Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Cesium Carbonate (Cs2CO3) in Organic Synthesis: A Sexennial Update (2018 to Date)

In Press, (this is not the final "Version of Record"). Available online 29 July, 2024
Author(s): Ravi Varala*, Kamsali Murali Mohan Achari, Mohammed Hussein, Mohammed Mujahid Alam* and Seella Ramanaiah
Published on: 29 July, 2024

DOI: 10.2174/0113852728325969240711105055

Price: $95

Abstract

Cesium carbonate is an alkali carbonate salt that has numerous applications and has been proven to be a mild inorganic base in organic synthesis. It has garnered significant attention due to its practicality in C-H functionalization and heteroatom-heteroatom bond formation reactions, in addition to its application in conventional synthetic transformations. In this six-year update, we have examined the most important applications of Cs2CO3 in organic synthesis from 2018 to the present, including the scope of the reaction and providing detailed explanations of the underlying mechanisms.

[1]
Flessner, T.; Doye, S. Cesium carbonate: A powerful inorganic base in organic synthesis. J. Prakt. Chem., 1999, 341(2), 186-190.
[http://dx.doi.org/10.1002/(SICI)1521-3897(199902)341:2<186::AID-PRAC186>3.0.CO;2-6]
[2]
Lehmann, F. Cesium carbonate (Cs2CO3). Synlett, 2004, 2447-2448(13), 2447-2448.
[http://dx.doi.org/10.1055/s-2004-834787]
[3]
Ostrowicki, A.; Koepp, E.; Vogtle, F. Topics in Current Chemistry; Weber, E.; Vogtle, F., Eds.; Springer: Heidelberg , 1992; 161, p. 37.
[4]
Koga, Y.; Kaneda, T.; Saito, Y.; Murakami, K.; Itami, K. Synthesis of partially and fully fused polyaromatics by annulative chlorophenylene dimerization. Science, 2018, 359(6374), 435-439.
[http://dx.doi.org/10.1126/science.aap9801] [PMID: 29371465]
[5]
Liu, D.; Zeng, Q.; Xu, C.; Liang, H.; Chen, L.; Song, Q. Dual function modification of Cs2CO3 for efficient Perovskite solar cells. Nanomaterials , 2022, 12(18), 3144.
[http://dx.doi.org/10.3390/nano12183144] [PMID: 36144931]
[6]
Atchuta Ramarao, T.; Jha, A.; Sen, A. Jha, A.; Sen, A. A mechanistic approach on the Cs2CO3 mediated synthesis of 4-azaindole analogues bearing pyridine-3-carboxamide and 1-phenylethanone. ChemistrySelect, 2022, 7(21), e202200719.
[http://dx.doi.org/10.1002/slct.202200719]
[7]
Xu, L.P.; Qian, S.; Zhuang, Z.; Yu, J.Q.; Musaev, D.G. Unconventional mechanism and selectivity of the Pd-catalyzed C–H bond lactonization in aromatic carboxylic acid. Nat. Commun., 2022, 13(1), 315.
[http://dx.doi.org/10.1038/s41467-022-27986-6] [PMID: 35031612]
[8]
Xu, L.P.; Roque, J.B.; Sarpong, R.; Musaev, D.G. Reactivity and selectivity controlling factors in the Pd/dialkylbiarylphosphine-catalyzed C-C cleavage/cross-coupling of an N-fused bicyclo α-hydroxy-β-lactam. J. Am. Chem. Soc., 2020, 142(50), 21140-21152.
[http://dx.doi.org/10.1021/jacs.0c10220] [PMID: 33289383]
[9]
Xu, L.P.; Haines, B.E.; Ajitha, M.J.; Murakami, K.; Itami, K.; Musaev, D.G. Roles of base in the Pd-catalyzed annulative chlorophenylene dimerization. ACS Catal., 2020, 10(5), 3059-3073.
[http://dx.doi.org/10.1021/acscatal.9b05328]
[10]
Zhao, M.N.; Guan, Z-H. Synthesis of 2,3-diaryl-2H-azirines via Cs2CO3-mediated cyclization of ketoxime acetates. Org. Synth., 2019, 96, 66-79.
[http://dx.doi.org/10.15227/orgsyn.096.0066]
[11]
Theunissen, C.; Thilmany, P.; Lahboubi, M.; Blanchard, N.; Evano, G. Synthesis of ynamides by copper-mediated coupling of 1,1-dibromo-1-alkenes with nitrogen nucleophiles. Preparation of 4-methyl-N-(2-phenyl-ethynyl)-N-(phenylmethyl)benzenesulfonamide. Org. Synth., 2019, 96, 195-213.
[http://dx.doi.org/10.15227/orgsyn.096.0195]
[12]
Rupnar, B.D.; Kachave, T.R.; Jawale, P.D.; Shisodia, S.U.; Pawar, R.P. Microwave assisted, cesium carbonate catalyzed mild and efficient synthesis of pyranochromenes. Pharma Chem., 2017, 9, 120-124.
[13]
Castillo, J.C.; Orrego-Hernández, J.; Portilla, J. Orrego-Hernández, J.; Portilla, J. Cs2CO3-Promoted direct N-alkylation: Highly chemoselective synthesis of N-alkylated benzylamines and anilines. Eur. J. Org. Chem., 2016, 2016(22), 3824-3835.
[http://dx.doi.org/10.1002/ejoc.201600549]
[14]
Sun, S.; Yu, J.T.; Jiang, Y.; Cheng, J. Cs2CO3-promoted carboxylation of N-tosylhydrazones with carbon dioxide toward α-arylacrylic acids. J. Org. Chem., 2015, 80(5), 2855-2860.
[http://dx.doi.org/10.1021/jo502908v] [PMID: 25695856]
[15]
Varala, R.; Rao, K.S. Cesium salts in organic synthesis: A review. Curr. Org. Chem., 2015, 19, 1242-1274.
[http://dx.doi.org/10.2174/1385272819666150507220755]
[16]
Rabie, R.; Hammouda, M.M.; Elattar, K.M. Cesium carbonate as a mediated inorganic base in some organic transformations. Res. Chem. Intermed., 2017, 43(4), 1979-2015.
[http://dx.doi.org/10.1007/s11164-016-2744-z]
[17]
Foti, C.; Piperno, A.; Scala, A.; Giuffrè, O. Oxazolidinone antibiotics: Chemical, biological and analytical aspects. Molecules, 2021, 26(14), 4280.
[http://dx.doi.org/10.3390/molecules26144280] [PMID: 34299555]
[18]
Fernandes, G.F.S.; Scarim, C.B.; Kim, S.H.; Wu, J.; Castagnolo, D. Oxazolidinones as versatile scaffolds in medicinal chemistry. RSC Medicinal Chemistry, 2023, 14(5), 823-847.
[http://dx.doi.org/10.1039/D2MD00415A] [PMID: 37252095]
[19]
Zhao, Q.; Xin, L.; Liu, Y.; Liang, C.; Li, J.; Jian, Y.; Li, H.; Shi, Z.; Liu, H.; Cao, W. Current landscape and future perspective of oxazolidinone scaffolds containing antibacterial drugs. J. Med. Chem., 2021, 64(15), 10557-10580.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00480] [PMID: 34260235]
[20]
Liu, P.; Jiang, Y.; Jiao, L.; Luo, Y.; Wang, X.; Yang, T. Strategies for the discovery of oxazolidinone antibacterial agents: Development and future perspectives. J. Med. Chem., 2023, 66(20), 13860-13873.
[http://dx.doi.org/10.1021/acs.jmedchem.3c01040] [PMID: 37807849]
[21]
Sun, F.; Van der Eycken, E.V.; Feng, H. Recent advances in the synthesis and ring-opening transformations of 2-oxazolidinones. Adv. Synth. Catal., 2021, 363(23), 5168-5195.
[http://dx.doi.org/10.1002/adsc.202100746]
[22]
Fehr, L.; Sewald, L.; Huber, R.; Kaiser, M. Facile multicomponent synthesis of oxazolidinones from primary amines and cesium (hydrogen)carbonate. Eur. J. Org. Chem., 2023, 26(27), e202300135.
[http://dx.doi.org/10.1002/ejoc.202300135]
[23]
Mahmoud, E.; Hayallah, A.M.; Kovacic, S.; Abdelhamid, D.; Abdel-Aziz, M. Recent progress in biologically active indole hybrids: A mini review. Pharmacol. Rep., 2022, 74(4), 570-582.
[http://dx.doi.org/10.1007/s43440-022-00370-3] [PMID: 35594012]
[24]
Neto, J.S.S.; Zeni, G. Recent advances in the synthesis of indoles from alkynes and nitrogen sources. Org. Chem. Front., 2020, 7(1), 155-210.
[http://dx.doi.org/10.1039/C9QO01315F]
[25]
Pan, S.Q.; Ma, F.C.; Zhang, Y. X.; Xiong, S.H.; Yang, X.Y.; Wang, X.J.; Zhang, Y.J. Fused bicyclic compounds as ASK1 activity regulators and their preparation, pharmaceutical compositions and use in the treatment of diseases. World Patent, 2018233553, 2018.
[26]
Kratena, N.; Marinic, B.; Donohoe, T.J. Recent advances in the dearomative functionalisation of heteroarenes. Chem. Sci. , 2022, 13(48), 14213-14225.
[http://dx.doi.org/10.1039/D2SC04638E] [PMID: 36545133]
[27]
Xia, Z.L.; Xu-Xu, Q.F.; Zheng, C.; You, S.L. Chiral phosphoric acid-catalyzed asymmetric dearomatization reactions. Chem. Soc. Rev., 2020, 49(1), 286-300.
[http://dx.doi.org/10.1039/C8CS00436F] [PMID: 31829319]
[28]
Huang, C.; Jin, Z.; Zhang, B.; Zhou, Y.; Lin, H.; Kang, H.; Shen, G.; Lv, X. One-pot synthesis of 4-(imidazol-1-yl)indole derivatives through a sequential dearomatization and Ag-catalyzed cyclization/Cs2CO3-mediated addition/aromatization reaction. Org. Biomol. Chem., 2023, 21(20), 4245-4256.
[http://dx.doi.org/10.1039/D3OB00316G] [PMID: 37145103]
[29]
Skhiri, A.; Ben Salem, R.; Soulé, J.F.; Doucet, H. Access to (hetero)arylated selenophenes via palladium-catalysed Stille, Negishi or Suzuki couplings or C-H bond functionalization reaction. ChemCatChem, 2017, 9(15), 2895-2913.
[http://dx.doi.org/10.1002/cctc.201700256]
[30]
Paegle, E.; Domracheva, I.; Turovska, B.; Petrova, M.; Kanepe-Lapsa, I.; Gulbe, A.; Liepinsh, E.; Arsenyan, P. Natural-antioxidant-inspired benzo[b]selenophenes: Synthesis, redox properties, and antiproliferative activity. Chem. Asian J., 2016, 11(13), 1929-1938.
[http://dx.doi.org/10.1002/asia.201600472] [PMID: 27146245]
[31]
Matsumura, M.; Kitamura, Y.; Yamauchi, A.; Kanazawa, Y.; Murata, Y.; Hyodo, T.; Yamaguchi, K.; Yasuike, S. Synthesis of benzo[d]imidazo[2,1- b]benzoselenoazoles: Cs2CO3-mediated cyclization of 1-(2-bromoaryl)-benzimidazoles with selenium. Beilstein J. Org. Chem., 2019, 15, 2029-2035.
[http://dx.doi.org/10.3762/bjoc.15.199] [PMID: 31501670]
[32]
Liu, W.; Tan, H.; Chen, C.; Pan, Y. A method to access symmetrical tetrasubstituted pyridines via iodine and ammonium persulfate mediated [2+2+1+1]-cycloaddition reaction. Adv. Synth. Catal., 2017, 359(9), 1594-1598.
[http://dx.doi.org/10.1002/adsc.201601225]
[33]
Zhang, Q.; Song, C.; Huang, H.; Zhang, K.; Chang, J. Cesium carbonate promoted cascade reaction involving DMF as a reactant for the synthesis of dihydropyrrolizino[3,2- b]indol-10-ones. Org. Chem. Front., 2018, 5(1), 80-87.
[http://dx.doi.org/10.1039/C7QO00771J]
[34]
Ding, A.; Meazza, M.; Guo, H.; Yang, J.W.; Rios, R. New development in the enantioselective synthesis of spiro compounds. Chem. Soc. Rev., 2018, 47(15), 5946-5996.
[http://dx.doi.org/10.1039/C6CS00825A] [PMID: 29953153]
[35]
Cheng, J.T.; Zheng, X.; Huang, P.Q. Construction of multifunctional heterocycles bearing aza-quaternary carbons by titanocene-catalyzed umpolung reactions. Tetrahedron, 2019, 75(12), 1612-1623.
[http://dx.doi.org/10.1016/j.tet.2018.11.067]
[36]
Domínguez, G.; Pérez-Castells, J. Recent advances in [2+2+2] cycloaddition reactions. Chem. Soc. Rev., 2011, 40(7), 3430-3444.
[http://dx.doi.org/10.1039/c1cs15029d] [PMID: 21431173]
[37]
Dai, C.; Xie, Z.; Li, M.; Wang, C. Cs2CO3-Promoted [2+2+2] cycloaddition reaction of 4-aryliden-5(4H)-oxazolones and β-nitrostyrenes: Access to spirocycloalkyloxazolones. Asian J. Org. Chem., 2020, 9(1), 61-67.
[http://dx.doi.org/10.1002/ajoc.201900632]
[38]
Khanam, H. Shamsuzzaman, Bioactive benzofuran derivatives: A review. Eur. J. Med. Chem., 2015, 97, 483-504.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.039] [PMID: 25482554]
[39]
Liu, Y.; Lu, T.; Tang, W.F.; Gao, J. Transition-metal-free base catalyzed intramolecular cyclization of 2-ynylphenols for efficient and facile synthesis of 2-substituted benzo[ b]furans. RSC Advances, 2018, 8(50), 28637-28641.
[http://dx.doi.org/10.1039/C8RA03882A] [PMID: 35542491]
[40]
Rong, Z.; Gao, K.; Zhou, L.; Lin, J.; Qian, G. Facile synthesis of 2-substituted benzo[b]furans and indoles by copper-catalyzed intramolecular cyclization of 2-alkynyl phenols and tosylanilines. RSC Advances, 2019, 9(31), 17975-17978.
[http://dx.doi.org/10.1039/C9RA01260E] [PMID: 35520559]
[41]
Agasti, S.; Dey, A.; Maiti, D. Palladium-catalyzed benzofuran and indole synthesis by multiple C–H functionalizations. Chem. Commun. , 2017, 53(49), 6544-6556.
[http://dx.doi.org/10.1039/C7CC02053H] [PMID: 28569899]
[42]
Panday, A.K.; Ali, D.; Choudhury, L.H. Cs2CO3-Mediated rapid room-temperature synthesis of 3-amino-2-aroyl benzofurans and their copper-catalyzed N-arylation reactions. ACS Omega, 2020, 5(7), 3646-3660.
[http://dx.doi.org/10.1021/acsomega.9b04169] [PMID: 32118180]
[43]
Goyal, D.; Kaur, A.; Goyal, B. Benzofuran and indole: Promising scaffolds for drug development in Alzheimer’s disease. ChemMedChem, 2018, 13(13), 1275-1299.
[http://dx.doi.org/10.1002/cmdc.201800156] [PMID: 29742314]
[44]
Xu, Z.; Zhao, S.; Lv, Z.; Feng, L.; Wang, Y.; Zhang, F.; Bai, L.; Deng, J. Benzofuran derivatives and their anti-tubercular, anti-bacterial activities. Eur. J. Med. Chem., 2019, 162, 266-276.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.025] [PMID: 30448416]
[45]
Sui, G.; Li, T.; Zhang, B.; Wang, R.; Hao, H.; Zhou, W. Recent advances on synthesis and biological activities of aurones. Bioorg. Med. Chem., 2021, 29, 115895.
[http://dx.doi.org/10.1016/j.bmc.2020.115895] [PMID: 33271454]
[46]
Yu, J.; Xu, M.; Wang, X.; Zhang, B.; Mao, H.; Lv, X.; Zhou, L. Catalyst-controlled cycloisomerization/[4+3]cycloaddition sequence to construct 2,3-furan-fused dihydroazepines and 2,3-pyrrole-fused dihydrooxepines. Org. Chem. Front., 2022, 9(7), 1850-1854.
[http://dx.doi.org/10.1039/D1QO01733K]
[47]
Jin, H.S.; Zhu, T. Synthesis of benzofuran-fused oxepines through Cs2CO3-promoted [4+3] annulation of aurones with crotonate-derived sulfonium salts. J. Org. Chem., 2024, 89(5), 3271-3278.
[http://dx.doi.org/10.1021/acs.joc.3c02715] [PMID: 38332626]
[48]
Rodrigalvarez, J.; Haut, F.L.; Martin, R. Regiodivergent sp3 C–H functionalization via Ni-catalyzed chain-walking reactions. JACS Au, 2023, 3(12), 3270-3282.
[http://dx.doi.org/10.1021/jacsau.3c00617] [PMID: 38155646]
[49]
Lin, S.; Liu, C.; Zhao, X.; Han, X.; Li, X.; Ye, Y.; Li, Z. Recent advances of pyridinone in medicinal chemistry. Front Chem., 2022, 10, 869860.
[http://dx.doi.org/10.3389/fchem.2022.869860] [PMID: 35402370]
[50]
De Angelis, L.; Haug, G.C.; Rivera, G.; Biswas, S.; Al-Sayyed, A.; Arman, H.; Larionov, O.; Doyle, M.P. Site reversal in nucleophilic addition to 1,2,3-triazine 1-oxides. J. Am. Chem. Soc., 2023, 145(24), 13059-13068.
[http://dx.doi.org/10.1021/jacs.3c01347] [PMID: 37294869]
[51]
Biswas, S.; Hughes, W.B.; De Angelis, L.; Haug, G.C.; Trevino, R.; Fremin, S.O.; Arman, H.D.; Larionov, O.V.; Doyle, M.P. The “cesium effect” magnified: Exceptional chemoselectivity in cesium ion mediated nucleophilic reactions. Chem. Sci. , 2024, 15(14), 5277-5283.
[http://dx.doi.org/10.1039/D4SC00316K] [PMID: 38577370]
[52]
Steinbach, T.; Wurm, F.R. Poly(phosphoester)s: A new platform for degradable polymer. Angew. Chem. Int. Ed., 2015, 54(21), 6098-6108.
[http://dx.doi.org/10.1002/anie.201500147] [PMID: 25951459]
[53]
Gulea, M. Progress in the chemistry of phosphorothioates. Adv. Org. Synth., 2018, 12, 117-150.
[http://dx.doi.org/10.2174/9781681086804118120005]
[54]
Eckstein, F. Phosphorothioates, essential components of therapeutic oligonucleotides. Nucleic Acid Ther., 2014, 24(6), 374-387.
[http://dx.doi.org/10.1089/nat.2014.0506] [PMID: 25353652]
[55]
Qiu, Y.; Worch, J.C.; Chirdon, D.N.; Kaur, A.; Maurer, A.B.; Amsterdam, S.; Collins, C.R.; Pintauer, T.; Yaron, D.; Bernhard, S.; Noonan, K.J.T. Tuning thiophene with phosphorus: Synthesis and electronic properties of benzobisthiaphospholes. Chemistry, 2014, 20(25), 7746-7751.
[http://dx.doi.org/10.1002/chem.201402561] [PMID: 24817444]
[56]
Lee, C-F.; Bai, R.; Liu, K-C.; Chen, Z-W.; Gurjar, A.; Badsara, S.S. Cs2CO3-Mediated synthetic strategy for iprobenfos derivatives via thiophilic addition of H-phosphites on in situ generated thioaldehydes. ARKIVOC, 2024, 2023(2)
[http://dx.doi.org/10.24820/ark.5550190.p012.055]
[57]
Chen, Z.W.; Pratheepkumar, A.; Bai, R.; Hu, Y.; Badsara, S.S.; Huang, K.W.; Lee, C.F. Cesium carbonate-catalyzed synthesis of phosphorothioates via S -phosphination of thioketones. Chem. Commun. , 2022, 58(78), 11001-11004.
[http://dx.doi.org/10.1039/D2CC04331A] [PMID: 36093933]
[58]
Fisher, S.P.; Tomich, A.W.; Lovera, S.O.; Kleinsasser, J.F.; Guo, J.; Asay, M.J.; Nelson, H.M.; Lavallo, V. Nonclassical applications of closo-carborane anions: From main group chemistry and catalysis to energy storage. Chem. Rev., 2019, 119(14), 8262-8290.
[http://dx.doi.org/10.1021/acs.chemrev.8b00551] [PMID: 30707011]
[59]
Popov, S.; Shao, B.; Bagdasarian, A.L.; Benton, T.R.; Zou, L.; Yang, Z.; Houk, K.N.; Nelson, H.M. Teaching an old carbocation new tricks: Intermolecular C–H insertion reactions of vinyl cations. Science, 2018, 361(6400), 381-387.
[http://dx.doi.org/10.1126/science.aat5440] [PMID: 30049877]
[60]
Fisher, S.P.; Tomich, A.W.; Guo, J.; Lavallo, V. Teaching an old dog new tricks: New directions in fundamental and applied closo -carborane anion chemistry. Chem. Commun. , 2019, 55(12), 1684-1701.
[http://dx.doi.org/10.1039/C8CC09663E] [PMID: 30666325]
[61]
Lovera, S.O.; Bagsdasarian, A.L.; Guo, J.; Nelson, H.M.; Lavallo, V. Cesium carbonate mediated C–H functionalization of perhalogenated 12-vertex carborane anions. Chem. Commun. , 2022, 58(25), 4060-4062.
[http://dx.doi.org/10.1039/D2CC00173J] [PMID: 35262161]
[62]
Vinogradov, A.A.; Yin, Y.; Suga, H. Macrocyclic peptides as drug candidates: Recent progress and remaining challenges. J. Am. Chem. Soc., 2019, 141(10), 4167-4181.
[http://dx.doi.org/10.1021/jacs.8b13178] [PMID: 30768253]
[63]
Srivastava, V. Peptide-based Drug Discovery: Challenges and New Therapeutics; The Royal Society of Chemistry, 2017.
[http://dx.doi.org/10.1039/9781788011532]
[64]
Dunetz, J.R.; Magano, J.; Weisenburger, G.A. Large-scale applications of amide coupling reagents for the synthesis of pharmaceuticals. Org. Process Res. Dev., 2016, 20(2), 140-177.
[http://dx.doi.org/10.1021/op500305s]
[65]
de Figueiredo, R.M.; Suppo, J.S.; Campagne, J.M. Nonclassical routes for amide bond formation. Chem. Rev., 2016, 116(19), 12029-12122.
[http://dx.doi.org/10.1021/acs.chemrev.6b00237] [PMID: 27673596]
[66]
Sabatini, M.T.; Boulton, L.T.; Sneddon, H.F.; Sheppard, T.D. A green chemistry perspective on catalytic amide bond formation. Nat. Catal., 2019, 2(1), 10-17.
[http://dx.doi.org/10.1038/s41929-018-0211-5]
[67]
Kuo, C.H.; Hsieh, W.T.; Yang, Y.H.; Hwang, T.L.; Cheng, Y.S.; Lin, Y.A. Cesium carbonate promoted direct amidation of unactivated esters with amino alcohol derivatives. J. Org. Chem., 2024, 89(7), 4958-4970.
[http://dx.doi.org/10.1021/acs.joc.4c00162] [PMID: 38523317]
[68]
Surowiak, A.K.; Lochyński, S.; Strub, D.J. Unsubstituted oximes as potential therapeutic agents. Symmetry , 2020, 12(6), 1006.
[http://dx.doi.org/10.3390/sym12061006]
[69]
Nising, C.F.; Bräse, S. The oxa-Michael reaction: From recent developments to applications in natural product synthesis. Chem. Soc. Rev., 2008, 37(6), 1218-1228.
[http://dx.doi.org/10.1039/b718357g] [PMID: 18497934]
[70]
Stahl, J.; Yatham, V.R.; Crespi, S.; König, B. Cesium carbonate catalyzed oxa-Michael addition of oximes to acrylonitrile. ChemistrySelect, 2021, 6(17), 4107-4111.
[http://dx.doi.org/10.1002/slct.202100924]
[71]
Battilocchio, C.; Hawkins, J.M.; Ley, S.V. Mild and selective heterogeneous catalytic hydration of nitriles to amides by flowing through manganese dioxide. Org. Lett., 2014, 16(4), 1060-1063.
[http://dx.doi.org/10.1021/ol403591c] [PMID: 24495110]
[72]
García-Álvarez, R.; Crochet, P.; Cadierno, V. Metal-catalyzed amide bond forming reactions in an environmentally friendly aqueous medium: Nitrile hydrations and beyond. Green Chem., 2013, 15(1), 46-66.
[http://dx.doi.org/10.1039/C2GC36534K]
[73]
Yoshimatsu, M.; Kuwabara, J.; Sawada, Y. Nitrile hydration reaction using copper iodide/cesium carbonate/DBU in nitromethane-water. Synlett, 2018, 29(15), 2061-2065.
[http://dx.doi.org/10.1055/s-0037-1609912]
[74]
Gao, H.; Hu, B.; Dong, W.; Gao, X.; Jiang, L.; Xie, X.; Zhang, Z. Synthesis of 3-CF2-containing chromones via a visible-light-induced radical cascade reaction of o-hydroxyaryl enaminones. ACS Omega, 2017, 2(7), 3168-3174.
[http://dx.doi.org/10.1021/acsomega.7b00383] [PMID: 31457645]
[75]
Jiang, W.; Sun, J.; Liu, R.Z.; Yan, C.G. Molecular diversity of the domino annulation reaction of 2-aryl-3-nitrochromenes with pivaloylacetonitriles. Org. Biomol. Chem., 2018, 16(32), 5816-5822.
[http://dx.doi.org/10.1039/C8OB01504J] [PMID: 30066005]
[76]
Dai, C.; Luo, N.; Wang, S.; Wang, C.; Wang, C. Cesium-carbonate-mediated benzalation of substituted 2-aryl-3-nitro-2H-chromenes with substituted 4-benzylidene-2-phenyloxazol-5(4H)-ones. Org. Lett., 2019, 21(8), 2828-2832.
[http://dx.doi.org/10.1021/acs.orglett.9b00776] [PMID: 30939016]
[77]
Guo, Z.; Xie, M.; Han, R.; Qu, G.; Guo, H. Ag-catalyzed monofluoromethylation of Purin-9-yl allenes with fluorobis(phenylsulfonyl)methane. Youji Huaxue, 2018, 38(1), 112-117.
[http://dx.doi.org/10.6023/cjoc201711001]
[78]
Yu, M.; Liu, X.; Jiang, Q.; Du, H. Expeditious synthesis of 9-allenylpurines via cesium carbonate catalyzed isomerization of 9-alkynylpurines. Phosphorus Sulfur Silicon Relat. Elem., 2018, 193(7), 451-458.
[http://dx.doi.org/10.1080/10426507.2018.1436547]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy