Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

New Perspectives in Colorectal Cancers Treatment, the Role of MicroRNAs

In Press, (this is not the final "Version of Record"). Available online 24 July, 2024
Author(s): Victoria A. Belova, Liudmila V. Spirina*, Alexandra V. Avgustinovich, Sergey G. Afanas'ev, Maxim Y. Volkov, Daniil I. Azovsky, Alexander M. Volkov and Tatyana S. Klyushina
Published on: 24 July, 2024

DOI: 10.2174/0113894501304351240703113651

Price: $95

Abstract

The main epidemiological and clinical data on colorectal cancer, as well as the features of molecular pathology, are discussed in the literature review. Efforts are being putto identify promising targets, particularly small non-coding nucleotide sequences, which can lead to new treatments for this disease.

The discovery of significant mutations that contribute to the development of colorectal tumors is a major step in the advancement of molecular oncology, as these mutations give rise to heterogeneous tumors that differ in their origin. These mutations play a significant role in the progression of the disease and are now being targeted for treatment. The prognosis for a disease is influenced by the patient's sensitivity to antitumor therapy. However, new approaches to finding effective targets for antitumor treatments face new fundamental challenges due to clinical issues. These issues include the epigenetic regulation of markers of oncogenesis, which allows for the development of new therapeutic strategies.

RNA interference, in particular, has been linked to non-copying RNA sequences such as microRNAs. These microRNAs are associated with certain processes that can influence all aspects of oncogenesis. The diversity of microRNAs allows for a differentiated approach when treating tumors in various locations.

[1]
Imad FE, Drissi H, Tawfiq N, et al. Epidemiological; nutritional and anatomopathological features of patients with colorectal cancer in the greater Casablanca region. Pan Afr Med J 2019; 31(32): 56.
[2]
Chong W, Zhu X, Ren H, et al. Integrated multi-omics characterization of KRAS mutant colorectal cancer. Theranostics 2022; 12(11): 5138-54.
[http://dx.doi.org/10.7150/thno.73089] [PMID: 35836817]
[3]
Akimoto N, Ugai T, Zhong R, et al. Rising incidence of early-onset colorectal cancer — a call to action. Nat Rev Clin Oncol 2021; 18(4): 230-43.
[http://dx.doi.org/10.1038/s41571-020-00445-1] [PMID: 33219329]
[4]
Venugopal A, Carethers JM. Epidemiology and biology of early onset colorectal cancer. EXCLI J 2022; 21: 162-82.
[PMID: 35221839]
[5]
Sung H, Ferlay J, Siegel RL. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2020; 71(3): 209-49.
[6]
Ferlay J, Ervik M, Lam F. Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer 2018.
[7]
Ballester V, Rashtak S, Boardman L. Clinical and molecular features of young-onset colorectal cancer. World J Gastroenterol 2016; 22(5): 1736-44.
[http://dx.doi.org/10.3748/wjg.v22.i5.1736] [PMID: 26855533]
[8]
Ahnen DJ, Wade SW, Jones WF, et al. The increasing incidence of young-onset colorectal cancer: a call to action. Mayo Clin Proc 2014; 89(2): 216-24.
[http://dx.doi.org/10.1016/j.mayocp.2013.09.006] [PMID: 24393412]
[9]
Spirina LV, Kondakova IV, Tarasenko NV, et al. Targeting of the AKT/m-TOR Pathway: Biomarkers of Resistance to Cancer Therapy-AKT/m-TOR Pathway and Resistance to Cancer Therapy. Zhongguo Fei Ai Za Zhi 2018; 21(1): 63-6.
[PMID: 29357975]
[10]
Takahashi Y, Sugai T, Habano W, et al. Molecular differences in the microsatellite stable phenotype between left-sided and right-sided colorectal cancer. Int J Cancer 2016; 139(11): 2493-501.
[http://dx.doi.org/10.1002/ijc.30377] [PMID: 27509333]
[11]
Mouradov D, Greenfield P, Li S, et al. Oncomicrobial Community Profiling Identifies Clinicomolecular and Prognostic Subtypes of Colorectal Cancer. Gastroenterology 2023; 165(1): 104-20.
[http://dx.doi.org/10.1053/j.gastro.2023.03.205] [PMID: 36933623]
[12]
Huang W, Li W, Xu N, et al. Differences in DNA damage repair gene mutations between left- and right-sided colorectal cancer. Cancer Med 2023; 12(9): 10187-98.
[http://dx.doi.org/10.1002/cam4.5716] [PMID: 37096801]
[13]
Mei WJ, Mi M, Qian J, Xiao N, Yuan Y, Ding PR. Clinicopathological characteristics of high microsatellite instability/mismatch repair-deficient colorectal cancer: A narrative review. Front Immunol 2022; 13: 1019582.
[http://dx.doi.org/10.3389/fimmu.2022.1019582] [PMID: 36618386]
[14]
Zheng J, Huang B, Nie X, Zhu Y, Han N, Li Y. The clinicopathological features and prognosis of tumor MSI in East Asian colorectal cancer patients using NCI panel. Future Oncol 2018; 14(14): 1355-64.
[http://dx.doi.org/10.2217/fon-2017-0662] [PMID: 29366338]
[15]
Han K, Tang JH, Liao LE, et al. Neoadjuvant Immune Checkpoint Inhibition Improves Organ Preservation in T4bM0 Colorectal Cancer With Mismatch Repair Deficiency: A Retrospective Observational Study. Dis Colon Rectum 2023; 66(10): e996-e1005.
[http://dx.doi.org/10.1097/DCR.0000000000002466] [PMID: 35485833]
[16]
Viñal D, Martinez-Perez D, Martínez-Recio S, et al. Clinicopathological characteristics and outcomes of patients with deficient mismatch repair colorectal cancer. J Clin Oncol 2022; 40(4_suppl): 181-1.
[http://dx.doi.org/10.1200/JCO.2022.40.4_suppl.181]
[17]
Stefani C, Miricescu D, Stanescu-Spinu II, et al. Growth Factors, PI3K/AKT/mTOR and MAPK Signaling Pathways in Colorectal Cancer Pathogenesis: Where Are We Now? Int J Mol Sci 2021; 22(19): 10260.
[http://dx.doi.org/10.3390/ijms221910260] [PMID: 34638601]
[18]
Chen J, Zhou L, Gao J, et al. Clinicopathological Characteristics and Mutation Spectrum of Colorectal Adenocarcinoma With Mucinous Component in a Chinese Cohort: Comparison With Classical Adenocarcinoma. Front Oncol 2020; 10(917): 917.
[http://dx.doi.org/10.3389/fonc.2020.00917] [PMID: 32582557]
[19]
Sacdalan DL, Garcia RL, Diwa MH, Sacdalan DB. Clinicopathologic Factors Associated with Mismatch Repair Status Among Filipino Patients with Young-Onset Colorectal Cancer. Cancer Manag Res 2021; 13: 2105-15.
[http://dx.doi.org/10.2147/CMAR.S286618] [PMID: 33688253]
[20]
Reynolds IS, Furney SJ, Kay EW, McNamara DA, Prehn JHM, Burke JP. Meta-analysis of the molecular associations of mucinous colorectal cancer. Br J Surg 2019; 106(6): 682-91.
[http://dx.doi.org/10.1002/bjs.11142] [PMID: 30945755]
[21]
Hugen N, Simons M, Halilović A, et al. The molecular background of mucinous carcinoma beyond MUC2. J Pathol Clin Res 2015; 1(1): 3-17.
[http://dx.doi.org/10.1002/cjp2.1] [PMID: 27499889]
[22]
Liddell C, Droy-Dupré L, Métairie S, et al. Mapping clinicopathological entities within colorectal mucinous adenocarcinomas: a hierarchical clustering approach. Mod Pathol 2017; 30(8): 1177-89.
[http://dx.doi.org/10.1038/modpathol.2017.18] [PMID: 28429715]
[23]
Holowatyj AN, Wen W, Gibbs T, et al. Racial/Ethnic and Sex Differences in Somatic Cancer Gene Mutations among Patients with Early-Onset Colorectal Cancer. Cancer Discov 2023; 13(3): 570-9.
[http://dx.doi.org/10.1158/2159-8290.CD-22-0764] [PMID: 36520636]
[24]
Lin J, Qiu M, Xu R, Dobs AS. Comparison of survival and clinicopathologic features in colorectal cancer among African American, Caucasian, and Chinese patients treated in the United States: Results from the surveillance epidemiology and end results (SEER) database. Oncotarget 2015; 6(32): 33935-43.
[http://dx.doi.org/10.18632/oncotarget.5223] [PMID: 26375551]
[25]
Holowatyj AN, Ruterbusch JJ, Rozek LS, Cote ML, Stoffel EM. Racial/Ethnic Disparities in Survival Among Patients With Young-Onset Colorectal Cancer. J Clin Oncol 2016; 34(18): 2148-56.
[http://dx.doi.org/10.1200/JCO.2015.65.0994] [PMID: 27138583]
[26]
Sen Lu. Future therapeutic implications of new molecular mechanism of colorectal cancer. World J Gastroenterol 2023; 29(16): 2359-68.
[http://dx.doi.org/10.3748/wjg.v29.i16.2359]
[27]
Tsukanov AS, Demidova IA, Tsaur GA. Diagnosis of Lynch syndrome in cancer patients: The position of the interregional organization of molecular geneticists in oncology and oncohematology. 2023; 69(1): 7-14.
[28]
Zhang X, Wu T, Cai X, et al. Neoadjuvant immunotherapy for MSI-H/dMMR locally advanced colorectal cancer: New strategies and unveiled opportunities. Front Immunol 2022; 13: 795972.
[29]
Pasevich DM, Sushkou SA, Semenov VM. Molecular Genetic Aspects of Malignant Colon Tumors 2016; 24(2): 184-92.
[30]
Margetis N, Kouloukoussa M, Pavlou K, Vrakas S, Mariolis-Sapsakos T. K-ras Mutations as the Earliest Driving Force in a Subset of Colorectal Carcinomas In vivo 2017; 31(4): 527-42.
[http://dx.doi.org/10.21873/invivo.11091] [PMID: 28652417]
[31]
Qiu J, Li M, Su C, et al. FOXS1 Promotes Tumor Progression by Upregulating CXCL8 in Colorectal Cancer. Front Oncol 2022; 12: 894043.
[http://dx.doi.org/10.3389/fonc.2022.894043] [PMID: 35898871]
[32]
Wang C, Li X, Ren L, et al. Gankyrin as Potential Biomarker for Colorectal Cancer With Occult Liver Metastases. Front Oncol 2021; 11: 656852.
[http://dx.doi.org/10.3389/fonc.2021.656852] [PMID: 34395241]
[33]
Zhao M, Mishra L, Deng CX. The role of TGF-β/SMAD4 signaling in cancer. Int J Biol Sci 2018; 14(2): 111-23.
[http://dx.doi.org/10.7150/ijbs.23230] [PMID: 29483830]
[34]
Therkildsen C, Bergmann TK, Henrichsen-Schnack T, Ladelund S, Nilbert M. The predictive value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer: A systematic review and meta-analysis. Acta Oncol 2014; 53(7): 852-64.
[http://dx.doi.org/10.3109/0284186X.2014.895036] [PMID: 24666267]
[35]
Lu X, Li Y, Li Y, et al. Prognostic and predictive biomarkers for anti-EGFR monoclonal antibody therapy in RAS wild-type metastatic colorectal cancer: a systematic review and meta-analysis. BMC Cancer 2023; 23(1): 1117.
[http://dx.doi.org/10.1186/s12885-023-11600-z] [PMID: 37974093]
[36]
Wu JB, Li XJ, Liu H, Liu YJ, Liu XP. Association of KRAS, NRAS, BRAF and PIK3CA gene mutations with clinicopathological features, prognosis and ring finger protein 215 expression in patients with colorectal cancer. Biomed Rep 2023; 19(6): 104.
[http://dx.doi.org/10.3892/br.2023.1686] [PMID: 38025833]
[37]
Kit OI, Vodolazhsky DI. [Molecular biology of colorectal cancer in clinical practice]. Mol Biol (Mosk) 2015; 49(4): 531-40.
[PMID: 26299852]
[38]
Chen Y, Shi Y, Lin J, et al. Combined Analysis of EGFR and PTEN Status in Patients With KRAS Wild-Type Metastatic Colorectal Cancer. Medicine 2015; 94(40): e1698.
[http://dx.doi.org/10.1097/MD.0000000000001698] [PMID: 26448020]
[39]
Cocco E, Scaltriti M, Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol 2018; 15(12): 731-47.
[http://dx.doi.org/10.1038/s41571-018-0113-0] [PMID: 30333516]
[40]
Cremolini C, Rossini D, Dell’Aquila E, et al. Rechallenge for Patients With RAS and BRAF Wild-Type Metastatic Colorectal Cancer With Acquired Resistance to First-line Cetuximab and Irinotecan. JAMA Oncol 2019; 5(3): 343-50.
[http://dx.doi.org/10.1001/jamaoncol.2018.5080] [PMID: 30476968]
[41]
Algebra Examples. Available from: https://www.mathway.com/ru/popular-problems/Algebra/706842(accessed on 26-6-2024)
[42]
Dong Q, Chen C, Hu Y, et al. Clinical application of molecular residual disease detection by circulation tumor DNA in solid cancers and a comparison of technologies: review article. Cancer Biol Ther 2023; 24(1): 2274123.
[http://dx.doi.org/10.1080/15384047.2023.2274123] [PMID: 37955635]
[43]
Kim NH, Song SH, Choi YH, et al. Competing endogenous RNA of snail and Zeb1 UTR in therapeutic resistance of colorectal cancer. Int J Mol Sci 2021; 22(17): 9589.
[http://dx.doi.org/10.3390/ijms22179589] [PMID: 34502497]
[44]
Li J, Xu Q, Luo C, Chen L, Ying J. Clinicopathologic characteristics of resectable colorectal cancer with mismatch repair protein defects in Chinese population. Medicine 2020; 99(24): e20554.
[http://dx.doi.org/10.1097/MD.0000000000020554] [PMID: 32541478]
[45]
Tanjak P, Chaiboonchoe A, Suwatthanarak T, et al. The KRAS-mutant consensus molecular subtype 3 reveals an immunosuppressive tumor microenvironment in colorectal cancer. Cancers 2023; 15(4): 1098.
[http://dx.doi.org/10.3390/cancers15041098] [PMID: 36831441]
[46]
Wang L, Cho KB, Li Y, Tao G, Xie Z, Guo B. Long noncoding RNA (lncRNA)-mediated competing endogenous RNA networks provide novel potential biomarkers and therapeutic targets for colorectal cancer. Int J Mol Sci 2019; 20(22): 5758.
[http://dx.doi.org/10.3390/ijms20225758] [PMID: 31744051]
[47]
Pande R, Parikh A, Shenoda B, et al. Hsa-miR-605 regulates the proinflammatory chemokine CXCL5 in complex regional pain syndrome. Biomed Pharmacother 2021; 140: 111788.
[http://dx.doi.org/10.1016/j.biopha.2021.111788] [PMID: 34062414]
[48]
Wang H. MicroRNAs and apoptosis in colorectal cancer. Int J Mol Sci 2020; 21(15): 5353.
[http://dx.doi.org/10.3390/ijms21155353] [PMID: 32731413]
[49]
Wang Q, Hao X, Xu G, Lv T. Downregulated KIF3B induced by miR-605-3p inhibits the progression of colon cancer via inactivating Wnt/β-Catenin. J Oncol 2021; 2021: 1-8.
[http://dx.doi.org/10.1155/2021/5046981] [PMID: 34422048]
[50]
Hansen T, Nielsen B, Jakobsen A, Sørensen F. Intra-tumoural vessel area estimated by expression of epidermal growth factor-like domain 7 and microRNA-126 in primary tumours and metastases of patients with colorectal cancer: a descriptive study. J Transl Med 2015; 13(1): 10.
[http://dx.doi.org/10.1186/s12967-014-0359-y] [PMID: 25592646]
[51]
Yamakuchi M, Yagi S, Ito T, Lowenstein CJ. MicroRNA-22 regulates hypoxia signaling in colon cancer cells. PLoS One 2011; 6(5): e20291.
[http://dx.doi.org/10.1371/journal.pone.0020291] [PMID: 21629773]
[52]
Yan G, Wang L. Role of ELK1 in regulating colorectal cancer progression: miR-31-5p/CDIP1 axis in CRC pathogenesis. PeerJ 2023; 11: e15602.
[http://dx.doi.org/10.7717/peerj.15602] [PMID: 37547727]
[53]
Wang X, Zhang D, Yang Y, et al. Suppression of microRNA-222-3p ameliorates ulcerative colitis and colitis-associated colorectal cancer to protect against oxidative stress via targeting BRG1 to activate Nrf2/HO-1 signaling pathway. Front Immunol 2023; 14: 1089809.
[http://dx.doi.org/10.3389/fimmu.2023.1089809] [PMID: 36776858]
[54]
Wang H, Liang L, Fang J-Y, Xu J. Somatic gene copy number alterations in colorectal cancer: new quest for cancer drivers and biomarkers. Oncogene 2016; 35(16): 2011-9.
[http://dx.doi.org/10.1038/onc.2015.304] [PMID: 26257062]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy