Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Isolation and Characterization of Cytotoxic Compounds from Detarium microcarpum Guill. and Perr. Stem Bark

In Press, (this is not the final "Version of Record"). Available online 24 July, 2024
Author(s): Kayode Muritala Salawu*, Omonike Oluyemisi Ogbole, Oyindamola Oduola Abiodun and Yan Wang
Published on: 24 July, 2024

DOI: 10.2174/0118715206317259240722113046

Price: $95

Abstract

Introduction: Globally, about 8.2 million cancer-related deaths are recorded annually. Sadly, most of the deaths result from the toxicity of most chemotherapeutic agents. Hence, there are growing demands for chemotherapeutic agents with high specificity and selectivity. This study was designed to assess the cytotoxic potential of Detarium microcarpum and isolate cytotoxic compounds with better selectivity profiles.

Methods: Detarium microcarpum Stem bark (DMS) was collected and authenticated at the Forest Herbarium Ibadan (FHI), and a voucher (FHI-111954) was issued. Dried DMS was pulverized and extracted into 70% methanol. The extract was partitioned into hexane, dichloromethane, and ethyl acetate fractions. The cytotoxicities of the extract, fractions, and isolated compounds were determined. The cytotoxicity of the isolated compounds was tested against different cell lines, including human breast (AU565 and MDA MB231), oral adenosquamous (CAL27), and cervical (HeLa) cancer cells, as well as healthy (3T3) non-cancer cells.

Results: Methyl gallate, eriodictyol, quercetin, quebrachitol, catechin, catechin gallate, and gallic acid, isolated from dichloromethane and ethyl acetate fractions, displayed weak cytotoxicity against breast (AU565 and MDAMD-231) and cervical (HeLa) cancer cell lines. Interestingly, all the compounds, except gallic acid (48.91±4.51% inhibition), displayed potent cytotoxicity on oral cancer cells. Methyl gallate and quercetin displayed the highest activity, with IC50 values of 89.57±1.98µM and 78.19±1.49µM, respectively. Interestingly, all the compounds were not toxic to healthy non-cancer (3T3) cells.

Conclusion: The compounds displayed anticancer activity specific to oral cancer cells and were highly selective for cancer cells without causing significant toxicity to healthy non-cancer cells.

[1]
Chhikara, B.S.; Parang, K. Global Cancer Statistics 2022: the trends projection analysis. Chem. Biol. Let., 2023, 10(1), 451.
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Obafemi, F.A.; Umahi-Ottah, G. A review of global Cancer prevalence and therapy. J. Canc. Res. Treat. Prevent., 2023, 1(3), 128-147.
[http://dx.doi.org/10.37191/Mapsci-JCRTP-1(3)-011]
[4]
Wu, J.; Li, Y.; He, Q.; Yang, X. Exploration of the use of natural compounds in combination with chemotherapy drugs for tumor treatment. Molecules, 2023, 28(3), 1022.
[http://dx.doi.org/10.3390/molecules28031022] [PMID: 36770689]
[5]
Lustberg, M.B.; Kuderer, N.M.; Desai, A.; Bergerot, C.; Lyman, G.H. Mitigating long-term and delayed adverse events associated with cancer treatment: implications for survivorship. Nat. Rev. Clin. Oncol., 2023, 20(8), 527-542.
[http://dx.doi.org/10.1038/s41571-023-00776-9] [PMID: 37231127]
[6]
Ma, S.C.; Zhang, J.Q.; Yan, T.H.; Miao, M.X.; Cao, Y.M.; Cao, Y.B.; Zhang, L.C.; Li, L. Novel strategies to reverse chemoresistance in colorectal cancer. Cancer Med., 2023, 12(10), 11073-11096.
[http://dx.doi.org/10.1002/cam4.5594] [PMID: 36645225]
[7]
Malabadi, R.B.; Sadiya, M.; Kolkar, K.P.; Mammadova, S.S.; Chalannavar, R.K.; Baijnath, H. Role of Plant derived-medicine for controlling cancer. Int. J. Sci. Res. Arch., 2024, 11(1), 2502-2539.
[8]
Salawu, KM.; Wang, Y.; Maharjan, R.; Ajaiyeoba, EO. Antibacterial screening and isolation of compounds from Detarium microcarpum stem bark against methicillin resistant Staphylococcus aureus. J. Sci. Pract. Pharm., 2020, 7(1), 400-405.
[http://dx.doi.org/10.47227/jsppharm.v7i1.7]
[9]
Ahmed, M.E.; Abdelgadir, A.A.; Ahmed, E.M. Medicinal and aromatic plants from sudan: Traditional uses, pharmacology, and phytoconstituents. In: Plants as Medicine and Aromatics; CRC Press, 2023, pp. 45-74.
[http://dx.doi.org/10.1201/9781003226925-5]
[10]
Saidu, I.N.; Umar, K.S.; Isa, M.H. Ethnobotanical survey of anticancer plants in Askira/Uba local government area of Borno State, Nigeria. Afr. J. Pharm. Pharmacol., 2015, 9(5), 123-130.
[http://dx.doi.org/10.5897/AJPP2014.4083]
[11]
Salawu, K.; Ogbole, O.; Abiodun, O.; Ajaiyeoba, E. Ethnobotanical survey, phytochemical screening, growth inhibitory effects and cytotoxicity evaluation of medicinal plants used for cancer management in ilorin metropolis, Nigeria. Arch. Basic Appl. Med., 2021, 9(2), 168-175.
[12]
Kritsanawong, S.; Innajak, S.; Imoto, M.; Watanapokasin, R. Antiproliferative and apoptosis induction of α-mangostin in T47D breast cancer cells. Int. J. Oncol., 2016, 48(5), 2155-2165.
[http://dx.doi.org/10.3892/ijo.2016.3399] [PMID: 26892433]
[13]
Ekaprasada, M.T.; Nurdin, H.; Ibrahim, S.; Dachriyanus, D. Antioxidant activity of methyl gallate isolated from the leaves of Toona sureni. Indon. J. Chem., 2010, 9(3), 457-460.
[http://dx.doi.org/10.22146/ijc.21515]
[14]
Mandal, N.; Chaudhuri, D.; Ghate, N.B.; Singh, S.S. Methyl gallate isolated from Spondias pinnata exhibits anticancer activity against human glioblastoma by induction of apoptosis and sustained extracellular signal-regulated kinase 1/2 activation. Pharmacogn. Mag., 2015, 11(42), 269-276.
[http://dx.doi.org/10.4103/0973-1296.153078] [PMID: 25829764]
[15]
Atta-ur-Rahman MICaA-t-W. Solving Problems with NMR Spectroscopy, 2nd ed; Academic Press, 2016.
[16]
Yu-xian, Li.; Yuan, Ke. Isolation and structural elucidation of chemical constituents of Mussaenda hainanensis Merr. J. Med. Plants Res., 2011, 5(8), 1459-1465.
[17]
Mori, K. Pheromone synthesis. Part 253: Synthesis of the racemates and enantiomers of triglycerides of male Drosophila fruit flies with special emphasis on the preparation of enantiomerically pure 1-monoglycerides. Tetrahedron, 2012, 68(40), 8441-8449.
[http://dx.doi.org/10.1016/j.tet.2012.07.086]
[18]
Díaz, M.; González, A.; Castro-Gamboa, I.; Gonzalez, D.; Rossini, C. First record of l-quebrachitol in Allophylus edulis (Sapindaceae). Carbohydr. Res., 2008, 343(15), 2699-2700.
[http://dx.doi.org/10.1016/j.carres.2008.07.014] [PMID: 18715552]
[19]
Dandare, A.; Zarewa, S.; Abdullahi, K.; Rabiu, S.; Onwughara, C. Amilioretive effect of aqueous leaves extract of Ziziphus mucronata in ethanol induced gastric ulcer model rats. J. Appl. Life Sci. Int., 2017, 15(2), 1-8.
[http://dx.doi.org/10.9734/JALSI/2017/37862]
[20]
Davis, A.L.; Cai, Y.; Davies, A.P.; Lewis, J.R. 1H and 13C NMR assignments of some green tea polyphenols. Magn. Reson. Chem., 1996, 34(11), 887-890.
[http://dx.doi.org/10.1002/(SICI)1097-458X(199611)34:11<887:AID-OMR995>3.0.CO;2-U]
[21]
Sarria, V.R.A.; Corredor, J.A.G.; Isabel, P.M. Isolation of catechin and gallic acid from Colombian bark of Pinus patula. Chem. Sci. J., 2017, 8(4), 174.
[http://dx.doi.org/10.4172/2150-3494.1000174]
[22]
Ogbole, O.O.; Segun, P.A.; Adeniji, A.J. In vitro cytotoxic activity of medicinal plants from Nigeria ethnomedicine on Rhabdomyosarcoma cancer cell line and HPLC analysis of active extracts. BMC Complement. Altern. Med., 2017, 17(1), 494.
[http://dx.doi.org/10.1186/s12906-017-2005-8] [PMID: 29166892]
[23]
Kamatham, S.; Kumar, N.; Gudipalli, P. Isolation and characterization of gallic acid and methyl gallate from the seed coats of Givotia rottleriformis Griff. and their anti-proliferative effect on human epidermoid carcinoma A431 cells. Toxicol. Rep., 2015, 2, 520-529.
[http://dx.doi.org/10.1016/j.toxrep.2015.03.001] [PMID: 28962387]
[24]
Anjum, S.; Gani, A.; Ahmad, M.; Shah, A.; Masoodi, F.A.; Shah, Y.; Gani, A. Antioxidant and antiproliferative activity of walnut extract (Juglans regia L.) processed by different methods and identification of compounds using GC/MS and LC/MS technique. J. Food Process. Preserv., 2017, 41(1), e12756.
[http://dx.doi.org/10.1111/jfpp.12756]
[25]
Li, M.; Yang, J.; Zhang, L.; Tu, S.; Zhou, X.; Tan, Z.; Zhou, W.; He, Y.; Li, Y. A low-molecular-weight compound exerts anticancer activity against breast and lung cancers by disrupting EGFR/Eps8 complex formation. J. Exp. Clin. Cancer Res., 2019, 38(1), 211.
[http://dx.doi.org/10.1186/s13046-019-1207-y] [PMID: 31118055]
[26]
Kim, B.W.; Lee, E.R.; Min, H.M.; Jeong, H.S.; Ahn, J.Y.; Kim, J.H.; Choi, H.Y.; Choi, H.; Kim, E.Y.; Park, S.P.; Cho, S.G. Sustained ERK activation is involved in the kaempferol-induced apoptosis of breast cancer cells and is more evident under 3-D culture condition. Cancer Biol. Ther., 2008, 7(7), 1080-1089.
[http://dx.doi.org/10.4161/cbt.7.7.6164] [PMID: 18443432]
[27]
Lin, J.N.; Lin, H.Y.; Yang, N.S.; Li, Y.H.; Lee, M.R.; Chuang, C.H.; Ho, C.T.; Kuo, S.C.; Way, T.D. Chemical constituents and anticancer activity of yellow camellias against MDA-MB-231 human breast cancer cells. J. Agric. Food Chem., 2013, 61(40)
[http://dx.doi.org/10.1021/jf4029877] [PMID: 24001127]
[28]
Govindan, S.V.; Kulsum, S.; Pandian, R.S.; Das, D.; Seshadri, M.; Hicks, W., Jr; Kuriakose, M.A.; Suresh, A. Establishment and characterization of triple drug resistant head and neck squamous cell carcinoma cell lines. Mol. Med. Rep., 2015, 12(2), 3025-3032.
[http://dx.doi.org/10.3892/mmr.2015.3768] [PMID: 25962396]
[29]
Takara, K.; Horibe, S.; Obata, Y.; Yoshikawa, E.; Ohnishi, N.; Yokoyama, T. Effects of 19 herbal extracts on the sensitivity to paclitaxel or 5-fluorouracil in HeLa cells. Biol. Pharm. Bull., 2005, 28(1), 138-142.
[http://dx.doi.org/10.1248/bpb.28.138] [PMID: 15635178]
[30]
Huang, C.Y.; Ju, D.T.; Chang, C.F.; Muralidhar Reddy, P.; Velmurugan, B.K. A review on the effects of current chemotherapy drugs and natural agents in treating non–small cell lung cancer. Biomedicine , 2017, 7(4), 23.
[http://dx.doi.org/10.1051/bmdcn/2017070423] [PMID: 29130448]
[31]
Tuncay, S.; Senol, H.; Guler, E.M.; Ocal, N.; Secen, H.; Kocyigit, A.; Topcu, G. Synthesis of oleanolic acid analogues and their cytotoxic effects on 3T3 cell line. Med. Chem., 2018, 14(6), 617-625.
[http://dx.doi.org/10.2174/1573406414666180222094544] [PMID: 29473521]
[32]
Chan, C.Y.; Wei, L.; Castro-Muñozledo, F.; Koo, W.L. (−)-Epigallocatechin-3-gallate blocks 3T3-L1 adipose conversion by inhibition of cell proliferation and suppression of adipose phenotype expression. Life Sci., 2011, 89(21-22), 779-785.
[http://dx.doi.org/10.1016/j.lfs.2011.09.006] [PMID: 21978785]
[33]
Yahagi, T.; Yakura, N.; Matsuzaki, K.; Kitanaka, S. Inhibitory effect of chemical constituents from Artemisia scoparia Waldst. et Kit. on triglyceride accumulation in 3T3-L1 cells and nitric oxide production in RAW 264.7 cells. J. Nat. Med., 2014, 68(2), 414-420.
[http://dx.doi.org/10.1007/s11418-013-0799-3] [PMID: 24142543]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy