Note! Please note that this article is currently in the "Article in Press" stage and is not the final "Version of record". While it has been accepted, copy-edited, and formatted, however, it is still undergoing proofreading and corrections by the authors. Therefore, the text may still change before the final publication. Although "Articles in Press" may not have all bibliographic details available, the DOI and the year of online publication can still be used to cite them. The article title, DOI, publication year, and author(s) should all be included in the citation format. Once the final "Version of record" becomes available the "Article in Press" will be replaced by that.
Abstract
Background: A series of novel 2-(isoquinolin-1-yl)-spiro[oxindole-3,3′-pyrrolines] were synthesized by a one-pot three-component reaction involving dimethyl acetylenedicarboxylate, 3- phenylimidazo[5,1-a]isoquinoline and N-alkylisatins in chloroform at ∼60 °C for 24 h.
Aims: This study aimed at the synthesis of novel spirooxindole-3,3'-pyrrolines derivatives and in vitro evaluation of cytotoxicity affinities in cross-correlations with their antiinflammation and radical scavenging capacities. Objective: The objective of this study was to use a one-pot, three-component reaction to synthesize a novel set of spirooxindole-3,3'-pyrrolines derivatives. Method: A novel set of spirooxindole-3,3'-pyrrolines (8a-i) was synthesized by a one-pot threecomponent reaction involving dimethyl acetylenedicarboxylate, 3-phenylimidazo[5,1-a]isoquinoline and N-alkylisatins in chloroform at ∼60 °C for 24 h. These new compounds were characterized by 1HNMR, 13C-NMR, and HRMS spectral data and screened for their antitumor, anti-inflammatory, antibacterial, antifungal, and antioxidant activities. Results: The new synthetic spirooxindole-3,3'-pyrrolines (8a-i)-tested compounds displayed significant anti-inflammatory properties and were noncytotoxic on PDL fibroblasts. However, they lacked antioxidative-DPPH radical scavenging capabilities. Notably, Doxorubicin and cisplatin demonstrated antiproliferative effects on various cancer monolayers. Moreover, compounds 8b, 8d, 8f, 8h, and 8i exhibited pronounced viability reduction properties in colorectal and pancreatic cancer monolayers, as well as across skin, lung, prostate, and cervical adenocarcinomas, with higher cytotoxicity in mammary cancer cells MCF7 and T47D. None of the tested compounds had significant antibacterial activity against S. aureus or E. coli. However, compounds 8c, 8d, and 8f exhibited notable antifungal properties, indicating potential for further investigation. Conclusion: Eight new synthetic spiro[indoline-3,3-pyrroles] were prepared, characterized, and evaluated for their anti-inflammatory and cytotoxic properties. The compounds showed significant anti-inflammatory effects and promising cytotoxicity against various cancer monolayers, especially in colorectal and pancreatic cancers. Some compounds also exhibited antifungal properties. However, they did not exhibit significant antibacterial activity.[1]
Saha, S.K.; Lee, S.B.; Won, J.; Choi, H.Y.; Kim, K.; Yang, G.M.; Dayem, A.A.; Cho, S. Correlation between oxidative stress, nutrition, and cancer initiation. Int. J. Mol. Sci., 2017, 18(7), 1544.
[http://dx.doi.org/10.3390/ijms18071544]
[http://dx.doi.org/10.3390/ijms18071544]
[2]
Klaunig, J.E. Oxidative stress and cancer. Curr. Pharm. Des., 2019, 24(40), 4771-4778.
[http://dx.doi.org/10.2174/1381612825666190215121712]
[http://dx.doi.org/10.2174/1381612825666190215121712]
[3]
Zahra, K.F.; Lefter, R.; Ali, A.; Abdellah, E-C.; Trus, C.; Ciobica, A.; Timofte, D. The involvement of the oxidative stress status in cancer pathology: A double view on the role of the antioxidants. Oxid. Med. Cell. Longev., 2021, 2021, 9965916.
[http://dx.doi.org/10.1155/2021/9965916]
[http://dx.doi.org/10.1155/2021/9965916]
[4]
Wang, D.; DuBois, R.N. The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene, 2010, 29(6), 781-788.
[http://dx.doi.org/10.1038/onc.2009.421]
[http://dx.doi.org/10.1038/onc.2009.421]
[5]
Haj Hussein, B.; Kasabri, V.; Al-Hiari, Y.; Arabiyat, S.; Ikhmais, B.; Alalawi, S.; Al-Qirim, T. Selected statins as dual antiproliferative-antiinflammatory compounds. Asian Pac. J. Cancer Prev., 2022, 23(12), 4047-4062.
[http://dx.doi.org/10.31557/APJCP.2022.23.12.4047]
[http://dx.doi.org/10.31557/APJCP.2022.23.12.4047]
[6]
Zhang, Y.; Pu, W.; Bousquenaud, M.; Cattin, S.; Zaric, J.; Sun, L.; Rüegg, C. Emodin inhibits inflammation, carcinogenesis, and cancer progression in the AOM/DSS model of colitis-associated intestinal tumorigenesis. Front. Oncol., 2021, 10, 564674.
[http://dx.doi.org/10.3389/fonc.2020.564674]
[http://dx.doi.org/10.3389/fonc.2020.564674]
[7]
Greten, F.R.; Grivennikov, S.I. Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity, 2019, 51(1), 27-41.
[http://dx.doi.org/10.1016/j.immuni.2019.06.025]
[http://dx.doi.org/10.1016/j.immuni.2019.06.025]
[8]
Xiong, S.; Dong, L.; Cheng, L. Neutrophils in cancer carcinogenesis and metastasis. J. Hematol. Oncol., 2021, 14(1), 173.
[http://dx.doi.org/10.1186/s13045-021-01187-y]
[http://dx.doi.org/10.1186/s13045-021-01187-y]
[9]
Nair, V.; Deepthi, A.; Ashok, D.; Raveendran, A.E.; Paul, R.R. 1,4-Dipolar cycloadditions and related reactions. Tetrahedron, 2014, 70(19), 3085-3105.
[http://dx.doi.org/10.1016/j.tet.2014.03.014]
[http://dx.doi.org/10.1016/j.tet.2014.03.014]
[10]
Jaber, A.M.; Zahra, J.A.; Sabri, S.S.; Khanfar, M.A.; Awwadi, F.F.; El-Abadelah, M.M. New trends in 1,4-dipolar cycloaddition reactions. thermodynamic control synthesis of model 2′-(isoquinolin-1-yl)-spiro. [oxindole-3,3′-pyrrolines] Curr. Org. Chem. , 2022, 26(5), 542-549.
[http://dx.doi.org/10.2174/1385272826666220221141306]
[http://dx.doi.org/10.2174/1385272826666220221141306]
[11]
Pavlovska, T.L.; Redkin, R.G.; Lipson, V.V.; Atamanuk, D.V. Molecular diversity of spirooxindoles. Synthesis and biological activity. Mol. Divers., 2016, 20(1), 299-344.
[http://dx.doi.org/10.1007/s11030-015-9629-8]
[http://dx.doi.org/10.1007/s11030-015-9629-8]
[12]
Saraswat, P.; Jeyabalan, G.; Hassan, M.Z.; Rahman, M.U.; Nyola, N.K. Review of synthesis and various biological activities of spiro heterocyclic compounds comprising oxindole and pyrrolidine moities. Synth. Commun., 2016, 46(20), 1643-1664.
[http://dx.doi.org/10.1080/00397911.2016.1211704]
[http://dx.doi.org/10.1080/00397911.2016.1211704]
[13]
Ani, D.; Noble, V.; Vidya, S. Green protocols for the synthesis of 3, 3′-spirooxindoles-2016-mid 2019. Curr. Green Chem., 2019, 6, 210-225.
[http://dx.doi.org/10.2174/2213346106666191019144116]
[http://dx.doi.org/10.2174/2213346106666191019144116]
[14]
Maiuolo, L.; Algieri, V.; Olivito, F.; De Nino, A. Recent developments on 1, 3-dipolar cycloaddition reactions by catalysis in green solvents. Catalysts, 2020, 10, 65-92.
[15]
Saranya, P.V.; Neetha, M.; Aneeja, T.; Anilkumar, G. Transition metal-catalyzed synthesis of spirooxindoles. RSC Advances, 2021, 11(13), 7146-7179.
[http://dx.doi.org/10.1039/D1RA00139F]
[http://dx.doi.org/10.1039/D1RA00139F]
[16]
Auria-Luna, F.; Marqués-López, E.; Mohammadi, S.; Heiran, R.; Herrera, R. New organocatalytic asymmetric synthesis of highly substituted chiral 2-oxospiro-[indole-3, 4′-(1′, 4′-dihydropyridine)] derivatives. Molecules, 2015, 20(9), 15807-15826.
[http://dx.doi.org/10.3390/molecules200915807]
[http://dx.doi.org/10.3390/molecules200915807]
[17]
Banerjee, P.; Pandey, A.K. Synthesis of functionalized dispiro-oxindoles through azomethine ylide dimerization and mechanistic studies to explain the diastereoselectivity. RSC Advances, 2014, 4(63), 33236-33244.
[http://dx.doi.org/10.1039/C4RA01492H]
[http://dx.doi.org/10.1039/C4RA01492H]
[18]
Huisgen, R.; Morikawa, M.; Herbig, K.; Brunn, E. 1.4‐Dipolare Cycloadditionen, II. Dreikomponenten‐Reaktionen des Isochinolins mit Acetylendicarbonsäureester und verschiedenen Dipolarophilen. Chem. Ber., 1967, 100(4), 1094-1106.
[http://dx.doi.org/10.1002/cber.19671000406]
[http://dx.doi.org/10.1002/cber.19671000406]
[19]
Al-Mahadeen, M.M.; Zahra, J.A.; El-Abadelah, M.M.; Jaber, A.M.; Khanfar, M.A. One-pot synthesis of novel 2-oxo(2H)-spiro[benzofuran-3,3′-pyrrolines] via 1,4-dipolar cycloaddition reaction. Results in Chemistry, 2022, 4, 100643.
[http://dx.doi.org/10.1016/j.rechem.2022.100643]
[http://dx.doi.org/10.1016/j.rechem.2022.100643]
[20]
Jaber, A.M.; Zahra, J.A.; El-Abadelah, M.M.; Sabri, S.S.; Khanfar, M.A.; Voelter, W. Utilization of 1-phenylimidazo[1,5- a]quinoline as partner in 1,4-dipolar cycloaddition reactions. Z. Naturforsch. B. J. Chem. Sci., 2020, 75(3), 259-267.
[http://dx.doi.org/10.1515/znb-2019-0150]
[http://dx.doi.org/10.1515/znb-2019-0150]
[21]
Jaber, A.M.; Zahra, J.A.; El-Abadelah, M.M.; Sabri, S.S.; Sabbah, D.S. Thermodynamic control synthesis of spiro[oxindole-3,3′-pyrrolines] via 1,4-dipolar cycloaddition utilizing imidazo[1,5- a]quinoline. Z. Naturforsch. C J. Biosci., 2023, 78(3-4), 141-148.
[http://dx.doi.org/10.1515/znc-2022-0085]
[http://dx.doi.org/10.1515/znc-2022-0085]
[22]
El-Faham, A.; Hozzein, W.N.; Wadaan, M.A.; Khattab, S.N.; Ghabbour, H.A.; Fun, H-K.; Siddiqui, M.R. Microwave synthesis, characterization, and antimicrobial activity of some novel isatin derivatives. J. Chem., 2015, 2015, 716987.
[http://dx.doi.org/10.1155/2015/716987]
[http://dx.doi.org/10.1155/2015/716987]
[23]
Beauchard, A.; Ferandin, Y.; Frère, S.; Lozach, O.; Blairvacq, M.; Meijer, L.; Thiéry, V.; Besson, T. Synthesis of novel 5-substituted indirubins as protein kinases inhibitors. Bioorg. Med. Chem., 2006, 14(18), 6434-6443.
[http://dx.doi.org/10.1016/j.bmc.2006.05.036]
[http://dx.doi.org/10.1016/j.bmc.2006.05.036]
[24]
Wang, Y.; Cheng, X.; Zhan, Z.; Ma, X.; Nie, R.; Hai, L.; Wu, Y. IBX-promoted domino reaction of α-hydroxy amides: A facile one-pot synthesis of isatins. RSC Advances, 2016, 6(4), 2870-2874.
[http://dx.doi.org/10.1039/C5RA25036F]
[http://dx.doi.org/10.1039/C5RA25036F]
[25]
Jiang, H.; Hu, Q.; Cai, J.; Cui, Z.; Zheng, J.; Chen, W. Synthesis and dyeing properties of indophenine dyes for polyester fabrics. Dyes Pigments, 2019, 166, 130-139.
[http://dx.doi.org/10.1016/j.dyepig.2019.03.025]
[http://dx.doi.org/10.1016/j.dyepig.2019.03.025]
[26]
Buxton, C.S.; Blakemore, D.C.; Bower, J.F. Reductive coupling of acrylates with ketones and ketimines by a nickel‐catalyzed transfer‐hydrogenative strategy. Angew. Chem. Int. Ed., 2017, 56(44), 13824-13828.
[http://dx.doi.org/10.1002/anie.201707531]
[http://dx.doi.org/10.1002/anie.201707531]
[27]
Wang, Q.; Zhang, S.; Guo, F.; Zhang, B.; Hu, P.; Wang, Z.J.T.J.o.O.C. Natural α-amino acids applied in the synthesis of imidazo[1,5-a]N-heterocycles under mild conditions. J. Org. Chem., 2012, 77(24), 11161-11166.
[28]
Kaur, G.; Dufour, J.M.J.S. Cell lines: Valuable tools or useless artifacts; Taylor & Francis: Milton Park, in Oxfordshire, 2012, 2, 1-5.
[29]
Shehadi, I.A.; Delmani, F.A.; Jaber, A.M.; Hammad, H.; AlDamen, M.A.; Al-Qawasmeh, R.A.; Khanfar, M.A. Synthesis, characterization and biological evaluation of metal adamantyl 2-pyridylhydrazone complexes. Molecules, 2020, 25(11), 2530.
[http://dx.doi.org/10.3390/molecules25112530]
[http://dx.doi.org/10.3390/molecules25112530]
[30]
Al-Nuaimi, A.; Al-Hiari, Y.; Kasabri, V.; Haddadin, R.; Mamdooh, N.; Alalawi, S.; Khaleel, S. A novel class of functionalized synthetic fluoroquinolones with dual antiproliferative - antimicrobial capacities. Asian Pac. J. Cancer Prev., 2021, 22(4), 1075-1086.
[http://dx.doi.org/10.31557/APJCP.2021.22.4.1075]
[http://dx.doi.org/10.31557/APJCP.2021.22.4.1075]
[31]
Ibrahim, R.; Kasabri, V.; Sunoqrot, S.; Shalabi, D.; Alkhateeb, R.; Alhiari, Y. Preparation and characterization of rutin-encapsulated polymeric micelles and studies of synergism with bioactive benzoic acids and triazolofluoroquinolones as anticancer nanomedicines. Asian Pac. J. Cancer Prev., 2023, 24(3), 977-989.
[http://dx.doi.org/10.31557/APJCP.2023.24.3.977]
[http://dx.doi.org/10.31557/APJCP.2023.24.3.977]
[32]
Shamsheer, R.; Sunoqrot, S.; Kasabri, V.; Shalabi, D.; Alkhateeb, R.; Alhiari, Y.; Ababneh, R.; Ikhmais, B.; Abumansour, H. Preparation and characterization of capsaicin encapsulated polymeric micelles and studies of synergism with nicotinic acids as potential anticancer nanomedicines. J. Pharm. Bioallied Sci., 2023, 15(3), 107-125.
[http://dx.doi.org/10.4103/jpbs.jpbs_311_22]
[http://dx.doi.org/10.4103/jpbs.jpbs_311_22]
[33]
Piazzini, V.; D’Ambrosio, M.; Luceri, C.; Cinci, L.; Landucci, E.; Bilia, A.R.; Bergonzi, M.C. Formulation of nanomicelles to improve the solubility and the oral absorption of silymarin. Molecules, 2019, 24(9), 1688.
[http://dx.doi.org/10.3390/molecules24091688]
[http://dx.doi.org/10.3390/molecules24091688]
[34]
Wolf, L.J.; Stingu, C.S. Antimicrobial susceptibility profile of rare anaerobic bacteria. Antibiotics , 2022, 12(1), 63.
[http://dx.doi.org/10.3390/antibiotics12010063]
[http://dx.doi.org/10.3390/antibiotics12010063]
[35]
Jørgensen, K.M.; Astvad, K.M.T.; Hare, R.K.; Arendrup, M.C. EUCAST susceptibility testing of isavuconazole: MIC data for contemporary clinical mold and yeast isolates. Antimicrob. Agents Chemother., 2019, 63(6), e00073-e19.
[http://dx.doi.org/10.1128/AAC.00073-19]
[http://dx.doi.org/10.1128/AAC.00073-19]
[36]
Berkow, E.L.; Lockhart, S.R.; Ostrosky-Zeichner, L. Antifungal susceptibility testing: Current approaches. Clin. Microbiol. Rev., 2020, 33(3), e00069-e19.
[http://dx.doi.org/10.1128/CMR.00069-19]
[http://dx.doi.org/10.1128/CMR.00069-19]
[37]
El-Hamoly, T.; El-Sharawy, D.M.; El Refaye, M.S.; Abd El-Rahman, S.S. L-thyroxine modifies nephrotoxicity by regulating the apoptotic pathway: The possible role of CD38/ADP-ribosyl cyclase-mediated calcium mobilization. PLoS One, 2017, 12(9), e0184157.
[http://dx.doi.org/10.1371/journal.pone.0184157]
[http://dx.doi.org/10.1371/journal.pone.0184157]
[38]
Kasabri, V.; Khaleel, S.; Al-Hiari, Y.; Haddadin, R.; Albashiti, R.; Al-Zweri, M.; Bustanji, Y. Antiproliferative Properties of 7,8-Ethylene Diamine Chelator-Lipophilic Fluoroquinolone Derivatives Against Colorectal Cancer Cell Lines. Anticancer. Agents Med. Chem., 2022, 22(5), 1012-1028.
[http://dx.doi.org/10.2174/1871520621666210623111744]
[http://dx.doi.org/10.2174/1871520621666210623111744]