Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

New Insights in Psoriasis Management using Herbal Drug Nanocarriers

In Press, (this is not the final "Version of Record"). Available online 24 July, 2024
Author(s): Shreyas P. Salgaonkar, Japneet Singh Purewal, Gaurav Mahesh Doshi, Trinette Fernandes, Sankalp Gharat and Sujata P. Sawarkar*
Published on: 24 July, 2024

DOI: 10.2174/0113816128330298240708110336

Price: $95

Abstract

Psoriasis (Pso) is an autoimmune inflammatory skin disease characterized by red plaques covered in silver scales. The existing treatments provide limited benefits and are associated with certain drawbacks which limit their use. Thus, there is a need to explore more options that are highly target-specific and associated with minimal side effects. Researchers have thoroughly investigated the use of herbal drugs for their therapeutic potential. Preclinical studies demonstrate that phytochemicals such as curcumin, psoralen, and dithranol have antipsoriatic effects. These phytoconstituents inhibit the signalling pathways, such as the interleukin (IL) 23/Th17 axis and IL36 inflammatory loop involved in the pathogenesis of Pso. These phytoconstituents downregulate the pro-inflammatory cytokines like IL17 and tumor necrosis factor (TNF)-α. However, their application in clinical settings is limited due to poor bioavailability and access to target sites. Combining phytoconstituents with modern delivery platforms like nanocarriers can address these shortcomings and improve therapeutic efficacy. This review explores the potential of herbal remedies as a substitute for conventional therapies, emphasizing the clinical trials conducted with these herbal medicines. The paper is supported by the discussion on nanocarriers like liposomes, niosomes, emulsomes, ethosomes, nanostructured lipid carriers, nanoemulsions, and dendrimers that are used to deliver herbal medicines.

[1]
Rendon A, Schäkel K. Psoriasis pathogenesis and treatment. Int J Mol Sci 2019; 20(6): 1475.
[http://dx.doi.org/10.3390/ijms20061475] [PMID: 30909615]
[2]
Genovese G, Moltrasio C, Cassano N, Maronese CA, Vena GA, Marzano AV. Pustular psoriasis: From pathophysiology to treatment. Biomedicines 2021; 9(12): 1746.
[http://dx.doi.org/10.3390/biomedicines9121746] [PMID: 34944562]
[3]
Rahman M, Akhter S, Ahmad J, Ahmad MZ, Beg S, Ahmad FJ. Nanomedicine-based drug targeting for psoriasis: Potentials and emerging trends in nanoscale pharmacotherapy. Expert Opin Drug Deliv 2015; 12(4): 635-52.
[http://dx.doi.org/10.1517/17425247.2015.982088] [PMID: 25439967]
[4]
Sewerin P, Brinks R, Schneider M, Haase I, Vordenbäumen S. Prevalence and incidence of psoriasis and psoriatic arthritis. Ann Rheum Dis 2019; 78(2): 286-7.
[http://dx.doi.org/10.1136/annrheumdis-2018-214065] [PMID: 30242033]
[5]
Fernández-Armenteros JM, Gómez-Arbonés X, Buti-Solé M, et al. Epidemiology of psoriasis. A population-based study. Actas Dermosifiliogr 2019; 110(5): 385-92.
[http://dx.doi.org/10.1016/j.ad.2018.10.015] [PMID: 30587329]
[6]
Naik PP. Clinical descriptive study of psoriasis in India: Triggers, morbidities and coincidences. Dermatol – Open J 2021; 6(1): 8-14.
[http://dx.doi.org/10.17140/DRMTOJ-6-144]
[7]
Rahman M, Alam K, Ahmad MZ, et al. Classical to current approach for treatment of psoriasis: A review. Endocr Metab Immune Disord Drug Targets 2012; 12(3): 287-302.
[http://dx.doi.org/10.2174/187153012802002901] [PMID: 22463723]
[8]
Purewal JS, Doshi GM. Deciphering the function of new therapeutic targets and prospective biomarkers in the management of psoriasis. Curr Drug Targets 2023; 24(16): 1224-38.
[http://dx.doi.org/10.2174/0113894501277656231128060242] [PMID: 38037998]
[9]
Huang TH, Lin CF, Alalaiwe A, Yang SC, Fang JY. Apoptotic or antiproliferative activity of natural products against keratinocytes for the treatment of psoriasis. Int J Mol Sci 2019; 20(10): 2558.
[http://dx.doi.org/10.3390/ijms20102558] [PMID: 31137673]
[10]
Abdelgawad R, Nasr M, Moftah NH, Hamza MY. Phospholipid membrane tubulation using ceramide doping “Cerosomes”: Characterization and clinical application in psoriasis treatment. Eur J Pharm Sci 2017; 101: 258-68.
[http://dx.doi.org/10.1016/j.ejps.2017.02.030] [PMID: 28232140]
[11]
Öztürk AA, Kıyan HT. Treatment of oxidative stress-induced pain and inflammation with dexketoprofen trometamol loaded different molecular weight chitosan nanoparticles: Formulation, characterization and anti-inflammatory activity by using in vivo HET-CAM assay. Microvasc Res 2020; 128: 103961.
[http://dx.doi.org/10.1016/j.mvr.2019.103961] [PMID: 31758946]
[12]
Gowda BHJ, Mohanto S, Singh A, et al. Nanoparticle-based therapeutic approaches for wound healing: A review of the state-of-the-art. Mater Today Chem 2023; 27: 101319.
[http://dx.doi.org/10.1016/j.mtchem.2022.101319]
[13]
Narayana S, Nasrine A, Gulzar Ahmed M, et al. Potential benefits of using chitosan and silk fibroin topical hydrogel for managing wound healing and coagulation. Saudi Pharm J 2023; 31(3): 462-71.
[http://dx.doi.org/10.1016/j.jsps.2023.01.013] [PMID: 37026047]
[14]
Damiri F, Gowda BHJ, Andra S, Balu S, Rojekar S, Berrada M. Chitosan nanocomposites as scaffolds for bone tissue regeneration. Chitosan Nanocomposites. Cham: Springer 2023.
[http://dx.doi.org/10.1007/978-981-19-9646-7_16]
[15]
Nag S, Mitra O, Sankarganesh P, et al. Exploring the emerging trends in the synthesis and theranostic paradigms of cerium oxide nanoparticles (CeONPs): A comprehensive review. Mater Today Chem 2024; 35: 101894.
[http://dx.doi.org/10.1016/j.mtchem.2023.101894]
[16]
Narayana S, Ahmed MG, Gowda BHJ, et al. Recent advances in ocular drug delivery systems and targeting VEGF receptors for management of ocular angiogenesis: A comprehensive review. Fut J Pharmaceut Sci 2021; 7: 186.
[http://dx.doi.org/10.1186/s43094-021-00331-2]
[17]
Sanjana A, Ahmed MG, Gowda BH J. Development and evaluation of dexamethasone loaded cubosomes for the treatment of vitiligo. Mater Today Proc 2022; 50: 197-205.
[http://dx.doi.org/10.1016/j.matpr.2021.04.120]
[18]
Hani U, Gowda BHJ, Haider N, et al. Nanoparticle-based approaches for treatment of hematological malignancies: A comprehensive review. AAPS PharmSciTech 2023; 24(8): 233.
[http://dx.doi.org/10.1208/s12249-023-02670-0] [PMID: 37973643]
[19]
Banazadeh M, Behnam B, Ganjooei NA, Gowda BHJ, Kesharwani P, Sahebkar A. Curcumin-based nanomedicines: A promising avenue for brain neoplasm therapy. J Drug Deliv Sci Technol 2023; 89: 105040.
[http://dx.doi.org/10.1016/j.jddst.2023.105040]
[20]
Gowda BHJ, Ahmed MG, Alshehri SA, et al. The cubosome-based nanoplatforms in cancer therapy: Seeking new paradigms for cancer theranostics. Environ Res 2023; 237(Pt 1): 116894.
[http://dx.doi.org/10.1016/j.envres.2023.116894] [PMID: 37586450]
[21]
Nag S, Mitra O, Tripathi G, et al. Nanomaterials-assisted photothermal therapy for breast cancer: State-of-the-art advances and future perspectives. Photodiagn Photodyn Ther 2024; 45: 103959.
[http://dx.doi.org/10.1016/j.pdpdt.2023.103959] [PMID: 38228257]
[22]
Khan MS, Jaswanth Gowda BH, Almalki WH, Singh T, Sahebkar A, Kesharwani P. Unravelling the potential of mitochondria-targeted liposomes for enhanced cancer treatment. Drug Discov Today 2024; 29(1): 103819.
[http://dx.doi.org/10.1016/j.drudis.2023.103819] [PMID: 37940034]
[23]
Sameer Khan M, Jaswanth Gowda BH, Hasan N, et al. Carbon nanotube-mediated platinum-based drug delivery for the treatment of cancer: Advancements and future perspectives. Eur Polym J 2024; 206: 112800.
[http://dx.doi.org/10.1016/j.eurpolymj.2024.112800]
[24]
Hani U, Osmani RAM, Yasmin S, et al. Novel drug delivery systems as an emerging platform for stomach cancer therapy. Pharmaceutics 2022; 14(8): 1576.
[http://dx.doi.org/10.3390/pharmaceutics14081576]
[25]
Armstrong AW, Read C. Pathophysiology, clinical presentation, and treatment of psoriasis. JAMA 2020; 323(19): 1945-60.
[http://dx.doi.org/10.1001/jama.2020.4006] [PMID: 32427307]
[26]
Finlay AY, Ortonne JP. Patient satisfaction with psoriasis therapies: An update and introduction to biologic therapy. J Cutan Med Surg 2004; 8(5): 310-20.
[http://dx.doi.org/10.1177/120347540400800502] [PMID: 15868312]
[27]
Dvorakova V, Markham T. Psoriasis: Current treatment options and recent advances. Prescriber 2013; 24(10): 13-20.
[http://dx.doi.org/10.1002/psb.1059]
[28]
Bakshi H, Nagpal M, Singh M, Dhingra GA, Aggarwal G. Treatment of psoriasis: A comprehensive review of entire therapies. Curr Drug Saf 2020; 15(2): 82-104.
[http://dx.doi.org/10.2174/22123911MTAziOTU84] [PMID: 31994468]
[29]
Fouéré S, Adjadj L, Pawin H. How patients experience psoriasis: Results from a European survey. J Eur Acad Dermatol Venereol 2005; 19(s3) (Suppl. 3): 2-6.
[http://dx.doi.org/10.1111/j.1468-3083.2005.01329.x] [PMID: 16274404]
[30]
Kalb RE, Strober B, Weinstein G, Lebwohl M. Methotrexate and psoriasis: 2009 National Psoriasis Foundation Consensus Conference. J Am Acad Dermatol 2009; 60(5): 824-37.
[http://dx.doi.org/10.1016/j.jaad.2008.11.906] [PMID: 19389524]
[31]
Papp K, Reich K, Leonardi CL, et al. Apremilast, an oral phosphodiesterase 4 (PDE4) inhibitor, in patients with moderate to severe plaque psoriasis: Results of a phase III, randomized, controlled trial (Efficacy and Safety Trial Evaluating the Effects of Apremilast in Psoriasis [ESTEEM] 1). J Am Acad Dermatol 2015; 73(1): 37-49.
[http://dx.doi.org/10.1016/j.jaad.2015.03.049] [PMID: 26089047]
[32]
Pedraz J, Daudén E, Delgado-Jiménez Y, García-Río I, García-Díez A. Sequential study on the treatment of moderate-to-severe chronic plaque psoriasis with mycophenolate mofetil and cyclosporin. J Eur Acad Dermatol Venereol 2006; 20(6): 702-6.
[http://dx.doi.org/10.1111/j.1468-3083.2006.01577.x] [PMID: 16836499]
[33]
Balak DM. Fumaric acid esters in the management of psoriasis. Psoriasis 2015; 5: 9-23.
[http://dx.doi.org/10.2147/PTT.S51490] [PMID: 29387578]
[34]
Hoffman MB, Hill D, Feldman SR. Current challenges and emerging drug delivery strategies for the treatment of psoriasis. Expert Opin Drug Deliv 2016; 13(10): 1461-73.
[http://dx.doi.org/10.1080/17425247.2016.1188801] [PMID: 27164301]
[35]
Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano 2009; 3(1): 16-20.
[http://dx.doi.org/10.1021/nn900002m] [PMID: 19206243]
[36]
Abraham N, Krishnan N, Raj A. Management of psoriasis-ayurveda and allopathy-A review. Int J Dermatol Clin Res 2019; 5(1): 018-23.
[http://dx.doi.org/10.17352/2455-8605.000033]
[37]
Verma S, Singh S. Current and future status of herbal medicines. Vet World 2008; 2(2): 347-50.
[http://dx.doi.org/10.5455/vetworld.2008.347-350]
[38]
Rout SK, Tripathy BC, Kar BR. Natural green alternatives to psoriasis treatment-A review. Global J Pharm Pharm Sci 2017; 4(1): 001-7.
[http://dx.doi.org/10.19080/GJPPS.2017.04.555631]
[39]
Ahmad S, Parveen A, Parveen B, Parveen R. Challenges and guidelines for clinical trial of herbal drugs. J Pharm Bioallied Sci 2015; 7(4): 329-33.
[http://dx.doi.org/10.4103/0975-7406.168035] [PMID: 26681895]
[40]
Liu M, Dai Y, Li Y, et al. Madecassoside isolated from Centella asiatica herbs facilitates burn wound healing in mice. Planta Med 2008; 74(8): 809-15.
[http://dx.doi.org/10.1055/s-2008-1074533] [PMID: 18484522]
[41]
Vishnupriya P, Padma V. A review on the antioxidant and therapeutic potential of Bacopa monnieri. React Oxyg Species 2017; 3: 111-20.
[http://dx.doi.org/10.20455/ros.2017.817]
[42]
Sehgal VN, Verma P, Khurana A. Anthralin/dithranol in dermatology. Int J Dermatol 2014; 53(10): e449-60.
[http://dx.doi.org/10.1111/j.1365-4632.2012.05611.x] [PMID: 25208745]
[43]
Aghmiuni AI, Khiavi AA. Medicinal plants to calm and treat psoriasis disease. Aromatic and Medicinal Plants - Back to Nature. London: IntechOpen 2017.
[http://dx.doi.org/10.5772/67062]
[44]
Sanati S, Razavi BM, Hosseinzadeh H. A review of the effects of Capsicum annuum L. and its constituent, capsaicin, in metabolic syndrome. Iran J Basic Med Sci 2018; 21(5): 439-48.
[http://dx.doi.org/10.22038/IJBMS.2018.25200.6238] [PMID: 29922422]
[45]
Barrea L, Savanelli MC, Di Somma C, et al. Vitamin D and its role in psoriasis: An overview of the dermatologist and nutritionist. Rev Endocr Metab Disord 2017; 18(2): 195-205.
[http://dx.doi.org/10.1007/s11154-017-9411-6] [PMID: 28176237]
[46]
Fuloria S, Mehta J, Chandel A, et al. A comprehensive review on the therapeutic potential of Curcuma longa Linn. in relation to its major active constituent curcumin. Front Pharmacol 2022; 13: 820806.
[http://dx.doi.org/10.3389/fphar.2022.820806] [PMID: 35401176]
[47]
Kuete V. Health effects of alkaloids from African medicinal plants. Toxicological Survey of African Medicinal Plants. (1st ed.), Amsterdam: Elsevier 2014.
[http://dx.doi.org/10.1016/B978-0-12-800018-2.00021-2]
[48]
Yuan X, Li N, Zhang M, et al. Taxifolin attenuates IMQ-induced murine psoriasis-like dermatitis by regulating T helper cell responses via Notch1 and JAK2/STAT3 signal pathways. Biomed Pharmacother 2020; 123: 109747.
[http://dx.doi.org/10.1016/j.biopha.2019.109747] [PMID: 31881484]
[49]
Iriventi P, Gupta NV. Nanotechnology in management of psoriasis: A focus on herbal therapy. Indo Am J Pharm Res 2017; 2017: 7.
[50]
Ernst E. Complementary and alternative medicine in rheumatology. Best Pract Res Clin Rheumatol 2000; 14(4): 731-49.
[http://dx.doi.org/10.1053/berh.2000.0110] [PMID: 11092799]
[51]
Koycheva IK, Mihaylova LV, Todorova MN, et al. Leucosceptoside a from devil’s claw modulates psoriasis-like inflammation via suppression of the pi3k/akt signaling pathway in keratinocytes. Molecules 2021; 26(22): 7014.
[http://dx.doi.org/10.3390/molecules26227014] [PMID: 34834106]
[52]
Liu C, Chen Y, Lu C, et al. Betulinic acid suppresses Th17 response and ameliorates psoriasis-like murine skin inflammation. Int Immunopharmacol 2019; 73: 343-52.
[http://dx.doi.org/10.1016/j.intimp.2019.05.030] [PMID: 31129421]
[53]
Li X, Xie X, Zhang L, et al. Hesperidin inhibits keratinocyte proliferation and imiquimod-induced psoriasis-like dermatitis via the IRS-1/ERK1/2 pathway. Life Sci 2019; 219: 311-21.
[http://dx.doi.org/10.1016/j.lfs.2019.01.019] [PMID: 30658103]
[54]
ClinicalTrials Study on the therapeutic mechanisms of dithranol treatment in patients with chronic plaque psoriasis. 2017. Available from: https://clinicaltrials.gov/study/NCT02752672
[55]
ClinicalTrials. Formulation and clinical evaluation of ethosomal and liposomal preparations of anthralin in psoriasis. 2017. Available from: https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01583896/full
[56]
ClinicalTrials. Curcuminoids for the treatment of chronic psoriasis vulgaris. 2017. Available from: https://clinicaltrials.gov/study/NCT00235625
[57]
ClinicalTrials. Turmeric based therapy in the treatment of psoriasis. 2019. Available from: https://clinicaltrials.gov/study/NCT04071106
[58]
Singh KK, Tripathy S. Natural treatment alternative for psoriasis: A review on herbal resources. J Appl Pharm Sci 2014; 4: 114-21.
[http://dx.doi.org/10.7324/JAPS.2014.41120]
[59]
Singh D, Pradhan M, Nag M, Singh MR. Vesicular system: Versatile carrier for transdermal delivery of bioactives. Artif Cells Nanomed Biotechnol 2015; 43(4): 282-90.
[http://dx.doi.org/10.3109/21691401.2014.883401] [PMID: 24564350]
[60]
Yadav N, Aggarwal R, Targhotra M, Sahoo PK, Chauhan MK. Natural and nanotechnology based treatment: An alternative approach to psoriasis. Curr Nanomed 2021; 11(1): 21-39.
[http://dx.doi.org/10.2174/2468187310999201022192318]
[61]
Xie J, Huang S, Huang H, et al. Advances in the application of natural products and the novel drug delivery systems for psoriasis. Front Pharmacol 2021; 12: 644952.
[http://dx.doi.org/10.3389/fphar.2021.644952] [PMID: 33967781]
[62]
Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol 2015; 6: 286.
[http://dx.doi.org/10.3389/fphar.2015.00286] [PMID: 26648870]
[63]
Moosavian SA, Bianconi V, Pirro M, Sahebkar A. Challenges and pitfalls in the development of liposomal delivery systems for cancer therapy. Semin Cancer Biol 2021; 69: 337-48.
[http://dx.doi.org/10.1016/j.semcancer.2019.09.025] [PMID: 31585213]
[64]
Chen J, Ma Y, Tao Y, et al. Formulation and evaluation of a topical liposomal gel containing a combination of zedoary turmeric oil and tretinoin for psoriasis activity. J Liposome Res 2021; 31(2): 130-44.
[http://dx.doi.org/10.1080/08982104.2020.1748646] [PMID: 32223352]
[65]
Xi L, Lin Z, Qiu F, et al. Enhanced uptake and anti-maturation effect of celastrol-loaded mannosylated liposomes on dendritic cells for psoriasis treatment. Acta Pharm Sin B 2022; 12(1): 339-52.
[http://dx.doi.org/10.1016/j.apsb.2021.07.019] [PMID: 35127390]
[66]
Hatahet T, Morille M, Hommoss A, Devoisselle JM, Müller RH, Bégu S. Liposomes, lipid nanocapsules and smartCrystals®: A comparative study for an effective quercetin delivery to the skin. Int J Pharm 2018; 542(1-2): 176-85.
[http://dx.doi.org/10.1016/j.ijpharm.2018.03.019] [PMID: 29549014]
[67]
Bhardwaj P, Tripathi P, Gupta R, Pandey S. Niosomes: A review on niosomal research in the last decade. J Drug Deliv Sci Technol 2020; 56: 101581.
[http://dx.doi.org/10.1016/j.jddst.2020.101581]
[68]
Agarwal R, Katare OP, Vyas SP. Preparation and in vitro evaluation of liposomal/niosomal delivery systems for antipsoriatic drug dithranol. Int J Pharm 2001; 228(1-2): 43-52.
[http://dx.doi.org/10.1016/S0378-5173(01)00810-9] [PMID: 11576767]
[69]
Meng S, Sun L, Wang L, et al. Loading of water-insoluble celastrol into niosome hydrogels for improved topical permeation and anti-psoriasis activity. Colloids Surf B Biointerfaces 2019; 182: 110352.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110352] [PMID: 31306831]
[70]
Shijila P, Gowtham M. Formulation and evaluation of herbal niosomal gel for psoriasis like effect. WJPPS 2019; 8: 1052-79.
[http://dx.doi.org/10.20959/wjpps20194-13469]
[71]
Zhang Y, Xia Q, Li Y, et al. CD44 assists the topical anti-psoriatic efficacy of curcumin-loaded hyaluronan-modified ethosomes: A new strategy for clustering drug in inflammatory skin. Theranostics 2019; 9(1): 48-64.
[http://dx.doi.org/10.7150/thno.29715] [PMID: 30662553]
[72]
Negi P, Sharma I, Hemrajani C, et al. Thymoquinone-loaded lipid vesicles: A promising nanomedicine for psoriasis. BMC Complement Altern Med 2019; 19(1): 334.
[http://dx.doi.org/10.1186/s12906-019-2675-5] [PMID: 31771651]
[73]
Lu J, Guo T, Fan Y, et al. Recent developments in the principles, modification and application prospects of functionalized ethosomes for topical delivery. Curr Drug Deliv 2021; 18(5): 570-82.
[http://dx.doi.org/10.2174/1567201817666200826093102] [PMID: 32851961]
[74]
Sarah Sujitha Y, Indira Muzib Y. Preparation of topical nano gel loaded with Hesperidin emusomoes: In vitro and in vivo studies. Int J Pharm Investig 2020; 10(4): 500-5.
[http://dx.doi.org/10.5530/ijpi.2020.4.87]
[75]
Zhou X, Chen Z. Preparation and performance evaluation of emulsomes as a drug delivery system for silybin. Arch Pharm Res 2015; 38(12): 2193-200.
[http://dx.doi.org/10.1007/s12272-015-0630-7] [PMID: 26152876]
[76]
Simonazzi A, Cid AG, Villegas M, Romero AI, Palma SD, Bermúdez JM. Nanotechnology applications in drug controlled release. Drug Targeting and Stimuli Sensitive Drug Delivery Systems. Norwich, NY: William Andrew Publishing 2018; pp. 81-116.
[http://dx.doi.org/10.1016/B978-0-12-813689-8.00003-3]
[77]
Algahtani MS, Ahmad MZ, Ahmad J. Nanoemulsion loaded polymeric hydrogel for topical delivery of curcumin in psoriasis. J Drug Deliv Sci Technol 2020; 59: 101847.
[http://dx.doi.org/10.1016/j.jddst.2020.101847]
[78]
Sahu S, Katiyar SS, Kushwah V, Jain S. Active natural oil-based nanoemulsion containing tacrolimus for synergistic antipsoriatic efficacy. Nanomedicine 2018; 13(16): 1985-98.
[http://dx.doi.org/10.2217/nnm-2018-0135] [PMID: 30188761]
[79]
Khan S, Sharma A, Jain V. An overview of nanostructured lipid carriers and its application in drug delivery through different routes. Adv Pharm Bull 2023; 13(3): 446-60.
[http://dx.doi.org/10.34172/apb.2023.056] [PMID: 37646052]
[80]
Chauhan I, Yasir M, Verma M, Singh AP. Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery. Adv Pharm Bull 2020; 10(2): 150-65.
[http://dx.doi.org/10.34172/apb.2020.021] [PMID: 32373485]
[81]
Sathe P, Saka R, Kommineni N, Raza K, Khan W. Dithranol-loaded nanostructured lipid carrier-based gel ameliorate psoriasis in imiquimod-induced mice psoriatic plaque model. Drug Dev Ind Pharm 2019; 45(5): 826-38.
[http://dx.doi.org/10.1080/03639045.2019.1576722] [PMID: 30764674]
[82]
Qadir A, Aqil M, Ali A, et al. Nanostructured lipidic carriers for dual drug delivery in the management of psoriasis: Systematic optimization, dermatokinetic and preclinical evaluation. J Drug Deliv Sci Technol 2020; 57: 101775.
[http://dx.doi.org/10.1016/j.jddst.2020.101775]
[83]
Tripathi PK, Gorain B, Choudhury H, Srivastava A, Kesharwani P. Dendrimer entrapped microsponge gel of dithranol for effective topical treatment. Heliyon 2019; 5(3): e01343.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01343] [PMID: 30957038]
[84]
Borowska K, Wołowiec S, Głowniak K, Sieniawska E, Radej S. Transdermal delivery of 8-methoxypsoralene mediated by polyamidoamine dendrimer G2.5 and G3.5-In vitro and in vivo study. Int J Pharm 2012; 436(1-2): 764-70.
[http://dx.doi.org/10.1016/j.ijpharm.2012.07.067] [PMID: 22884834]
[85]
Mehrizi TZ, Mosaffa N, Khamesipour A, et al. A novel nanoformulation for reducing the toxicity and increasing the efficacy of betulinic acid using anionic linear globular dendrimer. J Nanostructures 2021; 11: 143-52.
[http://dx.doi.org/10.22052/JNS.2021.01.016]
[86]
Kannan RM, Nance E, Kannan S, Tomalia DA. Emerging concepts in dendrimer-based nanomedicine: From design principles to clinical applications. J Intern Med 2014; 276(6): 579-617.
[http://dx.doi.org/10.1111/joim.12280] [PMID: 24995512]
[87]
Janaszewska A, Lazniewska J, Trzepiński P, Marcinkowska M, Klajnert-Maculewicz B. Cytotoxicity of dendrimers. Biomolecules 2019; 9(8): 330.
[http://dx.doi.org/10.3390/biom9080330] [PMID: 31374911]
[88]
Pandita D, Madaan K, Kumar S, Poonia N, Lather V. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci 2014; 6(3): 139-50.
[http://dx.doi.org/10.4103/0975-7406.130965] [PMID: 25035633]
[89]
Chauhan AS, Jain NK, Diwan PV. Pre-clinical and behavioural toxicity profile of PAMAM dendrimers in mice. Proc-Royal Soc, Math Phys Eng Sci 2010; 466(2117): 1535-50.
[http://dx.doi.org/10.1098/rspa.2009.0448]
[90]
Araújo RV, Santos SS, Igne Ferreira E, Giarolla J. New advances in general biomedical applications of PAMAM dendrimers. Molecules 2018; 23(11): 2849.
[http://dx.doi.org/10.3390/molecules23112849]
[91]
Wang J, Li B, Qiu L, Qiao X, Yang H. Dendrimer-based drug delivery systems: History, challenges, and latest developments. J Biol Eng 2022; 16(1): 18.
[http://dx.doi.org/10.1186/s13036-022-00298-5] [PMID: 35879774]
[92]
Jones CF, Campbell RA, Brooks AE, et al. Cationic PAMAM dendrimers aggressively initiate blood clot formation. ACS Nano 2012; 6(11): 9900-10.
[http://dx.doi.org/10.1021/nn303472r] [PMID: 23062017]
[93]
Li X, Naeem A, Xiao S, Hu L, Zhang J, Zheng Q. Safety challenges and application strategies for the use of dendrimers in medicine. Pharmaceutics 2022; 14(6): 1292.
[http://dx.doi.org/10.3390/pharmaceutics14061292] [PMID: 35745863]
[94]
Gowda BHJ, Ahmed MG, Almoyad MAA, Wahab S, Almalki WH, Kesharwani P. Nanosponges as an emerging platform for cancer treatment and diagnosis. Adv Funct Mater 2024; 34(7): 2307074.
[http://dx.doi.org/10.1002/adfm.202307074]
[95]
Tiwari K, Bhattacharya S. The ascension of nanosponges as a drug delivery carrier: Preparation, characterization, and applications. J Mater Sci Mater Med 2022; 33(3): 28.
[http://dx.doi.org/10.1007/s10856-022-06652-9] [PMID: 35244808]
[96]
Iriventi P, Gupta NV, Osmani RAM, Balamuralidhara V. Design & development of nanosponge loaded topical gel of curcumin and caffeine mixture for augmented treatment of psoriasis. Daru 2020; 28(2): 489-506.
[http://dx.doi.org/10.1007/s40199-020-00352-x] [PMID: 32472531]
[97]
Bodnár K, Fehér P, Ujhelyi Z, Bácskay I, Józsa L. Recent approaches for the topical treatment of psoriasis using nanoparticles. Pharmaceutics 2024; 16(4): 449.
[http://dx.doi.org/10.3390/pharmaceutics16040449] [PMID: 38675110]
[98]
Mohd Nordin UU, Ahmad N, Salim N, Mohd Yusof NS. Lipid-based nanoparticles for psoriasis treatment: A review on conventional treatments, recent works, and future prospects. RSC Advances 2021; 11(46): 29080-101.
[http://dx.doi.org/10.1039/D1RA06087B] [PMID: 35478537]
[99]
Rahmanian-Devin P, Askari VR, Sanei-Far Z, et al. Preparation and characterization of solid lipid nanoparticles encapsulated noscapine and evaluation of its protective effects against imiquimod- induced psoriasis-like skin lesions. Biomed Pharmacother 2023; 168: 115823.
[http://dx.doi.org/10.1016/j.biopha.2023.115823] [PMID: 37924792]
[100]
Zeng L, Gowda BHJ, Ahmed MG, et al. Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol Cancer 2023; 22(1): 10.
[http://dx.doi.org/10.1186/s12943-022-01708-4] [PMID: 36635761]
[101]
Perumal S, Atchudan R, Lee W. A review of polymeric micelles and their applications. Polymers 2022; 14(12): 2510.
[http://dx.doi.org/10.3390/polym14122510] [PMID: 35746086]
[102]
Ghezzi M, Pescina S, Padula C, et al. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release 2021; 332: 312-36.
[http://dx.doi.org/10.1016/j.jconrel.2021.02.031] [PMID: 33652113]
[103]
Chavoshy F, Zadeh BSM, Tamaddon AM, Anbardar MH. Delivery and anti-psoriatic effect of silibinin-loaded polymeric micelles: An experimental study in the psoriatic skin model. Curr Drug Deliv 2020; 17(9): 787-98.
[http://dx.doi.org/10.2174/1567201817666200722141807] [PMID: 32703129]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy