A.W.; Joshi, J.B. Advances in the application of carbon nanotubes as catalyst support for hydrogenation reactions. Chem. Eng. Sci., 2023, 272, 118586.
[http://dx.doi.org/10.1016/j.ces.2023.118586]
[17]
Yan, Y.; Miao, J.; Yang, Z.; Xiao, F-X.; Yang, H.B.; Liu, B.; Yang, Y. Carbon nanotube catalysts: recent advances in synthesis, characterization and applications. Chem. Soc. Rev., 2015, 44(10), 3295-3346.
[http://dx.doi.org/10.1039/C4CS00492B]
[18]
Alguacil, F.J.; García-Díaz, I.; Escudero Baquero, E.; Rodríguez Largo, O.; López, F.A. On the adsorption of cerium(III) using multiwalled carbon nanotubes. Metals (Basel), 2020, 10(8), 1057.
[http://dx.doi.org/10.3390/met10081057]
[19]
Yao, Z.; Braidy, N.; Botton, G.A.; Adronov, A. Polymerization from the surface of single-walled carbon nanotubes - preparation and characterization of nanocomposites. J. Am. Chem. Soc., 2003, 125(51), 16015-16024.
[http://dx.doi.org/10.1021/ja037564y]
[20]
Hong, C.Y.; You, Y.Z.; Pan, C.Y. Synthesis of water-soluble multiwalled carbon nanotubes with grafted temperature-responsive shells by surface RAFT polymerization. Chem. Mater., 2005, 17(9), 2247-2254.
[http://dx.doi.org/10.1021/cm048054l]
[21]
Hadavifar, M.; Bahramifar, N.; Younesi, H.; Li, Q. Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolated groups. Chem. Eng. J., 2014, 237, 217-228.
[http://dx.doi.org/10.1016/j.cej.2013.10.014]
[22]
Xu, J.; Yao, P.; Li, X.; He, F. Synthesis and characterization of water-soluble and conducting sulfonated polyaniline/para-phenylenediamine-functionalized multi-walled carbon nanotubes nano-composite. Mater. Sci. Eng. B, 2008, 151(3), 210-219.
[http://dx.doi.org/10.1016/j.mseb.2008.07.003]
[23]
Mormann, W.; Lu, Y.; Zou, X.; Berger, R. Modification and grafting of multi-walled carbon nanotubes with Bisphenol-A-polycarbonate. Macromol. Chem. Phys., 2008, 209(20), 2113-2121.
[http://dx.doi.org/10.1002/macp.200800263]
[24]
Wang, Y.; Iqbal, Z.; Malhotra, S.V. Functionalization of carbon nanotubes with amines and enzymes. Chem. Phys. Lett., 2005, 402(1-3), 96-101.
[http://dx.doi.org/10.1016/j.cplett.2004.11.099]
[25]
Li, R.; Chang, X.; Li, Z.; Zang, Z.; Hu, Z.; Li, D.; Tu, Z. Multiwalled carbon nanotubes modified with 2-aminobenzothiazole modified for uniquely selective solid-phase extraction and determination of Pb(II) ion in water samples. Mikrochim. Acta, 2011, 172(3-4), 269-276.
[http://dx.doi.org/10.1007/s00604-010-0488-9]
[26]
Zang, Z.; Hu, Z.; Li, Z.; He, Q.; Chang, X. Synthesis, characterization and application of ethylenediamine-modified multiwalled carbon nanotubes for selective solid-phase extraction and preconcentration of metal ions. J. Hazard. Mater., 2009, 172(2-3), 958-963.
[http://dx.doi.org/10.1016/j.jhazmat.2009.07.078]
[27]
Britto, P.J.; Santhanam, K.S.V.; Ajayan, P.M. Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem. Bioenerg., 1996, 41(1), 121-125.
[http://dx.doi.org/10.1016/0302-4598(96)05078-7]
[28]
Musameh, M.; Wang, J.; Merkoci, A.; Lin, Y. Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem. Commun., 2002, 4(10), 743-746.
[http://dx.doi.org/10.1016/S1388-2481(02)00451-4]
[29]
Compton, R.G.; Wildgoose, G.G.; Wong, E.L.S. Carbon Nanotube–based sensors and biosensors.Biosensing using nanomaterials; Merkoçi, A., Ed.; John Wiley & Sons, Inc.: New Jersey, 2009, pp. 1-37.
[http://dx.doi.org/10.1002/9780470447734.ch1]
[30]
Shahrokhian, S.; Fotouhi, L. Carbon paste electrode incorporating multi-walled carbon nanotube/cobalt salophen for sensitive voltammetric determination of tryptophan. Sens. Actuators B Chem., 2007, 123(2), 942-949.
[http://dx.doi.org/10.1016/j.snb.2006.10.053]
[31]
Shahrokhian, S.; Zare-Mehrjardi, H.R. Simultaneous voltammetric determination of uric acid and ascorbic acid using a carbon-paste electrode modified with multi-walled carbon nanotubes/nafion and cobalt(II)-nitrosalophen. Electroanalysis, 2007, 19(21), 2234-2242.
[http://dx.doi.org/10.1002/elan.200703974]
[32]
Shahrokhian, S.; Zare-Mehrjardi, H.R. Application of thionine-nafion supported on multi-walled carbon nanotube for preparation of a modified electrode in simultaneous voltammetric detection of dopamine and ascorbic acid. Electrochim. Acta, 2007, 52(22), 6310-6317.
[http://dx.doi.org/10.1016/j.electacta.2007.04.023]
[33]
Thakur, C.K.; Karthikeyan, C.; Bhal, S. Targeted delivery of Doxorubicin to breast cancer cells by multiwalled carbon nanotubes functionalized with Lysine via 1,3-Dipolar cycloaddition and conjugation with sugar moieties. Med. Sci. Forum 2022, 2022, 14(1), 140.
[http://dx.doi.org/10.3390/ECMC2022-13421]
[34]
Kesharwani, P.; Ghanghoria, R.; Jain, N.K. Carbon nanotube exploration in cancer cell lines. Drug Discov. Today, 2012, 17(17-18), 1023-1030.
[http://dx.doi.org/10.1016/j.drudis.2012.05.003]
[35]
Vashist, S.K.; Zheng, D.; Pastorin, G.; Al-Rubeaan, K.; Luong, J.H.T.; Sheu, F-S. Delivery of drugs and biomolecules using carbon nanotubes. Carbon, 2011, 49(13), 4077-4097.
[http://dx.doi.org/10.1016/j.carbon.2011.05.049]
[36]
Pastorin, G.; Wu, W.; Wieckowski, S.; Briand, J-P.; Kostarelos, K.; Prato, M.; Bianco, A. Double functionalisation of carbon nanotubes for multimodal drug delivery. Chem. Commun., 2006, 21(11), 1182-1184.
[http://dx.doi.org/10.1039/b516309a]
[37]
Peretz, S.; Regev, O. Carbon nanotubes as nanocarriers in medicine. Curr. Opin. Colloid Interface Sci., 2012, 17(6), 360-368.
[http://dx.doi.org/10.1016/j.cocis.2012.09.001]
[38]
Raffa, V.; Ciofani, G.; Nitodas, S.; Karachalios, T.; D’Alessandro, D.; Masini, M.; Cuschieri, A. Can the properties of carbon nanotubes influence their internalization by living cells? Carbon, 2008, 46(12), 1600-1610.
[http://dx.doi.org/10.1016/j.carbon.2008.06.053]
[39]
Arias, L.R.; Yang, L. Inactivation of bacterial pathogens by carbon nanotubes in suspensions. Langmuir, 2009, 25(5), 3003-3012.
[http://dx.doi.org/10.1021/la802769m]
[40]
Dong, L.; Henderson, A.; Field, C. Antimicrobial activity of single-walled carbon nanotubes suspended in different surfactants. J. Nanotechnol., 2012, 2012, 1-7.
[http://dx.doi.org/10.1155/2012/928924]
[41]
Kang, S.; Herzberg, M.; Rodrigues, D.F.; Elimelech, M. Antibacterial effects of carbon nanotubes: Size does matter! Langmuir, 2008, 24(13), 6409-6413.
[http://dx.doi.org/10.1021/la800951v]
[42]
Pasquini, L.M.; Hashmi, S.M.; Sommer, T.J.; Elimelech, M.; Zimmerman, J.B. Impact of surface functionalization on bacterial cytotoxicity of single-walled carbon nanotubes. Environ. Sci. Technol., 2012, 46(11), 6297-6305.
[http://dx.doi.org/10.1021/es300514s]
[43]
Yang, C.; Mamouni, J.; Tang, Y.; Yang, L. Antimicrobial activity of single-walled carbon nanotubes: Length effect. Langmuir, 2010, 26(20), 16013-16019.
[http://dx.doi.org/10.1021/la103110g]
[44]
Saxena, M.; Mittal, D.; Boudh, R. Drug adsorption and anti-microbial activity of functionalized multiwalled carbon nanotubes. Adv. Nano Res., 2021, 11, 667-678.
[http://dx.doi.org/10.12989/anr.2021.11.6.667]
[45]
Kausar, H.; Khan, M.S.; Islam, A.; Ahmad, A.; Kant, R.; Nami, S.A.A. Polycarbazole-multiwalled carbon nanotubes based nanocomposite: Synthesis, spectral, biocidal and Acetaldehyde sensing studies. J. Mol. Struct., 2021, 1229, 129704.
[http://dx.doi.org/10.1016/j.molstruc.2020.129704]
[46]
Bougrin, K.; Loupy, A.; Soufiaoui, M. Microwave-assisted solvent-free heterocyclic synthesis. J. Photochem. Photobiol. Photochem. Rev., 2005, 6(2-3), 139-167.
[http://dx.doi.org/10.1016/j.jphotochemrev.2005.07.001]
[47]
Giofrè, S.; Tiecco, M.; Celesti, C.; Patanè, S.; Triolo, C.; Gulino, A.; Spitaleri, L.; Scalese, S.; Scuderi, M.; Iannazzo, D. Eco-friendly 1,3-dipolar cycloaddition reactions on graphene quantum dots in natural deep eutectic solvent. Nanomaterials (Basel), 2020, 10(12), 2549.
[http://dx.doi.org/10.3390/nano10122549]
[48]
Fukuura, S.; Yumura, T. Roles of carbon nanotube confinement in modulating regioselectivity of 1,3-dipolar cycloadditions. J. Phys. Chem. A, 2023, 127(33), 6962-6973.
[http://dx.doi.org/10.1021/acs.jpca.3c04214]
[49]
Rebelo, S.L.H.; Laia, C.A.T.; Szefczyk, M.; Guedes, A.; Silva, A.M.G.; Freire, C. Hybrid Zn-β-aminoporphyrin–carbon nanotubes: pyrrolidine and direct covalent linkage recognition, and multiple-photo response. Molecules, 2023, 28(21), 7438.
[http://dx.doi.org/10.3390/molecules28217438]
[50]
Sofou, P.; Elemes, Y.; Panou-Pomonis, E.; Stavrakoudis, A.; Tsikaris, V.; Sakarellos, C.; Sakarellos-Daitsiotis, M.; Maggini, M.; Formaggio, F.; Toniolo, C. Synthesis of a proline-rich [60]fullerene peptide with potential biological activity. Tetrahedron, 2004, 60(12), 2823-2828.
[http://dx.doi.org/10.1016/j.tet.2004.01.064]
[51]
Wang, P.; Chen, B.; Metzger, R.M.; Da Ros, T.; Prato, M. Preparation and deposition of stable monolayers of fullerene derivatives. J. Mater. Chem., 1997, 7(12), 2397-2400.
[http://dx.doi.org/10.1039/a705950g]
[52]
Brunetti, F.G.; Herrero, M.A.; Muñoz, J.M.; Giordani, S.; Díaz-Ortiz, A.; Filippone, S.; Ruaro, G.; Meneghetti, M.; Prato, M.; Vázquez, E. Reversible microwave-assisted cycloaddition of aziridines to carbon nanotubes. J. Am. Chem. Soc., 2007, 129(47), 14580-14581.
[http://dx.doi.org/10.1021/ja077927k]
[53]
Cahill, L.S.; Yao, Z.; Adronov, A.; Penner, J.; Moonoosawmy, K.R.; Kruse, P.; Goward, G.R. Polymer-functionalized carbon nanotubes investigated by solid-state nuclear magnetic resonance and scanning tunneling microscopy. J. Phys. Chem. B, 2004, 108(31), 11412-11418.
[http://dx.doi.org/10.1021/jp0491865]
[54]
Guldi, D.M.; Marcaccio, M.; Paolucci, D.; Paolucci, F.; Tagmatarchis, N.; Tasis, D.; Vázquez, E.; Prato, M. Single-wall carbon nanotube-ferrocene nanohybrids: Observing intramolecular electron transfer in functionalized SWNTs. Angew. Chem. Int. Ed., 2003, 42(35), 4206-4209.
[http://dx.doi.org/10.1002/anie.200351289]
[55]
Maggini, M.; Scorrano, G.; Prato, M. Addition of azomethine ylides to C60: synthesis, characterization, and functionalization of fullerene pyrrolidines. J. Am. Chem. Soc., 1993, 115(21), 9798-9799.
[http://dx.doi.org/10.1021/ja00074a056]
[56]
Brunetti, F.G.; Herrero, M.A.; Muñoz, J.M.; Díaz-Ortiz, A.; Alfonsi, J.; Meneghetti, M.; Prato, M.; Vázquez, E. Microwave-induced multiple functionalization of carbon nanotubes. J. Am. Chem. Soc., 2008, 130(25), 8094-8100.
[http://dx.doi.org/10.1021/ja801971k]
[57]
Rubio, N.; Herrero, M.A.; Meneghetti, M.; Díaz-Ortiz, Á.; Schiavon, M.; Prato, M.; Vázquez, E. Efficient functionalization of carbon nanohorns via microwave irradiation. J. Mater. Chem., 2009, 19(25), 4407-4413.
[http://dx.doi.org/10.1039/b900776h]
[58]
Miners, S.A.; Fay, M.W.; Baldoni, M.; Besley, E.; Khlobystov, A.N.; Rance, G.A. Steric and electronic control of 1,3-dipolar cycloaddition reactions in carbon nanotube nanoreactors. J. Phys. Chem. C, 2019, 123(10), 6294-6302.
[http://dx.doi.org/10.1021/acs.jpcc.9b01190]
[59]
Koutsioukis, A.; Belessi, V.; Georgakilas, V. Solid phase functionalization of MWNTs: an eco-friendly approach for carbon-based conductive inks. Green Chem., 2021, 23(15), 5442-5448.
[http://dx.doi.org/10.1039/D1GC01043C]
[60]
Al-Jumaili, A.; Alancherry, S.; Bazaka, K.; Jacob, M. Review on the antimicrobial properties of carbon nanostructures. Materials (Basel), 2017, 10(9), 1066.
[http://dx.doi.org/10.3390/ma10091066]
[61]
Mallakpour, S.; Zadehnazari, A. Preparation of dopamine-functionalized multi-wall carbon nanotube/poly(amide-imide) composites and their thermal and mechanical properties. N. Carbon Mater., 2016, 31(1), 18-30.
[http://dx.doi.org/10.1016/S1872-5805(16)60001-X]
[62]
Liu, D.; Mao, Y.; Ding, L. Carbon nanotubes as antimicrobial agents for water disinfection and pathogen control. J. Water Health, 2018, 16(2), 171-180.
[http://dx.doi.org/10.2166/wh.2018.228]
[63]
Li, J.; Grennberg, H. Microwave-assisted covalent sidewall functionalization of multiwalled carbon nanotubes. Chemistry, 2006, 12(14), 3869-3875.
[http://dx.doi.org/10.1002/chem.200501314]
[64]
Tsuge, O.; Kanemasa, S. Recent advances in azomethine ylide chemistry. In: Advances in Heterocyclic Chemistry; , 1989; pp. 231-349.
[http://dx.doi.org/10.1016/S0065-2725(08)60332-3]
[65]
Servinis, L.; Gengenbach, T.R.; Huson, M.G.; Henderson, L.C.; Fox, B.L. A novel approach to the functionalisation of pristine carbon fibre using azomethine 1,3-dipolar cycloaddition. Aust. J. Chem., 2015, 68(2), 335-344.
[http://dx.doi.org/10.1071/CH14254]
[66]
Guldi, D.M.; Martin, N. Functionalized fullerenes: Synthesis and functions. In: Comprehensive nanoscience and technology; Andrews, D.L.; Scholes, G.D.; Wiederrecht, G.P., Eds.; Academic Press, 2011; pp. 379-398.
[http://dx.doi.org/10.1016/B978-0-12-374396-1.00007-6]
[67]
Calisir, U.; Çiçek, B. Comparison of classic and microwave-assisted synthesis of benzo-thio crown ethers, and investigation of their ion pair extractions. J. Mol. Struct., 2017, 1148, 505-511.
[http://dx.doi.org/10.1016/j.molstruc.2017.07.081]
[68]
Çiçek, B.; Ergün, A.; Gençer, N. Synthesis and evaluation in vitro effects of some macrocyclic thiacrown ethers on erythrocyte carbonic anhydrase I and II. Asian J. Org. Chem., 2012, 24(8), 3729-3731.
[70]
Li, J.; Tang, T.; Zhang, X.; Li, S.; Li, M. Dissolution, characterization and photofunctionalization of carbon nanotubes. Mater. Lett., 2007, 61(22), 4351-4353.
[http://dx.doi.org/10.1016/j.matlet.2007.01.103]
[71]
Tanase, C.I.; Hanganu, A.; Draghici, C. Trifluoroacetylation of alcohols during NMR study of compounds with bicycle[2.2.1]heptane, oxabicyclo[3.3.0]octane and bicycle[3.3.0]octane skeleton. Revista de Chimie, 2021, 72(2), 156-177.
[http://dx.doi.org/10.37358/RC.21.2.8428]
[72]
Çalışır, Ü.; Çiçek, B. Synthesis of thiol-glycol-functionalized carbon nanotubes and characterization with FTIR, TEM, TGA, and NMR technics. Chem. Pap., 2020, 74(10), 3293-3302.
[http://dx.doi.org/10.1007/s11696-020-01158-6]
[73]
Çalışır, Ü.; Çiçek, B.; Doğan, M. Microwave-assisted cross-coupling synthesis of aryl functionalized MWCNTs and investigation of hydrogen storage properties. Fuller. Nanotub. Carbon Nanostruct., 2021, 29(11), 899-906.
[http://dx.doi.org/10.1080/1536383X.2021.1913727]
[74]
Chang, Y.H.; Lin, P.Y.; Wu, M.S.; Lin, K-F. Extraordinary aspects of bromo-functionalized multi-walled carbon nanotubes as initiator for polymerization of ionic liquid monomers. Polymer (Guildf.), 2012, 53(10), 2008-2014.
[http://dx.doi.org/10.1016/j.polymer.2012.03.020]
[75]
Çi̇çek, B. Synthesis and characterization determination aza-18-crown-6 modified carbon nanotubes and determination of adsorption capacity. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2021, 23(2), 873-887.
[http://dx.doi.org/10.25092/baunfbed.937736]
[76]
Standard, TJI JIS Z 2801 – Test for antimicrobial activity of plastics. Available from: https://microchemlab.com/test/jis-z-2801-test-antimicrobial-activity-plastics/

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy