Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Research Article

Deciphering the Causality between Gut Microbiota Dysbiosis and Poisoning by Narcotics and Psychodysleptics: A Mendelian Randomization Analysis

In Press, (this is not the final "Version of Record"). Available online 30 July, 2024
Author(s): Ning Wang and Zhenbo Su*
Published on: 30 July, 2024

DOI: 10.2174/1570159X22999240729092453

Price: $95

Abstract

Background: This study investigates the connection between gut microbiota and poisoning caused by narcotics and psychodysleptics, using Mendelian randomization (MR) to explore possible causal relationships.

Methods: The study employed the MR analysis, leveraging genetic variants as instrumental variables to facilitate robust causal inference. Data for gut microbiota was extracted from the MiBioGen study, integrating genome-wide genotyping data with 16S fecal microbiota profiles. Outcome metrics were based on the Finngen study. Genetic instruments were meticulously extracted based on stringent criteria, and harmonized with SNP outcomes associated with "Poisoning by narcotics and psychodysleptics [hallucinogens]". The inverse-variance weighted (IVW) method was utilized for MR analysis, supplemented by sensitivity analyses including MR-Egger Regression, Weighted Median Approach, and Leave-One-Out Cross-Validation.

Results: Among various microbial groups, nine showed significant statistical links. Specifically, Class Negativicutes (OR 5.68, 95% CI 2.13-15.16, p = 0.0005) and Order Selenomonadales (OR 5.68, 95% CI 2.13-15.16, p = 0.0005) were notably associated. These findings were consistent across different sensitivity analyses.

Conclusion: The relationship between gut microbiota and the adverse effects of narcotics and psychodysleptics is an emerging area of research. Our MR study identifies certain microbes that might influence the body's response to these substances. These insights could help in predicting and treating the effects of narcotics and psychodysleptics in the future.

[1]
Foley, K.M. Opioids. Neurol. Clin., 1993, 11(3), 503-522.
[http://dx.doi.org/10.1016/S0733-8619(18)30135-X] [PMID: 8377740]
[2]
Johannes, C.B.; Le, T.K.; Zhou, X.; Johnston, J.A.; Dworkin, R.H. The prevalence of chronic pain in United States adults: Results of an Internet-based survey. J. Pain, 2010, 11(11), 1230-1239.
[http://dx.doi.org/10.1016/j.jpain.2010.07.002] [PMID: 20797916]
[3]
Stein, C. New concepts in opioid analgesia. Expert Opin. Investig. Drugs, 2018, 27(10), 765-775.
[http://dx.doi.org/10.1080/13543784.2018.1516204] [PMID: 30148648]
[4]
Nafziger, A.N.; Barkin, R.L. Opioid therapy in acute and chronic pain. J. Clin. Pharmacol., 2018, 58(9), 1111-1122.
[http://dx.doi.org/10.1002/jcph.1276] [PMID: 29985526]
[5]
Vollenweider, F.X. Brain mechanisms of hallucinogens and entactogens. Dialogues Clin. Neurosci., 2001, 3(4), 265-279.
[http://dx.doi.org/10.31887/DCNS.2001.3.4/fxvollenweider] [PMID: 22033605]
[6]
Volgin, A.D.; Yakovlev, O.A.; Demin, K.A.; Alekseeva, P.A.; Kyzar, E.J.; Collins, C.; Nichols, D.E.; Kalueff, A.V. Understanding central nervous system effects of deliriant hallucinogenic drugs through experimental animal models. ACS Chem. Neurosci., 2019, 10(1), 143-154.
[http://dx.doi.org/10.1021/acschemneuro.8b00433] [PMID: 30252437]
[7]
Liechti, M.E. Modern clinical research on LSD. Neuropsychopharmacology, 2017, 42(11), 2114-2127.
[http://dx.doi.org/10.1038/npp.2017.86] [PMID: 28447622]
[8]
Ling, S.; Ceban, F.; Lui, L.M.W.; Lee, Y.; Teopiz, K.M.; Rodrigues, N.B.; Lipsitz, O.; Gill, H.; Subramaniapillai, M.; Mansur, R.B.; Lin, K.; Ho, R.; Rosenblat, J.D.; Castle, D.; McIntyre, R.S. Molecular mechanisms of psilocybin and implications for the treatment of depression. CNS Drugs, 2022, 36(1), 17-30.
[http://dx.doi.org/10.1007/s40263-021-00877-y] [PMID: 34791625]
[9]
Kaye, A.D.; Jones, M.R.; Kaye, A.M.; Ripoll, J.G.; Galan, V.; Beakley, B.D.; Calixto, F.; Bolden, J.L.; Urman, R.D.; Manchikanti, L. Prescription opioid abuse in chronic pain: An updated review of opioid abuse predictors and strategies to curb opioid abuse: Part 1. Pain Physician, 2017, 2(20;2), s93-s109.
[http://dx.doi.org/10.36076/ppj.2017.s109] [PMID: 28226333]
[10]
Brady, K.T.; McCauley, J.L.; Back, S.E. Prescription opioid misuse, abuse, and treatment in the United States: An update. Am. J. Psychiatry, 2016, 173(1), 18-26.
[http://dx.doi.org/10.1176/appi.ajp.2015.15020262] [PMID: 26337039]
[11]
Vearrier, D.; Grundmann, O. Clinical pharmacology, toxicity, and abuse potential of opioids. J. Clin. Pharmacol., 2021, 61(S2)(Suppl. 2), S70-S88.
[http://dx.doi.org/10.1002/jcph.1923] [PMID: 34396552]
[12]
Nichols, D.E.; Grob, C.S. Is LSD toxic? Forensic Sci. Int., 2018, 284, 141-145.
[http://dx.doi.org/10.1016/j.forsciint.2018.01.006] [PMID: 29408722]
[13]
Hardaway, R.; Schweitzer, J.; Suzuki, J. Hallucinogen use disorders. Child Adolesc. Psychiatr. Clin. N. Am., 2016, 25(3), 489-496.
[http://dx.doi.org/10.1016/j.chc.2016.03.006] [PMID: 27338969]
[14]
Dart, R.C.; Surratt, H.L.; Cicero, T.J.; Parrino, M.W.; Severtson, S.G.; Bucher-Bartelson, B.; Green, J.L. Trends in opioid analgesic abuse and mortality in the United States. N. Engl. J. Med., 2015, 372(3), 241-248.
[http://dx.doi.org/10.1056/NEJMsa1406143] [PMID: 25587948]
[15]
Paulozzi, L.J.; Budnitz, D.S.; Xi, Y. Increasing deaths from opioid analgesics in the United States. Pharmacoepidemiol. Drug Saf., 2006, 15(9), 618-627.
[http://dx.doi.org/10.1002/pds.1276] [PMID: 16862602]
[16]
Boyer, E.W. Management of opioid analgesic overdose. N. Engl. J. Med., 2012, 367(2), 146-155.
[http://dx.doi.org/10.1056/NEJMra1202561] [PMID: 22784117]
[17]
Wang, L.; Wu, Y.; Yin, P.; Cheng, P.; Liu, Y.; Schwebel, D.C.; Qi, J.; Ning, P.; Liu, J.; Cheng, X.; Zhou, M.; Hu, G. Poisoning deaths in China, 2006–2016. Bull. World Health Organ., 2018, 96(5), 314-326A.
[http://dx.doi.org/10.2471/BLT.17.203943] [PMID: 29875516]
[18]
Inocencio, T.J.; Carroll, N.V.; Read, E.J.; Holdford, D.A. The economic burden of opioid-related poisoning in the United States. Pain Med., 2013, 14(10), 1534-1547.
[http://dx.doi.org/10.1111/pme.12183] [PMID: 23841538]
[19]
Adak, A.; Khan, M.R. An insight into gut microbiota and its functionalities. Cell. Mol. Life Sci., 2019, 76(3), 473-493.
[http://dx.doi.org/10.1007/s00018-018-2943-4] [PMID: 30317530]
[20]
Gill, S.R.; Pop, M.; DeBoy, R.T.; Eckburg, P.B.; Turnbaugh, P.J.; Samuel, B.S.; Gordon, J.I.; Relman, D.A.; Fraser-Liggett, C.M.; Nelson, K.E. Metagenomic analysis of the human distal gut microbiome. Science, 2006, 312(5778), 1355-1359.
[http://dx.doi.org/10.1126/science.1124234] [PMID: 16741115]
[21]
Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol., 2021, 19(1), 55-71.
[http://dx.doi.org/10.1038/s41579-020-0433-9] [PMID: 32887946]
[22]
Wang, Z.; Wang, Y.; Xiong, J.; Gan, X.; Bao, Y.; Jiang, A.; Zhou, Y.; Huangfu, Z.; Yang, Y.; Liu, Z.; Xia, D.; Wang, L. Causal effects of hypertension on risk of erectile dysfunction: A two-sample Mendelian randomization study. Front. Cardiovasc. Med., 2023, 10, 1121340.
[http://dx.doi.org/10.3389/fcvm.2023.1121340] [PMID: 37025676]
[23]
Michaudel, C.; Sokol, H. The Gut Microbiota at the Service of Immunometabolism. Cell Metab., 2020, 32(4), 514-523.
[http://dx.doi.org/10.1016/j.cmet.2020.09.004] [PMID: 32946809]
[24]
Honda, K.; Littman, D.R. The microbiota in adaptive immune homeostasis and disease. Nature, 2016, 535(7610), 75-84.
[http://dx.doi.org/10.1038/nature18848] [PMID: 27383982]
[25]
Järbrink-Sehgal, E.; Andreasson, A. The gut microbiota and mental health in adults. Curr. Opin. Neurobiol., 2020, 62, 102-114.
[http://dx.doi.org/10.1016/j.conb.2020.01.016] [PMID: 32163822]
[26]
Li, H.; He, J.; Jia, W. The influence of gut microbiota on drug metabolism and toxicity. Expert Opin. Drug Metab. Toxicol., 2016, 12(1), 31-40.
[http://dx.doi.org/10.1517/17425255.2016.1121234] [PMID: 26569070]
[27]
Kang, M.J.; Kim, H.G.; Kim, J.S.; Oh, D.G.; Um, Y.J.; Seo, C.S.; Han, J.W.; Cho, H.J.; Kim, G.H.; Jeong, T.C.; Jeong, H.G. The effect of gut microbiota on drug metabolism. Expert Opin. Drug Metab. Toxicol., 2013, 9(10), 1295-1308.
[http://dx.doi.org/10.1517/17425255.2013.807798] [PMID: 24033282]
[28]
Thanassoulis, G.; O’Donnell, C.J. Mendelian Randomization. JAMA, 2009, 301(22), 2386-2388.
[http://dx.doi.org/10.1001/jama.2009.812] [PMID: 19509388]
[29]
Davies, N.M.; Holmes, M.V.; Davey Smith, G. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ, 2018, 362, k601.
[http://dx.doi.org/10.1136/bmj.k601] [PMID: 30002074]
[30]
Davey Smith, G.; Paternoster, L.; Relton, C. When will mendelian randomization become relevant for clinical practice and public health? JAMA, 2017, 317(6), 589-591.
[http://dx.doi.org/10.1001/jama.2016.21189] [PMID: 28196238]
[31]
Li, N.; Wang, Y.; Wei, P.; Min, Y.; Yu, M.; Zhou, G.; Yuan, G.; Sun, J.; Dai, H.; Zhou, E.; He, W.; Sheng, M.; Gao, K.; Zheng, M.; Sun, W.; Zhou, D.; Zhang, L. Causal effects of specific gut microbiota on chronic kidney diseases and renal function—a two-sample mendelian randomization study. Nutrients, 2023, 15(2), 360.
[http://dx.doi.org/10.3390/nu15020360] [PMID: 36678231]
[32]
Jin, Q.; Ren, F.; Dai, D.; Sun, N.; Qian, Y.; Song, P. The causality between intestinal flora and allergic diseases: Insights from a bi-directional two-sample Mendelian randomization analysis. Front. Immunol., 2023, 14, 1121273.
[http://dx.doi.org/10.3389/fimmu.2023.1121273] [PMID: 36969260]
[33]
Yang, M.; Luo, P.; Zhang, F.; Xu, K.; Feng, R.; Xu, P. Large-scale correlation analysis of deep venous thrombosis and gut microbiota. Front. Cardiovasc. Med., 2022, 9, 1025918.
[http://dx.doi.org/10.3389/fcvm.2022.1025918] [PMID: 36419497]
[34]
Luo, S.; Li, W.; Li, Q.; Zhang, M.; Wang, X.; Wu, S.; Li, Y. Causal effects of gut microbiota on the risk of periodontitis: a two-sample Mendelian randomization study. Front. Cell. Infect. Microbiol., 2023, 13, 1160993.
[http://dx.doi.org/10.3389/fcimb.2023.1160993] [PMID: 37305424]
[35]
Liu, D.; Bu, D.; Li, H.; Wang, Q.; Ding, X.; Fang, X. Intestinal metabolites and the risk of autistic spectrum disorder: A two-sample Mendelian randomization study. Front. Psychiatry, 2023, 13, 1034214.
[http://dx.doi.org/10.3389/fpsyt.2022.1034214] [PMID: 36713927]
[36]
Wang, F.; Li, N.; Ni, S.; Min, Y.; Wei, K.; Sun, H.; Fu, Y.; Liu, Y.; Lv, D. The effects of specific gut microbiota and metabolites on IgA nephropathy-based on mendelian randomization and clinical validation. Nutrients, 2023, 15(10), 2407.
[http://dx.doi.org/10.3390/nu15102407] [PMID: 37242290]
[37]
Li, Y.; Fu, R.; Li, R.; Zeng, J.; Liu, T.; Li, X.; Jiang, W. Causality of gut microbiome and hypertension: A bidirectional mendelian randomization study. Front. Cardiovasc. Med., 2023, 10, 1167346.
[http://dx.doi.org/10.3389/fcvm.2023.1167346] [PMID: 37215554]
[38]
Zeng, Y.; Cao, S.; Yang, H. Roles of gut microbiome in epilepsy risk: A Mendelian randomization study. Front. Microbiol., 2023, 14, 1115014.
[http://dx.doi.org/10.3389/fmicb.2023.1115014] [PMID: 36922970]
[39]
Skrivankova, V.W.; Richmond, R.C.; Woolf, B.A.R.; Yarmolinsky, J.; Davies, N.M.; Swanson, S.A.; VanderWeele, T.J.; Higgins, J.P.T.; Timpson, N.J.; Dimou, N.; Langenberg, C.; Golub, R.M.; Loder, E.W.; Gallo, V.; Tybjaerg-Hansen, A.; Davey Smith, G.; Egger, M.; Richards, J.B. Strengthening the reporting of observational studies in epidemiology using mendelian randomization. JAMA, 2021, 326(16), 1614-1621.
[http://dx.doi.org/10.1001/jama.2021.18236] [PMID: 34698778]
[40]
Kurilshikov, A.; Medina-Gomez, C.; Bacigalupe, R.; Radjabzadeh, D.; Wang, J.; Demirkan, A.; Le Roy, C.I.; Raygoza Garay, J.A.; Finnicum, C.T.; Liu, X.; Zhernakova, D.V.; Bonder, M.J.; Hansen, T.H.; Frost, F.; Rühlemann, M.C.; Turpin, W.; Moon, J.Y.; Kim, H.N.; Lüll, K.; Barkan, E.; Shah, S.A.; Fornage, M.; Szopinska-Tokov, J.; Wallen, Z.D.; Borisevich, D.; Agreus, L.; Andreasson, A.; Bang, C.; Bedrani, L.; Bell, J.T.; Bisgaard, H.; Boehnke, M.; Boomsma, D.I.; Burk, R.D.; Claringbould, A.; Croitoru, K.; Davies, G.E.; van Duijn, C.M.; Duijts, L.; Falony, G.; Fu, J.; van der Graaf, A.; Hansen, T.; Homuth, G.; Hughes, D.A.; Ijzerman, R.G.; Jackson, M.A.; Jaddoe, V.W.V.; Joossens, M.; Jørgensen, T.; Keszthelyi, D.; Knight, R.; Laakso, M.; Laudes, M.; Launer, L.J.; Lieb, W.; Lusis, A.J.; Masclee, A.A.M.; Moll, H.A.; Mujagic, Z.; Qibin, Q.; Rothschild, D.; Shin, H.; Sørensen, S.J.; Steves, C.J.; Thorsen, J.; Timpson, N.J.; Tito, R.Y.; Vieira-Silva, S.; Völker, U.; Völzke, H.; Võsa, U.; Wade, K.H.; Walter, S.; Watanabe, K.; Weiss, S.; Weiss, F.U.; Weissbrod, O.; Westra, H.J.; Willemsen, G.; Payami, H.; Jonkers, D.M.A.E.; Arias Vasquez, A.; de Geus, E.J.C.; Meyer, K.A.; Stokholm, J.; Segal, E.; Org, E.; Wijmenga, C.; Kim, H.L.; Kaplan, R.C.; Spector, T.D.; Uitterlinden, A.G.; Rivadeneira, F.; Franke, A.; Lerch, M.M.; Franke, L.; Sanna, S.; D’Amato, M.; Pedersen, O.; Paterson, A.D.; Kraaij, R.; Raes, J.; Zhernakova, A. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat. Genet., 2021, 53(2), 156-165.
[http://dx.doi.org/10.1038/s41588-020-00763-1] [PMID: 33462485]
[41]
Consortium, M. MiBioGen 2022. Available from: https://mibiogen.gcc.rug.nl/
[42]
FinnGen. ST19_POISO_NARCOT_PSYCHOD_HALLUCINOG – Poisoning by narcotics and psychodysleptics (hallucinogens). Risteys v2.1.0. 2022. Available from: https://risteys.finregistry.fi/endpoints/ST19_POISO_NARCOT_PSYCHOD_HALLUCINOG
[43]
Pierce, B.L.; Ahsan, H.; VanderWeele, T.J. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. Int. J. Epidemiol., 2011, 40(3), 740-752.
[http://dx.doi.org/10.1093/ije/dyq151] [PMID: 20813862]
[44]
Verbanck, M.; Chen, C.Y.; Neale, B.; Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet., 2018, 50(5), 693-698.
[http://dx.doi.org/10.1038/s41588-018-0099-7] [PMID: 29686387]
[45]
Wang, F.; Meng, J.; Zhang, L.; Johnson, T.; Chen, C.; Roy, S. Morphine induces changes in the gut microbiome and metabolome in a morphine dependence model. Sci. Rep., 2018, 8(1), 3596.
[http://dx.doi.org/10.1038/s41598-018-21915-8] [PMID: 29483538]
[46]
Banerjee, S.; Sindberg, G.; Wang, F.; Meng, J.; Sharma, U.; Zhang, L.; Dauer, P.; Chen, C.; Dalluge, J.; Johnson, T.; Roy, S. Opioid-induced gut microbial disruption and bile dysregulation leads to gut barrier compromise and sustained systemic inflammation. Mucosal Immunol., 2016, 9(6), 1418-1428.
[http://dx.doi.org/10.1038/mi.2016.9] [PMID: 26906406]
[47]
Zhang, L.; Meng, J.; Ban, Y.; Jalodia, R.; Chupikova, I.; Fernandez, I.; Brito, N.; Sharma, U.; Abreu, M.T.; Ramakrishnan, S.; Roy, S. Morphine tolerance is attenuated in germfree mice and reversed by probiotics, implicating the role of gut microbiome. Proc. Natl. Acad. Sci. USA, 2019, 116(27), 13523-13532.
[http://dx.doi.org/10.1073/pnas.1901182116] [PMID: 31209039]
[48]
Wang, F.; Roy, S. Gut Homeostasis, Microbial Dysbiosis, and Opioids. Toxicol. Pathol., 2017, 45(1), 150-156.
[http://dx.doi.org/10.1177/0192623316679898] [PMID: 27895265]
[49]
Akbarali, H.I.; Dewey, W.L. Gastrointestinal motility, dysbiosis and opioid-induced tolerance: is there a link? Nat. Rev. Gastroenterol. Hepatol., 2019, 16(6), 323-324.
[http://dx.doi.org/10.1038/s41575-019-0150-x] [PMID: 31024090]
[50]
Mayer, E.A.; Nance, K.; Chen, S. The Gut–Brain Axis. Annu. Rev. Med., 2022, 73(1), 439-453.
[http://dx.doi.org/10.1146/annurev-med-042320-014032] [PMID: 34669431]
[51]
Xie, Z.; Zhang, X.; Zhao, M.; Huo, L.; Huang, M.; Li, D.; Zhang, S.; Cheng, X.; Gu, H.; Zhang, C.; Zhan, C.; Wang, F.; Shang, C.; Cao, P. The gut-to-brain axis for toxin-induced defensive responses. Cell, 2022, 185(23), 4298-4316.e21.
[http://dx.doi.org/10.1016/j.cell.2022.10.001] [PMID: 36323317]
[52]
Rueda-Ruzafa, L.; Cruz, F.; Cardona, D.; Hone, A.J.; Molina-Torres, G.; Sánchez-Labraca, N.; Roman, P. Opioid system influences gut-brain axis: Dysbiosis and related alterations. Pharmacol. Res., 2020, 159, 104928.
[http://dx.doi.org/10.1016/j.phrs.2020.104928] [PMID: 32504837]
[53]
Santoni, M.; Miccini, F.; Battelli, N. Gut microbiota, immunity and pain. Immunol. Lett., 2021, 229, 44-47.
[http://dx.doi.org/10.1016/j.imlet.2020.11.010] [PMID: 33248167]
[54]
Zádori, Z.S.; Király, K.; Al-Khrasani, M.; Gyires, K. Interactions between NSAIDs, opioids and the gut microbiota - Future perspectives in the management of inflammation and pain. Pharmacol. Ther., 2023, 241, 108327.
[http://dx.doi.org/10.1016/j.pharmthera.2022.108327] [PMID: 36473615]
[55]
Luo, X.; Li, H.; Fan, X.; Wu, X.; Zhou, R.; Lei, Y.; Xue, D.; Yang, F.; Xu, Y.; Wang, K. The gut microbiota-brain Axis: Potential mechanism of drug addiction. Curr. Top. Med. Chem., 2023, 23(18), 1782-1792.
[http://dx.doi.org/10.2174/1568026623666230418114133] [PMID: 37106510]
[56]
Ji, J.; Yan, N.; Zhang, Z.; Li, B.; Xue, R.; Dang, Y. Characterized profiles of gut microbiota in morphine abstinence-induced depressive-like behavior. Neurosci. Lett., 2022, 788, 136857.
[http://dx.doi.org/10.1016/j.neulet.2022.136857] [PMID: 36038030]
[57]
Kienzl, M.; Storr, M.; Schicho, R. Cannabinoids and opioids in the treatment of inflammatory bowel diseases. Clin. Transl. Gastroenterol., 2020, 11(1), e00120.
[http://dx.doi.org/10.14309/ctg.0000000000000120] [PMID: 31899693]
[58]
Campbell, C.; Adeolu, M.; Gupta, R.S. Genome-based taxonomic framework for the class Negativicutes: division of the class Negativicutes into the orders Selenomonadales emend., Acidaminococcales ord. nov. and Veillonellales ord. nov. Int. J. Syst. Evol. Microbiol., 2015, 65(Pt_9), 3203-3215.
[http://dx.doi.org/10.1099/ijs.0.000347] [PMID: 25999592]
[59]
Chiu, F.C.; Tsai, C.F.; Huang, P.S.; Shih, C.Y.; Tsai, M.H.; Hwang, J.J.; Wang, Y.C.; Chuang, E.Y.; Tsai, C.T.; Chang, S.N. The gut microbiome, seleno-compounds, and acute myocardial infarction. J. Clin. Med., 2022, 11(5), 1462.
[http://dx.doi.org/10.3390/jcm11051462] [PMID: 35268552]
[60]
Chen, H.; Jia, Z.; He, M.; Chen, A.; Zhang, X.; Xu, J.; Wang, C. Arula-7 powder improves diarrhea and intestinal epithelial tight junction function associated with its regulation of intestinal flora in calves infected with pathogenic Escherichia coli O1. Microbiome, 2023, 11(1), 172.
[http://dx.doi.org/10.1186/s40168-023-01616-9] [PMID: 37542271]
[61]
Song, P.; Yang, D.; Wang, H.; Cui, X.; Si, X.; Zhang, X.; Zhang, L. Relationship between intestinal flora structure and metabolite analysis and immunotherapy efficacy in Chinese NSCLC patients. Thorac. Cancer, 2020, 11(6), 1621-1632.
[http://dx.doi.org/10.1111/1759-7714.13442] [PMID: 32329229]
[62]
Togo, A.H.; Khelaifia, S.; Valero, R.; Cadoret, F.; Raoult, D.; Million, M. ‘Negativicoccus massiliensis’, a new species identified from human stool from an obese patient after bariatric surgery. New Microbes New Infect., 2016, 13, 43-44.
[http://dx.doi.org/10.1016/j.nmni.2016.05.018] [PMID: 27408741]
[63]
Marchandin, H.; Teyssier, C.; Campos, J.; Jean-Pierre, H.; Roger, F.; Gay, B.; Carlier, J.P.; Jumas-Bilak, E. Negativicoccus succinicivorans gen. nov., sp. nov., isolated from human clinical samples, emended description of the family Veillonellaceae and description of Negativicutes classis nov., Selenomonadales ord. nov. and Acidaminococcaceae fam. nov. in the bacterial phylum Firmicutes. Int. J. Syst. Evol. Microbiol., 2010, 60(6), 1271-1279.
[http://dx.doi.org/10.1099/ijs.0.013102-0] [PMID: 19667386]
[64]
Reichardt, N.; Duncan, S.H.; Young, P.; Belenguer, A.; McWilliam Leitch, C.; Scott, K.P.; Flint, H.J.; Louis, P. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J., 2014, 8(6), 1323-1335.
[http://dx.doi.org/10.1038/ismej.2014.14] [PMID: 24553467]
[65]
Ziesenitz, V.C.; Vaughns, J.D.; Koch, G.; Mikus, G.; van den Anker, J.N. Pharmacokinetics of fentanyl and its derivatives in children: A comprehensive review. Clin. Pharmacokinet., 2018, 57(2), 125-149.
[http://dx.doi.org/10.1007/s40262-017-0569-6] [PMID: 28688027]
[66]
Perry, R.J.; Borders, C.B.; Cline, G.W.; Zhang, X.M.; Alves, T.C.; Petersen, K.F.; Rothman, D.L.; Kibbey, R.G.; Shulman, G.I. Propionate increases hepatic pyruvate cycling and anaplerosis and alters mitochondrial metabolism. J. Biol. Chem., 2016, 291(23), 12161-12170.
[http://dx.doi.org/10.1074/jbc.M116.720631] [PMID: 27002151]
[67]
Louis, P.; Flint, H.J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol. Lett., 2009, 294(1), 1-8.
[http://dx.doi.org/10.1111/j.1574-6968.2009.01514.x] [PMID: 19222573]
[68]
Sinha, S.R.; Haileselassie, Y.; Nguyen, L.P.; Tropini, C.; Wang, M.; Becker, L.S.; Sim, D.; Jarr, K.; Spear, E.T.; Singh, G.; Namkoong, H.; Bittinger, K.; Fischbach, M.A.; Sonnenburg, J.L.; Habtezion, A. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation. Cell Host Microbe, 2020, 27(4), 659-670.e5.
[http://dx.doi.org/10.1016/j.chom.2020.01.021] [PMID: 32101703]
[69]
Keshteli, A.; Valcheva, R.; Nickurak, C.; Park, H.; Mandal, R.; van Diepen, K.; Kroeker, K.; van Zanten, S.; Halloran, B.; Wishart, D.; Madsen, K.; Dieleman, L. Anti-inflammatory diet prevents subclinical colonic inflammation and alters metabolomic profile of ulcerative colitis patients in clinical remission. Nutrients, 2022, 14(16), 3294.
[http://dx.doi.org/10.3390/nu14163294] [PMID: 36014800]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy