Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Immunologic Mechanisms of BCc1 Nanomedicine Synthesized by Nanochelating Technology in Breast Tumor-Bearing Mice: Immunomodulation and Tumor Suppression

In Press, (this is not the final "Version of Record"). Available online 24 July, 2024
Author(s): Pegah Karimi, Saideh Fakharzadeh, Somayeh Kalanaky, Maryam Hafizi, Mehrdad Hashemi, Mehdi Mahdavi* and Mohammad Hassan Nazaran*
Published on: 24 July, 2024

DOI: 10.2174/0118715206302153240723053521

Price: $95

Abstract

Introduction: The side effects of anti-cancer chemotherapy remain a concern for patients. So, designing alternative medications seems inevitable. In this research, the immunological mechanisms of BCc1 nanomedicine on tumor-bearing mice were investigated.

Methods: BALB/c mice underwent tumor transplantation and were assigned into four groups. Group 1 was orally administered with PBS buffer, Group 2 was orally administered BCc1 10 mg/kg, and Group 3 was orally administered BCc1 40 mg/kg daily, respectively. In addition, a group of mice was administered Cyclophosphamide, 20 mg/kg daily. The weight and tumor volume of mice were evaluated bi-weekly. After 24 days of treatment, cytokines and CTL assay in the spleen cell and the tumor were assessed. Furthermore, the spleen, liver, kidney, lung, gut, and uterine tissue were stained with hematoxylin and eosin. Finally, the tumor samples were stained and analyzed for FOXP3. The survival rate of mice was recorded.

Results: The results confirmed the histological safety of BCc1. This nanomedicine, especially BCc1 10 mg/kg, led to a strong IFN-γ response and suppressed TGF-β cytokine. The frequency of Treg in the tumor tissue of BCc1 nanomedicine groups was decreased. In addition, nanomedicine repressed tumor volume and tumor weight significantly, which was comparable to Cyclophosphamide. These immunologic events increased the survival rate of BCc1-treated groups. The results indicate that BCc1 nanomedicine can suppress tumor growth and thereby increase the survival rate of experimental mice.

Conclusion: It seems a modulation in the tumor microenvironment and polarization toward a Th1 response may be involved. So, BCc1 nanomedicine is efficient for human cancer therapy.

[1]
Cancer, I.A.R.o. Latest global cancer data: Cancer burden rises to 19.3 million new cases and 10.0 million cancer deaths in 2020., 2020. Available from: https://www.iarc.who.int/news-events/latest-global-cancer-data-cancer-burden-rises-to-19-3-million-new-cases-and-10-0-million-cancer-deaths-in-2020/
[2]
Harbeck, N.; Gnant, M. Breast cancer. Lancet, 2017, 389(10074), 1134-1150.
[http://dx.doi.org/10.1016/S0140-6736(16)31891-8] [PMID: 27865536]
[3]
Greenwalt, I.; Zaza, N.; Das, S.; Li, B.D. Precision medicine and targeted therapies in breast cancer. Surg. Oncol. Clin. N. Am., 2020, 29(1), 51-62.
[http://dx.doi.org/10.1016/j.soc.2019.08.004] [PMID: 31757313]
[4]
Magnuson, A.; Sedrak, M.S.; Gross, C.P.; Tew, W.P.; Klepin, H.D.; Wildes, T.M.; Muss, H.B.; Dotan, E.; Freedman, R.A.; O’Connor, T.; Dale, W.; Cohen, H.J.; Katheria, V.; Arsenyan, A.; Levi, A.; Kim, H.; Mohile, S.; Hurria, A.; Sun, C.L. Development and validation of a risk tool for predicting severe toxicity in older adults receiving chemotherapy for early-stage breast cancer. J. Clin. Oncol., 2021, 39(6), 608-618.
[http://dx.doi.org/10.1200/JCO.20.02063] [PMID: 33444080]
[5]
Jing, J.; Feng, R.; Zhang, X.; Li, M.; Gao, J. Financial toxicity and its associated patient and cancer factors among women with breast cancer: a single-center analysis of low-middle income region in China. Breast Cancer Res. Treat., 2020, 181(2), 435-443.
[http://dx.doi.org/10.1007/s10549-020-05632-3] [PMID: 32306169]
[6]
Amjad, M.T.; Chidharla, A.; Kasi, A. Cancer chemotherapy.In: StatPearls. Treasure Island (FL): ; StatPearls Publishing, 2024.
[PMID: 33232037]
[7]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol., 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[8]
Mignani, S.; El Kazzouli, S.; Bousmina, M.; Majoral, J.P. Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: A concise overview. Adv. Drug Deliv. Rev., 2013, 65(10), 1316-1330.
[http://dx.doi.org/10.1016/j.addr.2013.01.001] [PMID: 23415951]
[9]
Chen, Y.; Liu, R.; Li, C.; Song, Y.; Liu, G.; Huang, Q.; Yu, L.; Zhu, D.; Lu, C.; Lu, A.; Li, L.; Liu, Y. Nab-paclitaxel promotes the cancer-immunity cycle as a potential immunomodulator. Am. J. Cancer Res., 2021, 11(7), 3445-3460.
[PMID: 34354854]
[10]
Foote, M. Using nanotechnology to improve the characteristics of antineoplastic drugs: Improved characteristics of nab-paclitaxel compared with solvent-based paclitaxel. Biotechnol. Annu. Rev. (Amst), 2007, 13, 345-357.
[http://dx.doi.org/10.1016/S1387-2656(07)13012-X] [PMID: 17875482]
[11]
Hafizi, M.; Soleimani, M.; Noorian, S. Effects of BCc1 nanoparticle and its mixture with doxorubicin on survival of murine 4T1 tumor model. OncoTargets Ther., 2019, 18(12), 4691-4701.
[http://dx.doi.org/10.2147/OTT.S200446] [PMID: 31354301] [PMCID: PMC6590627]
[12]
Kalanaky, S.; Hafizi, M.; Fakharzadeh, S. BCc1, the novel antineoplastic nanocomplex, showed potent anticancer effects in vitro and in vivo. Drug Des. Devel. Ther., 2015, 30(10), 59-70.
[http://dx.doi.org/10.2147/DDDT.S89694] [PMID: 26766901] [PMCID: 4699513]
[13]
Fakharzadeh, S.; Argani, H.; Dadashzadeh, S.; Kalanaky, S.; Mohammadi Torbati, P.; Nazaran, M.H.; Basiri, A. BCc1 nanomedicine therapeutic effects in streptozotocin and high-fat diet induced diabetic kidney disease. Diabetes Metab. Syndr. Obes., 2020, 13, 1179-1188.
[http://dx.doi.org/10.2147/DMSO.S240757] [PMID: 32368111]
[14]
Hafizi, M.; Kalanaky, S.; Moaiery, H. A randomized, double-blind, placebo-controlled investigation of BCc1 nanomedicine effect on survival and quality of life in metastatic and non-metastatic gastric cancer patients. J. Nanobiotechnol., 2019, 17(1), 52.
[http://dx.doi.org/10.1186/s12951-019-0484-0] [PMID: 30971278] [PMCID: 6458717]
[15]
Hafizi, M.; Kalanaky, S.; Moaiery, H. An investigation on the effect of BCc1 nanomedicine on gastric cancer patients using EORTC QLQ-STO30 questionnaire. Int. J. Cancer Management., 2019, 12(11), e94190.
[http://dx.doi.org/10.5812/ijcm.94190]
[16]
Fakharzadeh, S.; Kalanaky, S.; Hafizi, M.; Goya, M.M.; Masoumi, Z.; Namaki, S.; Shakeri, N.; Abbasi, M.; Mahdavi, M.; Nazaran, M.H. The new nano-complex, Hep-c, improves the immunogenicity of the hepatitis B vaccine. Vaccine, 2013, 31(22), 2591-2597.
[http://dx.doi.org/10.1016/j.vaccine.2013.03.030] [PMID: 23583463]
[17]
Kalanaky, S.; Fakharzadeh, S.; Karimi, P.; Hafizi, M.; Jamaati, H.; Hassanzadeh, S.M.; Khorasani, A.; Mahdavi, M.; Nazaran, M.H. Nanoadjuvants produced by advanced nanochelating technology in the inactivated-severe acute respiratory syndrome coronavirus-2 vaccine formulation: Preliminary results on cytokines and IgG responses. Viral Immunol., 2023, 36(6), 409-423.
[http://dx.doi.org/10.1089/vim.2023.0001] [PMID: 37506342]
[18]
Ashrafi, S.; Shapouri, R.; Mahdavi, M. Immunological consequences of immunization with tumor lysate vaccine and propranolol as an adjuvant: A study on cytokine profiles in breast tumor microenvironment. Immunol. Lett., 2017, 181, 63-70.
[http://dx.doi.org/10.1016/j.imlet.2016.11.014] [PMID: 27899275]
[19]
Ashrafi, S.; Shapouri, R.; Shirkhani, A.; Mahdavi, M. Anti-tumor effects of propranolol: Adjuvant activity on a transplanted murine breast cancer model. Biomed. Pharmacother., 2018, 104, 45-51.
[http://dx.doi.org/10.1016/j.biopha.2018.05.002] [PMID: 29758415]
[20]
Ahmadi, N.; Jahantigh, H.R.; Noorbazargan, H.; Yazdi, M.H.; Mahdavi, M. Glucomannan as a dietary supplement for treatment of breast cancer in a mouse model. Vaccines (Basel), 2022, 10(10), 1746.
[http://dx.doi.org/10.3390/vaccines10101746] [PMID: 36298611]
[22]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[23]
Rezaei, M.; Hosseini, S.N.; Khavari-Nejad, R.A.; Najafi, F.; Mahdavi, M. HBs antigen and mannose loading on the surface of iron oxide nanoparticles in order to immuno-targeting: Fabrication, characterization, cellular and humoral immunoassay. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1543-1558.
[http://dx.doi.org/10.1080/21691401.2019.1577888] [PMID: 31007088]
[24]
Hafizi, M.; Kalanaky, S.; Fakharzadeh, S. Safety and efficacy of the combination of BCc1 and Hep-S nanochelating-based medicines in hospitalized COVID-19 adult patients: A randomized, double-blind, placebo-controlled clinical trial., 2021, 19.
[http://dx.doi.org/ 10.21203/rs.3.rs-962691/v1]
[25]
Jiang, T.; Zhou, C.; Ren, S. Role of IL-2 in cancer immunotherapy. OncoImmunology, 2016, 5(6), e1163462.
[http://dx.doi.org/10.1080/2162402X.2016.1163462] [PMID: 27471638]
[26]
Sun, Z.; Ren, Z.; Yang, K.; Liu, Z.; Cao, S.; Deng, S.; Xu, L.; Liang, Y.; Guo, J.; Bian, Y.; Xu, H.; Shi, J.; Wang, F.; Fu, Y.X.; Peng, H. A next-generation tumor-targeting IL-2 preferentially promotes tumor-infiltrating CD8+ T-cell response and effective tumor control. Nat. Commun., 2019, 10(1), 3874.
[http://dx.doi.org/10.1038/s41467-019-11782-w] [PMID: 31462678]
[27]
Li, X.; Lu, P.; Li, B.; Zhang, W.; Yang, R.; Chu, Y.; Luo, K. Interleukin 2 and interleukin 10 function synergistically to promote CD8 + T cell cytotoxicity, which is suppressed by regulatory T cells in breast cancer. Int. J. Biochem. Cell Biol., 2017, 87, 1-7.
[http://dx.doi.org/10.1016/j.biocel.2017.03.003] [PMID: 28274688]
[28]
Paluskievicz, C.M.; Cao, X.; Abdi, R.; Zheng, P.; Liu, Y.; Bromberg, J.S. T regulatory cells and priming the suppressive tumor microenvironment. Front. Immunol., 2019, 10, 2453.
[http://dx.doi.org/10.3389/fimmu.2019.02453] [PMID: 31681327]
[29]
Koyama, S.; Nishikawa, H. Mechanisms of regulatory T cell infiltration in tumors: implications for innovative immune precision therapies. J. Immunother. Cancer, 2021, 9(7), e002591.
[http://dx.doi.org/10.1136/jitc-2021-002591]
[30]
Kwaśniak, K.; Czarnik-Kwaśniak, J.; Maziarz, A.; Aebisher, D.; Zielińska, K.; Karczmarek-Borowska, B.; Tabarkiewicz, J. Scientific reports concerning the impact of interleukin 4, interleukin 10 and transforming growth factor β on cancer cells. Cent. Eur. J. Immunol., 2019, 44(2), 190-200.
[http://dx.doi.org/10.5114/ceji.2018.76273] [PMID: 31530989]
[31]
Hsu, H-J.; Jiang, S-J.; Chang, C-M.; Lam, H.Y.P. Interleukin-10: A double-edged sword in breast cancer. Tzu-Chi Med. J., 2021, 33(3), 203-211.
[http://dx.doi.org/10.4103/tcmj.tcmj_162_20] [PMID: 34386356]
[32]
Pinzon-Charry, A.; Maxwell, T.; López, J.A. Dendritic cell dysfunction in cancer: A mechanism for immunosuppression. Immunol. Cell Biol., 2005, 83(5), 451-461.
[http://dx.doi.org/10.1111/j.1440-1711.2005.01371.x] [PMID: 16174093]
[33]
Lv, Z.; Liu, M.; Shen, J.; Xiang, D.; Ma, Y.; Ji, Y. Association of serum interleukin 10, interleukin 17A and transforming growth factor α levels with human benign and malignant breast diseases. Exp. Ther. Med., 2018, 15(6), 5475-5480.
[http://dx.doi.org/10.3892/etm.2018.6109] [PMID: 29904427]
[34]
Mocellin, S.; Marincola, F.M.; Young, H.A. Interleukin-10 and the immune response against cancer: A counterpoint. J. Leukoc. Biol., 2005, 78(5), 1043-1051.
[http://dx.doi.org/10.1189/jlb.0705358] [PMID: 16204623]
[35]
Ahmad, N.; Ammar, A.; Storr, S.J.; Green, A.R.; Rakha, E.; Ellis, I.O.; Martin, S.G. IL-6 and IL-10 are associated with good prognosis in early stage invasive breast cancer patients. Cancer Immunol. Immunother., 2018, 67(4), 537-549.
[http://dx.doi.org/10.1007/s00262-017-2106-8] [PMID: 29256156]
[36]
Mattiuz, R.; Brousse, C.; Ambrosini, M.; Cancel, J.C.; Bessou, G.; Mussard, J.; Sanlaville, A.; Caux, C.; Bendriss-Vermare, N.; Valladeau-Guilemond, J.; Dalod, M.; Crozat, K. Type 1 conventional dendritic cells and interferons are required for spontaneous CD4 + and CD8 + T‐cell protective responses to breast cancer. Clin. Transl. Immunology, 2021, 10(7), e1305.
[http://dx.doi.org/10.1002/cti2.1305] [PMID: 34277006]
[37]
Kiyomi, A.; Makita, M.; Ozeki, T.; Li, N.; Satomura, A.; Tanaka, S.; Onda, K.; Sugiyama, K.; Iwase, T.; Hirano, T. Characterization and clinical implication of Th1/Th2/Th17 cytokines produced from three-dimensionally cultured tumor tissues resected from breast cancer patients. Transl. Oncol., 2015, 8(4), 318-326.
[http://dx.doi.org/10.1016/j.tranon.2015.06.004] [PMID: 26310378]
[38]
Punt, S.; Fleuren, G.J.; Kritikou, E.; Lubberts, E.; Trimbos, J.B.; Jordanova, E.S.; Gorter, A. Angels and demons: Th17 cells represent a beneficial response, while neutrophil IL-17 is associated with poor prognosis in squamous cervical cancer. OncoImmunology, 2015, 4(1), e984539.
[http://dx.doi.org/10.4161/2162402X.2014.984539] [PMID: 25949866]
[39]
Welte, T.; Zhang, X.H.F. Interleukin-17 could promote breast cancer progression at several stages of the disease. Mediators Inflamm., 2015, 2015, 1-6.
[http://dx.doi.org/10.1155/2015/804347] [PMID: 26783383]
[40]
Laprevotte, E.; Cochaud, S.; du Manoir, S.; Lapierre, M.; Dejou, C.; Philippe, M.; Giustiniani, J.; Frewer, K.A.; Sanders, A.J.; Jiang, W.G.; Michaud, H.A.; Colombo, P.E.; Bensussan, A.; Alberici, G.; Bastid, J.; Eliaou, J.F.; Bonnefoy, N. The IL-17B-IL-17 receptor B pathway promotes resistance to paclitaxel in breast tumors through activation of the ERK1/2 pathway. Oncotarget, 2017, 8(69), 113360-113372.
[http://dx.doi.org/10.18632/oncotarget.23008] [PMID: 29371916]
[41]
Ma, M.; Huang, W.; Kong, D. IL-17 inhibits the accumulation of myeloid-derived suppressor cells in breast cancer via activating STAT3. Int. Immunopharmacol., 2018, 59, 148-156.
[http://dx.doi.org/10.1016/j.intimp.2018.04.013] [PMID: 29655056]
[42]
Song, X.; Wei, C.; Li, X. The potential role and status of IL-17 family cytokines in breast cancer. Int. Immunopharmacol., 2021, 95, 107544.
[http://dx.doi.org/10.1016/j.intimp.2021.107544] [PMID: 33740640]
[43]
Oshi, M.; Asaoka, M.; Tokumaru, Y.; Yan, L.; Matsuyama, R.; Ishikawa, T.; Endo, I.; Takabe, K. CD8 T cell score as a prognostic biomarker for triple negative breast cancer. Int. J. Mol. Sci., 2020, 21(18), 6968.
[http://dx.doi.org/10.3390/ijms21186968] [PMID: 32971948]
[44]
Garcia-Hernandez, M.L.; Hamada, H.; Reome, J.B.; Misra, S.K.; Tighe, M.P.; Dutton, R.W. Adoptive transfer of tumor-specific Tc17 effector T cells controls the growth of B16 melanoma in mice. J. Immunol., 2010, 184(8), 4215-4227.
[http://dx.doi.org/10.4049/jimmunol.0902995] [PMID: 20237297]
[45]
Kuen, D.S.; Kim, B.S.; Chung, Y. IL-17-producing cells in tumor immunity: friends or foes? Immune Netw., 2020, 20(1) e6
[http://dx.doi.org/10.4110/in.2020.20.e6] [PMID: 32158594]
[46]
Terhune, J.; Berk, E.; Czerniecki, B. Dendritic cell-induced Th1 and Th17 cell differentiation for cancer therapy. Vaccines (Basel), 2013, 1(4), 527-549.
[http://dx.doi.org/10.3390/vaccines1040527] [PMID: 26344346]
[47]
Xu, X.; Wang, R.; Su, Q.; Huang, H.; Zhou, P.; Luan, J.; Liu, J.; Wang, J.; Chen, X. Expression of Th1- Th2- and Th17-associated cytokines in laryngeal carcinoma. Oncol. Lett., 2016, 12(3), 1941-1948.
[http://dx.doi.org/10.3892/ol.2016.4854] [PMID: 27588143]
[48]
Tzai, T.S.; Shiau, A.L.; Wu, C.L.; Tsai, Y.S. Postoperative administration of interleukin-12 significantly enhances the anti-tumor immune response of MBT-2 bladder cancer bearing mice. Proc. Natl. Sci. Counc. Repub. China B, 2000, 24(2), 56-62.
[PMID: 10809081]
[49]
Imamura, T.; Hikita, A.; Inoue, Y. The roles of TGF-β signaling in carcinogenesis and breast cancer metastasis. Breast Cancer, 2012, 19(2), 118-124.
[http://dx.doi.org/10.1007/s12282-011-0321-2] [PMID: 22139728]
[50]
Feng, X.H.; Derynck, R. Specificity and versatility in TGF-β signaling through SMADS. Annu. Rev. Cell Dev. Biol., 2005, 21(1), 659-693.
[http://dx.doi.org/10.1146/annurev.cellbio.21.022404.142018] [PMID: 16212511]
[51]
Kang, Y.; Siegel, P.M.; Shu, W.; Drobnjak, M.; Kakonen, S.M.; Cordón-Cardo, C.; Guise, T.A.; Massagué, J. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 2003, 3(6), 537-549.
[http://dx.doi.org/10.1016/S1535-6108(03)00132-6] [PMID: 12842083]
[52]
Katsuno, Y.; Hanyu, A.; Kanda, H.; Ishikawa, Y.; Akiyama, F.; Iwase, T.; Ogata, E.; Ehata, S.; Miyazono, K.; Imamura, T. Bone morphogenetic protein signaling enhances invasion and bone metastasis of breast cancer cells through Smad pathway. Oncogene, 2008, 27(49), 6322-6333.
[http://dx.doi.org/10.1038/onc.2008.232] [PMID: 18663362]
[53]
Chen, B.; Yuan, Y.; Sun, L.; Chen, J.; Yang, M.; Yin, Y.; Xu, Y. MKL1 mediates TGF-β induced RhoJ transcription to promote breast cancer cell migration and invasion. Front. Cell Dev. Biol., 2020, 8, 832.
[http://dx.doi.org/10.3389/fcell.2020.00832] [PMID: 32984327]
[54]
Krneta, T.; Gillgrass, A.; Poznanski, S.; Chew, M.; Lee, A.J.; Kolb, M.; Ashkar, A.A. M2-polarized and tumor-associated macrophages alter NK cell phenotype and function in a contact-dependent manner. J. Leukoc. Biol., 2017, 101(1), 285-295.
[http://dx.doi.org/10.1189/jlb.3A1215-552R] [PMID: 27493241]
[55]
Xu, L.; Xu, W.; Wen, Z.; Xiong, S. In situ prior proliferation of CD4+ CCR6+ regulatory T cells facilitated by TGF-β secreting DCs is crucial for their enrichment and suppression in tumor immunity. PLoS One, 2011, 6(5), e20282.
[http://dx.doi.org/10.1371/journal.pone.0020282] [PMID: 21655250]
[56]
Salomon, B.L.; Leclerc, M.; Tosello, J.; Ronin, E.; Piaggio, E.; Cohen, J.L. Tumor necrosis factor α and regulatory T cells in oncoimmunology. Front. Immunol., 2018, 9, 444.
[http://dx.doi.org/10.3389/fimmu.2018.00444] [PMID: 29593717]
[57]
Egelston, C.A.; Avalos, C.; Tu, T.Y.; Rosario, A.; Wang, R.; Solomon, S.; Srinivasan, G.; Nelson, M.S.; Huang, Y.; Lim, M.H.; Simons, D.L.; He, T.F.; Yim, J.H.; Kruper, L.; Mortimer, J.; Yost, S.; Guo, W.; Ruel, C.; Frankel, P.H.; Yuan, Y.; Lee, P.P. Resident memory CD8+ T cells within cancer islands mediate survival in breast cancer patients. JCI Insight, 2019, 4(19), e130000.
[http://dx.doi.org/10.1172/jci.insight.130000] [PMID: 31465302]
[58]
Selnø, A.T.H.; Schlichtner, S.; Yasinska, I.M.; Sakhnevych, S.S.; Fiedler, W.; Wellbrock, J.; Klenova, E.; Pavlova, L.; Gibbs, B.F.; Degen, M.; Schnyder, I.; Aliu, N.; Berger, S.M.; Fasler-Kan, E.; Sumbayev, V.V. Transforming growth factor beta type 1 (TGF-β) and hypoxia-inducible factor 1 (HIF-1) transcription complex as master regulators of the immunosuppressive protein galectin-9 expression in human cancer and embryonic cells. Aging (Albany NY), 2020, 12(23), 23478-23496.
[http://dx.doi.org/10.18632/aging.202343] [PMID: 33295886]
[59]
Chatterjee, S.; Chatterjee, A.; Jana, S.; Dey, S.; Roy, H.; Das, M.K.; Alam, J.; Adhikary, A.; Chowdhury, A.; Biswas, A.; Manna, D.; Bhattacharyya, A. Transforming growth factor beta orchestrates PD-L1 enrichment in tumor-derived exosomes and mediates CD8 T-cell dysfunction regulating early phosphorylation of TCR signalome in breast cancer. Carcinogenesis, 2021, 42(1), 38-47.
[http://dx.doi.org/10.1093/carcin/bgaa092] [PMID: 32832992]
[60]
Stüber, T.; Monjezi, R.; Wallstabe, L.; Kühnemundt, J.; Nietzer, S.L.; Dandekar, G.; Wöckel, A.; Einsele, H.; Wischhusen, J.; Hudecek, M. Inhibition of TGF-β-receptor signaling augments the antitumor function of ROR1-specific CAR T-cells against triple-negative breast cancer. J. Immunother. Cancer, 2020, 8(1), e000676.
[http://dx.doi.org/10.1136/jitc-2020-000676] [PMID: 32303620]
[61]
Yao, Y.; Guo, Q.; Cao, Y.; Qiu, Y.; Tan, R.; Yu, Z.; Zhou, Y.; Lu, N. Artemisinin derivatives inactivate cancer-associated fibroblasts through suppressing TGF-β signaling in breast cancer. J. Exp. Clin. Cancer Res., 2018, 37(1), 282.
[http://dx.doi.org/10.1186/s13046-018-0960-7] [PMID: 30477536]
[62]
Hanks, B.A.; Lee, J.D.; Morse, M.; Clay, T.M.; Lyerly, H.K.; Blobe, G.C. Role of the type III TGF-b receptor in mediating immunosuppression during breast cancer progression. J. Clin. Oncol., 2010, 28(15_suppl), 10577-10577.
[http://dx.doi.org/10.1200/jco.2010.28.15_suppl.10577]
[63]
Bianchini, G.; Gianni, L. The immune system and response to HER2-targeted treatment in breast cancer. Lancet Oncol., 2014, 15(2), e58-e68.
[http://dx.doi.org/10.1016/S1470-2045(13)70477-7] [PMID: 24480556]
[64]
Edechi, C.; Ikeogu, N.; Uzonna, J.; Myal, Y. Regulation of immunity in breast cancer. Cancers (Basel), 2019, 11(8), 1080.
[http://dx.doi.org/10.3390/cancers11081080] [PMID: 31366131]
[65]
Laryionava, K.; Sklenarova, H.; Heußner, P.; Haun, M.W.; Stiggelbout, A.M.; Hartmann, M.; Winkler, E.C. Cancer patients’ preferences for quantity or quality of life: German translation and validation of the quality and quantity questionnaire. Oncol. Res. Treat., 2014, 37(9), 472-478.
[http://dx.doi.org/10.1159/000366250] [PMID: 25231687]
[66]
Stiggelbout, A.M.; De Haes, J.C.J.M.; Kiebert, G.M.; Kievit, J.; Leer, J.W.H. Tradeoffs between quality and quantity of life: Development of the QQ Questionnaire for Cancer Patient Attitudes. Med. Decis. Making, 1996, 16(2), 184-192.
[http://dx.doi.org/10.1177/0272989X9601600211] [PMID: 8778537]
[67]
Shrestha, A.; Martin, C.; Burton, M.; Walters, S.; Collins, K.; Wyld, L. Quality of life versus length of life considerations in cancer patients: A systematic literature review. Psychooncology, 2019, 28(7), 1367-1380.
[http://dx.doi.org/10.1002/pon.5054] [PMID: 30838697]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy