Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Revolutionizing Cancer Treatment: Unleashing the Power of Combining Oncolytic Viruses with CAR-T Cells

In Press, (this is not the final "Version of Record"). Available online 24 July, 2024
Author(s): Lin Zhang, ShuXian Guo, ShuYing Chang and Guan Jiang*
Published on: 24 July, 2024

DOI: 10.2174/0118715206308253240723055019

Price: $95

Abstract

Oncolytic Viruses (OVs) have emerged as a promising treatment option for cancer thanks to their significant research potential and encouraging results. These viruses exert a profound impact on the tumor microenvironment, making them effective against various types of cancer. In contrast, the efficacy of Chimeric antigen receptor (CAR)-T cell therapy in treating solid tumors is relatively low. The combination of OVs and CAR-T cell therapy, however, is a promising area of research. OVs play a crucial role in enhancing the tumor-suppressive microenvironment, which in turn enables CAR-T cells to function efficiently in the context of solid malignancies. This review aims to provide a comprehensive analysis of the benefits and drawbacks of OV therapy and CAR-T cell therapy, with a focus on the potential of combining these two treatment approaches.

[1]
Jafari, M.; Kadkhodazadeh, M.; Shapourabadi, M.B.; Goradel, N.H.; Shokrgozar, M.A.; Arashkia, A.; Abdoli, S.; Sharifzadeh, Z. Immunovirotherapy: The role of antibody based therapeutics combination with oncolytic viruses. Front. Immunol., 2022, 13, 1012806.
[http://dx.doi.org/10.3389/fimmu.2022.1012806] [PMID: 36311790]
[2]
Abd-Aziz, N.; Poh, C.L. Development of oncolytic viruses for cancer therapy. Transl. Res., 2021, 237, 98-123.
[http://dx.doi.org/10.1016/j.trsl.2021.04.008] [PMID: 33905949]
[3]
Jin, KT.; Tao, XH.; Fan, YB.; Wang, SB. Crosstalk between oncolytic viruses and autophagy in cancer therapy. Biomed. Pharm., 2021, 134, 110932.
[http://dx.doi.org/10.1016/j.biopha.2020.110932]
[4]
Heidbuechel, J.P.W.; Engeland, C.E. Oncolytic viruses encoding bispecific T cell engagers: a blueprint for emerging immunovirotherapies. J. Hematol. Oncol., 2021, 14(1), 63.
[http://dx.doi.org/10.1186/s13045-021-01075-5] [PMID: 33863363]
[5]
Oh, C.M.; Chon, H.J.; Kim, C. Combination immunotherapy using oncolytic virus for the treatment of advanced solid tumors. Int. J. Mol. Sci., 2020, 21(20), 7743.
[http://dx.doi.org/10.3390/ijms21207743] [PMID: 33086754]
[6]
Burchett, R.; Walsh, S.; Wan, Y.; Bramson, J.L. A rational relationship: Oncolytic virus vaccines as functional partners for adoptive T cell therapy. Cytokine Growth Factor Rev., 2020, 56, 149-159.
[http://dx.doi.org/10.1016/j.cytogfr.2020.07.003] [PMID: 32665126]
[7]
Ghasemi, M.; Abbasi, L.; Ghanbari Naeini, L.; Kokabian, P.; Nameh, G.F.N.; Givtaj, N. Dendritic cells and natural killer cells: The road to a successful oncolytic virotherapy. Front. Immunol., 2023, 13, 950079.
[http://dx.doi.org/10.3389/fimmu.2022.950079] [PMID: 36703982]
[8]
Leber, M.F.; Neault, S.; Jirovec, E.; Barkley, R.; Said, A.; Bell, J.C.; Ungerechts, G. Engineering and combining oncolytic measles virus for cancer therapy. Cytokine Growth Factor Rev., 2020, 56, 39-48.
[http://dx.doi.org/10.1016/j.cytogfr.2020.07.005] [PMID: 32718830]
[9]
Chen, T.; Ding, X.; Liao, Q.; Gao, N.; Chen, Y.; Zhao, C.; Zhang, X.; Xu, J. IL-21 arming potentiates the anti-tumor activity of an oncolytic vaccinia virus in monotherapy and combination therapy. J. Immunother. Cancer, 2021, 9(1), e001647.
[http://dx.doi.org/10.1136/jitc-2020-001647] [PMID: 33504576]
[10]
Martin, N.T.; Bell, J.C. Oncolytic virus combination therapy: Killing one bird with two stones. Mol. Ther., 2018, 26(6), 1414-1422.
[http://dx.doi.org/10.1016/j.ymthe.2018.04.001]
[11]
Hu, P.Y.; Fan, X.M.; Zhang, Y.N.; Wang, S.B.; Wan, W.J.; Pan, H.Y.; Mou, X.Z. The limiting factors of oncolytic virus immunotherapy and the approaches to overcome them. Appl. Microbiol. Biotechnol., 2020, 104(19), 8231-8242.
[http://dx.doi.org/10.1007/s00253-020-10802-w] [PMID: 32816087]
[12]
Macedo, N.; Miller, D.M.; Haq, R.; Kaufman, H.L. Clinical landscape of oncolytic virus research in 2020. J. Immunother. Cancer, 2020, 8(2), e001486.
[http://dx.doi.org/10.1136/jitc-2020-001486] [PMID: 33046622]
[13]
Shi, T.; Song, X.; Wang, Y.; Liu, F.; Wei, J. Combining oncolytic viruses with cancer immunotherapy: Establishing a new generation of cancer treatment. Front. Immunol., 2020, 11, 683.
[http://dx.doi.org/10.3389/fimmu.2020.00683] [PMID: 32411132]
[14]
Yoo, S.Y.; Narayanasamy, B.; Heo, J. Viruses as nanomedicine for cancer. Int. J. Nanomed., 2016, 11, 4835-4847.
[http://dx.doi.org/10.2147/IJN.S116447] [PMID: 27703350]
[15]
Ogawa, M.; Yu, W.G.; Umehara, K.; Iwasaki, M.; Wijesuriya, R.; Tsujimura, T.; Kubo, T.; Fujiwara, H.; Hamaoka, T. Multiple roles of interferon-gamma in the mediation of interleukin 12-induced tumor regression. Cancer Res., 1998, 58(11), 2426-2432.
[PMID: 9622084]
[16]
Knapp, J.P.; Kakish, J.E.; Bridle, B.W.; Speicher, D.J. Tumor temperature: Friend or foe of virus-based cancer immunotherapy. Biomedicines, 2022, 10(8), 2024.
[http://dx.doi.org/10.3390/biomedicines10082024] [PMID: 36009571]
[17]
Zhu, Z.; McGray, A.J.R.; Jiang, W.; Lu, B.; Kalinski, P.; Guo, Z.S. Improving cancer immunotherapy by rationally combining oncolytic virus with modulators targeting key signaling pathways. Mol. Cancer, 2022, 21(1), 196.
[http://dx.doi.org/10.1186/s12943-022-01664-z] [PMID: 36221123]
[18]
Watanabe, D.; Goshima, F. Oncolytic virotherapy by HSV. Adv. Exp. Med. Biol., 2018, 1045, 63-84.
[http://dx.doi.org/10.1007/978-981-10-7230-7_4] [PMID: 29896663]
[19]
Arab, A.; Behravan, N.; Razazn, A.; Barati, N.; Mosaffa, F.; Nicastro, J.; Slavcev, R.; Behravan, J. The viral approach to breast cancer immunotherapy. J. Cell. Physiol., 2019, 234(2), 1257-1267.
[http://dx.doi.org/10.1002/jcp.27150] [PMID: 30146692]
[20]
Breitbach, C.J.; Lichty, B.D.; Bell, J.C. Oncolytic viruses: Therapeutics with an identity crisis. EBioMedicine, 2016, 9, 31-36.
[http://dx.doi.org/10.1016/j.ebiom.2016.06.046] [PMID: 27407036]
[21]
Feola, S.; Russo, S.; Ylösmäki, E.; Cerullo, V. Oncolytic ImmunoViroTherapy: A long history of crosstalk between viruses and immune system for cancer treatment. Pharmacol. Ther., 2022, 236, 108103.
[http://dx.doi.org/10.1016/j.pharmthera.2021.108103] [PMID: 34954301]
[22]
Nguyen, H.M.; Guz-Montgomery, K.; Saha, D. Oncolytic virus encoding a master pro-inflammatory cytokine interleukin 12 in cancer immunotherapy. Cells, 2020, 9(2), 400.
[http://dx.doi.org/10.3390/cells9020400] [PMID: 32050597]
[23]
Bommareddy, P.K.; Patel, A.; Hossain, S.; Kaufman, H.L. Talimogene laherparepvec (T-VEC) and other oncolytic viruses for the treatment of melanoma. Am. J. Clin. Dermatol., 2017, 18(1), 1-15.
[http://dx.doi.org/10.1007/s40257-016-0238-9] [PMID: 27988837]
[24]
Shen, Z.; Liu, X.; Fan, G.; Na, J.; Liu, Q.; Lin, F.; Zhang, Z.; Zhong, L. Improving the therapeutic efficacy of oncolytic viruses for cancer: targeting macrophages. J. Transl. Med., 2023, 21(1), 842.
[http://dx.doi.org/10.1186/s12967-023-04709-z] [PMID: 37993941]
[25]
Hastie, E.; Grdzelishvili, V.Z. Vesicular stomatitis virus as a flexible platform for oncolytic virotherapy against cancer. J. Gen. Virol., 2012, 93(12), 2529-2545.
[http://dx.doi.org/10.1099/vir.0.046672-0] [PMID: 23052398]
[26]
Lin, D.; Shen, Y.; Liang, T. Oncolytic virotherapy: basic principles, recent advances and future directions. Signal Transduct. Target. Ther., 2023, 8(1), 156.
[http://dx.doi.org/10.1038/s41392-023-01407-6] [PMID: 37041165]
[27]
Evgin, L.; Kottke, T.; Tonne, J.; Thompson, J.; Huff, A.L.; van Vloten, J.; Moore, M.; Michael, J.; Driscoll, C.; Pulido, J.; Swanson, E.; Kennedy, R.; Coffey, M.; Loghmani, H.; Sanchez-Perez, L.; Olivier, G.; Harrington, K.; Pandha, H.; Melcher, A.; Diaz, R.M.; Vile, R.G. Oncolytic virus–mediated expansion of dual-specific CAR T cells improves efficacy against solid tumors in mice. Sci. Transl. Med., 2022, 14(640), eabn2231.
[http://dx.doi.org/10.1126/scitranslmed.abn2231] [PMID: 35417192]
[28]
van der Woude, L.L.; Gorris, M.A.J.; Halilovic, A.; Figdor, C.G.; de Vries, I.J.M. Migrating into the Tumor: a Roadmap for T Cells. Trends Cancer, 2017, 3(11), 797-808.
[http://dx.doi.org/10.1016/j.trecan.2017.09.006] [PMID: 29120755]
[29]
Sprague, L.; Lee, J.; Hutzen, B.; Wang, P.Y.; Chen, C.Y.; Conner, J.; Braidwood, L.; Cassady, K.; Cripe, T. High mobility group box 1 influences HSV1716 spread and acts as an adjuvant to chemotherapy. Viruses, 2018, 10(3), 132.
[http://dx.doi.org/10.3390/v10030132] [PMID: 29543735]
[30]
Krysko, D.V.; Garg, A.D.; Kaczmarek, A.; Krysko, O.; Agostinis, P.; Vandenabeele, P. Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer, 2012, 12(12), 860-875.
[http://dx.doi.org/10.1038/nrc3380] [PMID: 23151605]
[31]
Evgin, L.; Vile, R.G. Parking CAR T cells in tumours: Oncolytic viruses as valets or vandals? Cancers (Basel), 2021, 13(5), 1106.
[http://dx.doi.org/10.3390/cancers13051106] [PMID: 33807553]
[32]
Kim, Y.; Clements, D.; Sterea, A.; Jang, H.; Gujar, S.; Lee, P. Dendritic cells in oncolytic virus-based anti-cancer therapy. Viruses, 2015, 7(12), 6506-6525.
[http://dx.doi.org/10.3390/v7122953] [PMID: 26690204]
[33]
Tian, Y.; Xie, D.; Yang, L. Engineering strategies to enhance oncolytic viruses in cancer immunotherapy. Signal Transduct. Target. Ther., 2022, 7(1), 117.
[http://dx.doi.org/10.1038/s41392-022-00951-x] [PMID: 35387984]
[34]
Burke, S.; Shergold, A.; Elder, M.J.; Whitworth, J.; Cheng, X.; Jin, H.; Wilkinson, R.W.; Harper, J.; Carroll, D.K. Oncolytic Newcastle disease virus activation of the innate immune response and priming of antitumor adaptive responses in vitro. Cancer Immunol. Immunother., 2020, 69(6), 1015-1027.
[http://dx.doi.org/10.1007/s00262-020-02495-x] [PMID: 32088771]
[35]
Reddy, R.; Yan, S.C.; Hasanpour, S.Z.; Hosseini-Siyanaki, M.R.; Poe, J.; Perez-Vega, C.; Chiocca, E.A.; Lucke-Wold, B. Oncolytic viral therapy: A review and promising future directions. J. Neurosurg., 2024, 140(2), 319-327.
[http://dx.doi.org/10.3171/2023.6.JNS23243] [PMID: 37877961]
[36]
Enow, J.A.; Sheikh, H.I.; Rahman, M.M. Tumor tropism of DNA viruses for oncolytic virotherapy. Viruses, 2023, 15(11), 2262.
[http://dx.doi.org/10.3390/v15112262] [PMID: 38005938]
[37]
Bommareddy, P.K.; Shettigar, M.; Kaufman, H.L. Integrating oncolytic viruses in combination cancer immunotherapy. Nat. Rev. Immunol., 2018, 18(8), 498-513.
[http://dx.doi.org/10.1038/s41577-018-0014-6] [PMID: 29743717]
[38]
Cook, M.; Chauhan, A. Clinical application of oncolytic viruses: A systematic review. Int. J. Mol. Sci., 2020, 21(20), 7505.
[http://dx.doi.org/10.3390/ijms21207505] [PMID: 33053757]
[39]
Ajina, A.; Maher, J. Prospects for combined use of oncolytic viruses and CAR T-cells. J. Immunother. Cancer, 2017, 5(1), 90.
[http://dx.doi.org/10.1186/s40425-017-0294-6] [PMID: 29157300]
[40]
Su, W.; Qiu, W.; Li, S.J.; Wang, S.; Xie, J.; Yang, Q.C.; Xu, J.; Zhang, J.; Xu, Z.; Sun, Z.J. A dual‐responsive STAT3 inhibitor nanoprodrug combined with oncolytic virus elicits synergistic antitumor immune responses by igniting pyroptosis. Adv. Mater., 2023, 35(11), 2209379.
[http://dx.doi.org/10.1002/adma.202209379] [PMID: 36545949]
[41]
Ylösmäki, E.; Cerullo, V. Design and application of oncolytic viruses for cancer immunotherapy. Curr. Opin. Biotechnol., 2020, 65, 25-36.
[http://dx.doi.org/10.1016/j.copbio.2019.11.016] [PMID: 31874424]
[42]
Chen, L.; Zuo, M.; Zhou, Q.; Wang, Y. Oncolytic virotherapy in cancer treatment: Challenges and optimization prospects. Front. Immunol., 2023, 14, 1308890.
[http://dx.doi.org/10.3389/fimmu.2023.1308890] [PMID: 38169820]
[43]
Groeneveldt, C.; van den Ende, J.; van Montfoort, N. Preexisting immunity: Barrier or bridge to effective oncolytic virus therapy? Cytokine Growth Factor Rev., 2023, 70, 1-12.
[http://dx.doi.org/10.1016/j.cytogfr.2023.01.002] [PMID: 36732155]
[44]
Roulstone, V.; Mansfield, D.; Harris, R.J.; Twigger, K.; White, C.; de Bono, J.; Spicer, J.; Karagiannis, S.N.; Vile, R.; Pandha, H.; Melcher, A.; Harrington, K. Antiviral antibody responses to systemic administration of an oncolytic RNA virus: the impact of standard concomitant anticancer chemotherapies. J. Immunother. Cancer, 2021, 9(7), e002673.
[http://dx.doi.org/10.1136/jitc-2021-002673] [PMID: 34301814]
[45]
Rivadeneira, D.B.; DePeaux, K.; Wang, Y.; Kulkarni, A.; Tabib, T.; Menk, A.V.; Sampath, P.; Lafyatis, R.; Ferris, R.L.; Sarkar, S.N.; Thorne, S.H.; Delgoffe, G.M. Oncolytic viruses engineered to enforce leptin expression reprogram tumor-infiltrating T cell metabolism and promote tumor clearance. Immunity, 2019, 51(3), 548-560.e4.
[http://dx.doi.org/10.1016/j.immuni.2019.07.003] [PMID: 31471106]
[46]
Martinez-Quintanilla, J.; He, D.; Wakimoto, H.; Alemany, R.; Shah, K. Encapsulated stem cells loaded with hyaluronidase-expressing oncolytic virus for brain tumor therapy. Mol. Ther., 2015, 23(1), 108-118.
[http://dx.doi.org/10.1038/mt.2014.204]
[47]
Andtbacka, R.H.I.; Kaufman, H.L.; Collichio, F.; Amatruda, T.; Senzer, N.; Chesney, J.; Delman, K.A.; Spitler, L.E.; Puzanov, I.; Agarwala, S.S.; Milhem, M.; Cranmer, L.; Curti, B.; Lewis, K.; Ross, M.; Guthrie, T.; Linette, G.P.; Daniels, G.A.; Harrington, K.; Middleton, M.R.; Miller, W.H., Jr; Zager, J.S.; Ye, Y.; Yao, B.; Li, A.; Doleman, S.; VanderWalde, A.; Gansert, J.; Coffin, R.S. Talimogene Laherparepvec Improves Durable Response Rate in Patients With Advanced Melanoma. J. Clin. Oncol., 2015, 33(25), 2780-2788.
[http://dx.doi.org/10.1200/JCO.2014.58.3377] [PMID: 26014293]
[48]
Todo, T.; Ito, H.; Ino, Y.; Ohtsu, H.; Ota, Y.; Shibahara, J.; Tanaka, M. Intratumoral oncolytic herpes virus G47∆ for residual or recurrent glioblastoma: A phase 2 trial. Nat. Med., 2022, 28(8), 1630-1639.
[http://dx.doi.org/10.1038/s41591-022-01897-x] [PMID: 35864254]
[49]
Rezaei, R.; Esmaeili, G.G.H.; Farzanehpour, M.; Dorostkar, R.; Ranjbar, R.; Bolandian, M.; Mirzaei, N.M.; Ghorbani, A.A. Combination therapy with CAR T cells and oncolytic viruses: A new era in cancer immunotherapy. Cancer Gene Ther., 2022, 29(6), 647-660.
[http://dx.doi.org/10.1038/s41417-021-00359-9] [PMID: 34158626]
[50]
Gagelmann, N.; Riecken, K.; Wolschke, C.; Berger, C.; Ayuk, F.A.; Fehse, B.; Kröger, N. Development of CAR-T cell therapies for multiple myeloma. Leukemia, 2020, 34(9), 2317-2332.
[http://dx.doi.org/10.1038/s41375-020-0930-x] [PMID: 32572190]
[51]
Tudor, T.; Binder, Z.A.; O’Rourke, D.M. CAR T Cells. Neurosurg. Clin. N. Am., 2021, 32(2), 249-263.
[http://dx.doi.org/10.1016/j.nec.2020.12.005] [PMID: 33781506]
[52]
Martinez, M.; Moon, E.K. CAR T cells for solid tumors: New strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front. Immunol., 2019, 10, 128.
[http://dx.doi.org/10.3389/fimmu.2019.00128] [PMID: 30804938]
[53]
Watanabe, N.; McKenna, M.K.; Rosewell Shaw, A.; Suzuki, M. Clinical CAR-T cell and oncolytic virotherapy for cancer treatment. Mol. Ther., 2021, 29(2), 505-520.
[http://dx.doi.org/10.1016/j.ymthe.2020.10.023]
[54]
Honikel, M.M.; Olejniczak, S.H. Co-stimulatory receptor signaling in CAR-T cells. Biomolecules, 2022, 12(9), 1303.
[http://dx.doi.org/10.3390/biom12091303] [PMID: 36139142]
[55]
Adachi, K.; Kano, Y.; Nagai, T.; Okuyama, N.; Sakoda, Y.; Tamada, K. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat. Biotechnol., 2018, 36(4), 346-351.
[http://dx.doi.org/10.1038/nbt.4086] [PMID: 29505028]
[56]
Dagher, O.; King, T.R.; Wellhausen, N.; Posey, A.D. Combination therapy for solid tumors: Taking a classic CAR on new adventures. Cancer Cell, 2020, 38(5), 621-623.
[http://dx.doi.org/10.1016/j.ccell.2020.10.003] [PMID: 33064993]
[57]
Abramson, J.S. Anti-CD19 CAR T-cell therapy for B-cell non-hodgkin lymphoma. Transfus. Med. Rev., 2020, 34(1), 29-33.
[http://dx.doi.org/10.1016/j.tmrv.2019.08.003] [PMID: 31677848]
[58]
McKenna, M.K.; Englisch, A.; Brenner, B.; Smith, T.; Hoyos, V.; Suzuki, M.; Brenner, M.K. Mesenchymal stromal cell delivery of oncolytic immunotherapy improves CAR-T cell antitumor activity. Mol. Ther., 2021, 29(5), 1808-1820.
[59]
Yang, C.; Hua, N.; Xie, S.; Wu, Y.; Zhu, L.; Wang, S.; Tong, X. Oncolytic viruses as a promising therapeutic strategy for hematological malignancies. Biomed. Pharm., 2021, 139, 111573.
[http://dx.doi.org/10.1016/j.biopha.2021.111573]
[60]
Ma, S.; Li, X.; Wang, X.; Cheng, L.; Li, Z.; Zhang, C.; Ye, Z.; Qian, Q. Current progress in CAR-T cell therapy for solid tumors. Int. J. Biol. Sci., 2019, 15(12), 2548-2560.
[http://dx.doi.org/10.7150/ijbs.34213] [PMID: 31754328]
[61]
Wang, L.; Yao, R.; Zhang, L.; Fan, C.; Ma, L.; Liu, J. Chimeric antigen receptor T cell therapy and other therapeutics for malignancies: Combination and opportunity. Int. Immunopharmacol., 2019, 70, 498-503.
[http://dx.doi.org/10.1016/j.intimp.2019.01.010] [PMID: 30875561]
[62]
Ukrainskaya, V.M.; Musatova, O.E.; Volkov, D.V.; Osipova, D.S.; Pershin, D.S.; Moysenovich, A.M.; Evtushenko, E.G.; Kulakovskaya, E.A.; Maksimov, E.G.; Zhang, H.; Rubtsov, Y.P.; Maschan, M.A.; Stepanov, A.V.; Gabibov, A.G. CAR-tropic extracellular vesicles carry tumor-associated antigens and modulate CAR T cell functionality. Sci. Rep., 2023, 13(1), 463.
[http://dx.doi.org/10.1038/s41598-023-27604-5] [PMID: 36627334]
[63]
He, C.; Mansilla-Soto, J.; Khanra, N.; Hamieh, M.; Bustos, V.; Paquette, A.J.; Garcia, A.A.; Shore, D.M.; Rice, W.J.; Khelashvili, G.; Sadelain, M.; Meyerson, J.R. CD19 CAR antigen engagement mechanisms and affinity tuning. Sci. Immunol., 2023, 8(81), eadf1426.
[http://dx.doi.org/10.1126/sciimmunol.adf1426] [PMID: 36867678]
[64]
Calderon, H.; Mamonkin, M.; Guedan, S. Analysis of CAR-mediated tonic signaling. Methods Mol. Biol., 2020, 2086, 223-236.
[http://dx.doi.org/10.1007/978-1-0716-0146-4_17] [PMID: 31707680]
[65]
Zhao, Z.; Chen, Y.; Francisco, N.M.; Zhang, Y.; Wu, M. The application of CAR-T cell therapy in hematological malignancies: advantages and challenges. Acta Pharm. Sin. B, 2018, 8(4), 539-551.
[http://dx.doi.org/10.1016/j.apsb.2018.03.001] [PMID: 30109179]
[66]
Castelletti, L.; Yeo, D.; van Zandwijk, N.; Rasko, J.E.J. Anti-Mesothelin CAR T cell therapy for malignant mesothelioma. Biomark. Res., 2021, 9(1), 11.
[http://dx.doi.org/10.1186/s40364-021-00264-1] [PMID: 33588928]
[67]
Zhang, C.; Liu, J.; Zhong, J.F.; Zhang, X. Engineering CAR-T cells. Biomark. Res., 2017, 5(1), 22.
[http://dx.doi.org/10.1186/s40364-017-0102-y] [PMID: 28652918]
[68]
Tang, X.Y.; Ding, Y.S.; Zhou, T.; Wang, X.; Yang, Y. Tumor-tagging by oncolytic viruses: A novel strategy for CAR-T therapy against solid tumors. Cancer Lett., 2021, 503, 69-74.
[http://dx.doi.org/10.1016/j.canlet.2021.01.014] [PMID: 33476650]
[69]
Porter, C.E.; Rosewell, S.A.; Jung, Y.; Yip, T.; Castro, P.D.; Sandulache, V.C.; Sikora, A.; Gottschalk, S.; Ittman, M.M.; Brenner, M.K. Oncolytic adenovirus armed with BiTE, cytokine, and checkpoint inhibitor enables CAR T cells to control the growth of heterogeneous tumors. Mol. Ther. J. American Soci. Gene Ther., 2020, 28(5), 1251-1262.
[http://dx.doi.org/10.1016/j.ymthe.2020.02.016]
[70]
Rosewell, S.A.; Porter, C.E.; Watanabe, N.; Tanoue, K.; Sikora, A.; Gottschalk, S.; Brenner, M.K.; Suzuki, M. Adenovirotherapy delivering cytokine and checkpoint inhibitor augments CAR T cells against metastatic head and neck cancer. Mol. Ther., 2017, 25(11), 2440-2451.
[http://dx.doi.org/10.1016/j.ymthe.2017.09.010]
[71]
Hong, M.; Clubb, J.D.; Chen, Y.Y. Engineering CAR-T cells for next-generation cancer therapy. Cancer Cell, 2020, 38(4), 473-488.
[http://dx.doi.org/10.1016/j.ccell.2020.07.005] [PMID: 32735779]
[72]
Liu, M.; López de Juan Abad, B.; Cheng, K. Cardiac fibrosis: Myofibroblast-mediated pathological regulation and drug delivery strategies. Adv. Drug Deliv. Rev., 2021, 173, 504-519.
[http://dx.doi.org/10.1016/j.addr.2021.03.021] [PMID: 33831476]
[73]
Dong, X.; Ren, J.; Amoozgar, Z.; Lee, S.; Datta, M.; Roberge, S.; Duquette, M.; Fukumura, D.; Jain, R.K. Anti-VEGF therapy improves EGFR-vIII-CAR-T cell delivery and efficacy in syngeneic glioblastoma models in mice. J. Immunother. Cancer, 2023, 11(3), e005583.
[http://dx.doi.org/10.1136/jitc-2022-005583] [PMID: 36898734]
[74]
Norberg, S.M.; Hinrichs, C.S. Engineered T cell therapy for viral and non-viral epithelial cancers. Cancer Cell, 2023, 41(1), 58-69.
[http://dx.doi.org/10.1016/j.ccell.2022.10.016] [PMID: 36400016]
[75]
Majzner, R.G.; Mackall, C.L. Tumor antigen escape from CAR T-cell therapy. Cancer Discov., 2018, 8(10), 1219-1226.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0442] [PMID: 30135176]
[76]
Depil, S.; Duchateau, P.; Grupp, S.A.; Mufti, G.; Poirot, L. ‘Off-the-shelf’ allogeneic CAR T cells: development and challenges. Nat. Rev. Drug Discov., 2020, 19(3), 185-199.
[http://dx.doi.org/10.1038/s41573-019-0051-2] [PMID: 31900462]
[77]
Chasov, V.; Zmievskaya, E.; Ganeeva, I.; Gilyazova, E.; Davletshin, D.; Khaliulin, M.; Kabwe, E.; Davidyuk, Y.N.; Valiullina, A.; Bulatov, E. Immunotherapy strategy for systemic autoimmune diseases: Betting on CAR-T cells and antibodies. Antibodies (Basel, Switzerland), 2024, 13(1), 10.
[http://dx.doi.org/10.3390/antib13010010] [PMID: 38390871]
[78]
Khan, A.N.; Chowdhury, A.; Karulkar, A.; Jaiswal, A.K.; Banik, A.; Asija, S.; Purwar, R. Immunogenicity of CAR-T cell therapeutics: Evidence, mechanism and mitigation. Front. Immunol., 2022, 13, 886546.
[http://dx.doi.org/10.3389/fimmu.2022.886546] [PMID: 35677038]
[79]
Chen, Y.J.; Abila, B.; Mostafa Kamel, Y. CAR-T: What Is Next? Cancers (Basel), 2023, 15(3), 663.
[http://dx.doi.org/10.3390/cancers15030663] [PMID: 36765623]
[80]
Arjomandnejad, M.; Kopec, A.L.; Keeler, A.M. CAR-T regulatory (CAR-Treg) cells: Engineering and applications. Biomedicines, 2022, 10(2), 287.
[http://dx.doi.org/10.3390/biomedicines10020287] [PMID: 35203496]
[81]
Delgoffe, G.M.; Xu, C.; Mackall, C.L.; Green, M.R.; Gottschalk, S.; Speiser, D.E.; Zehn, D.; Beavis, P.A. The role of exhaustion in CAR T cell therapy. Cancer Cell, 2021, 39(7), 885-888.
[http://dx.doi.org/10.1016/j.ccell.2021.06.012] [PMID: 34256903]
[82]
Bao, C.; Gao, Q.; Li, L.L.; Han, L.; Zhang, B.; Ding, Y.; Song, Z.; Zhang, R.; Zhang, J.; Wu, X.H. The Application of Nanobody in CAR-T Therapy. Biomolecules, 2021, 11(2), 238.
[http://dx.doi.org/10.3390/biom11020238] [PMID: 33567640]
[83]
Sheth, V.S.; Gauthier, J. Taming the beast: CRS and ICANS after CAR T-cell therapy for ALL. Bone Marrow Transplant., 2021, 56(3), 552-566.
[http://dx.doi.org/10.1038/s41409-020-01134-4] [PMID: 33230186]
[84]
Hayden, P.J.; Roddie, C.; Bader, P.; Basak, G.W.; Bonig, H.; Bonini, C.; Chabannon, C.; Ciceri, F.; Corbacioglu, S.; Ellard, R.; Sanchez-Guijo, F.; Jäger, U.; Hildebrandt, M.; Hudecek, M.; Kersten, M.J.; Köhl, U.; Kuball, J.; Mielke, S.; Mohty, M.; Murray, J.; Nagler, A.; Rees, J.; Rioufol, C.; Saccardi, R.; Snowden, J.A.; Styczynski, J.; Subklewe, M.; Thieblemont, C.; Topp, M.; Ispizua, Á.U.; Chen, D.; Vrhovac, R.; Gribben, J.G.; Kröger, N.; Einsele, H.; Yakoub-Agha, I. Management of adults and children receiving CAR T-cell therapy: 2021 best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE) and the European Haematology Association (EHA). Ann. Oncol., 2022, 33(3), 259-275.
[http://dx.doi.org/10.1016/j.annonc.2021.12.003] [PMID: 34923107]
[85]
Schubert, M.L.; Schmitt, M.; Wang, L.; Ramos, C.A.; Jordan, K.; Müller-Tidow, C.; Dreger, P. Side-effect management of chimeric antigen receptor (CAR) T-cell therapy. Ann. Oncol., 2021, 32(1), 34-48.
[http://dx.doi.org/10.1016/j.annonc.2020.10.478] [PMID: 33098993]
[86]
Ahmad, A. CAR-T Cell Therapy. Int. J. Mol. Sci., 2020, 21(12), 4303.
[http://dx.doi.org/10.3390/ijms21124303] [PMID: 32560285]
[87]
Coppola, C.; Hopkins, B.; Huhn, S.; Du, Z.; Huang, Z.; Kelly, W.J. Investigation of the Impact from IL-2, IL-7, and IL-15 on the Growth and Signaling of Activated CD4+ T Cells. Int. J. Mol. Sci., 2020, 21(21), 7814.
[http://dx.doi.org/10.3390/ijms21217814] [PMID: 33105566]
[88]
Xu, J.; Wang, Y.; Shi, J.; Liu, J.; Li, Q.; Chen, L. Combination therapy: A feasibility strategy for CAR T cell therapy in the treatment of solid tumors. (Review) Oncol. Lett., 2018, 16(2), 2063-2070.
[http://dx.doi.org/10.3892/ol.2018.8946] [PMID: 30008901]
[89]
Berkey, S.E.; Thorne, S.H.; Bartlett, D.L. Oncolytic virotherapy and the tumor microenvironment. Adv. Exp. Med. Biol., 2017, 1036, 157-172.
[http://dx.doi.org/10.1007/978-3-319-67577-0_11] [PMID: 29275471]
[90]
Wenthe, J.; Naseri, S.; Labani-Motlagh, A.; Enblad, G.; Wikström, K.I.; Eriksson, E.; Loskog, A.; Lövgren, T.; Boosting, CAR. T-cell responses in lymphoma by simultaneous targeting of CD40/4-1BB using oncolytic viral gene therapy. Cancer Immunol. Immunother., 2021, 70(10), 2851-2865.
[http://dx.doi.org/10.1007/s00262-021-02895-7] [PMID: 33666760]
[91]
Nishio, N.; Dotti, G. Oncolytic virus expressing RANTES and IL-15 enhances function of CAR-modified T cells in solid tumors. OncoImmunology, 2015, 4(2), e988098.
[http://dx.doi.org/10.4161/21505594.2014.988098] [PMID: 25949885]
[92]
Zhang, Z.; Wang, T.; Wang, X.; Zhang, Y.; Song, S.; Ma, C. Improving the ability of CAR-T cells to hit solid tumors: Challenges and strategies. Pharmacol. Res., 2022, 175, 106036.
[http://dx.doi.org/10.1016/j.phrs.2021.106036] [PMID: 34920118]
[93]
McGrath, K.; Dotti, G. Combining oncolytic viruses with chimeric antigen receptor T cell therapy. Hum. Gene Ther., 2021, 32(3-4), 150-157.
[http://dx.doi.org/10.1089/hum.2020.278] [PMID: 33349123]
[94]
Wei, J.; Guo, Y.; Wang, Y.; Wu, Z.; Bo, J.; Zhang, B.; Zhu, J.; Han, W. Clinical development of CAR T cell therapy in China: 2020 update. Cell. Mol. Immunol., 2021, 18(4), 792-804.
[http://dx.doi.org/10.1038/s41423-020-00555-x] [PMID: 32999455]
[95]
Evgin, L.; Huff, A.L.; Wongthida, P.; Thompson, J.; Kottke, T.; Tonne, J.; Schuelke, M.; Ayasoufi, K.; Driscoll, C.B.; Shim, K.G.; Reynolds, P.; Monie, D.D.; Johnson, A.J.; Coffey, M.; Young, S.L.; Archer, G.; Sampson, J.; Pulido, J.; Perez, L.S.; Vile, R. Oncolytic virus-derived type I interferon restricts CAR T cell therapy. Nat. Commun., 2020, 11(1), 3187.
[http://dx.doi.org/10.1038/s41467-020-17011-z] [PMID: 32581235]
[96]
Chalise, L.; Kato, A.; Ohno, M.; Maeda, S.; Yamamichi, A.; Kuramitsu, S.; Shiina, S.; Takahashi, H.; Ozone, S.; Yamaguchi, J.; Kato, Y.; Rockenbach, Y.; Natsume, A.; Todo, T. Efficacy of cancer-specific anti-podoplanin CAR-T cells and oncolytic herpes virus G47Δ combination therapy against glioblastoma. Mol. Ther. Oncolytics, 2022, 26, 265-274.
[http://dx.doi.org/10.1016/j.omto.2022.07.006] [PMID: 35991754]
[97]
Buijs, P.R.A.; Verhagen, J.H.E.; van Eijck, C.H.J.; van den Hoogen, B.G. Oncolytic viruses: From bench to bedside with a focus on safety. Hum. Vaccin. Immunother., 2015, 11(7), 1573-1584.
[http://dx.doi.org/10.1080/21645515.2015.1037058] [PMID: 25996182]
[98]
Kelly, E.; Russell, S.J. History of oncolytic viruses: Genesis to genetic engineering. Mol. Ther., 2007, 15(4), 651-659.
[http://dx.doi.org/10.1038/sj.mt.6300108]
[99]
Galanis, E. Therapeutic potential of oncolytic measles virus: promises and challenges. Clin. Pharmacol. Ther., 2010, 88(5), 620-625.
[http://dx.doi.org/10.1038/clpt.2010.211] [PMID: 20881957]
[100]
Fang, L.; Tian, W.; Zhang, C.; Wang, X.; Li, W.; Zhang, Q.; Zhang, Y.; Zheng, J. Oncolytic adenovirus-mediated expression of CCL5 and IL12 facilitates CA9-targeting CAR-T therapy against renal cell carcinoma. Pharmacol. Res., 2023, 189, 106701.
[http://dx.doi.org/10.1016/j.phrs.2023.106701] [PMID: 36796464]
[101]
Liu, W.; Wang, X.; Feng, X.; Yu, J.; Liu, X.; Jia, X.; Zhang, H.; Wu, H.; Wang, C.; Wu, J.; Yu, B.; Yu, X. Oncolytic adenovirus-mediated intratumoral expression of TRAIL and CD40L enhances immunotherapy by modulating the tumor microenvironment in immunocompetent mouse models. Cancer Lett., 2022, 535, 215661.
[http://dx.doi.org/10.1016/j.canlet.2022.215661] [PMID: 35325845]
[102]
Samson, A.; West, E.J.; Carmichael, J.; Scott, K.J.; Turnbull, S.; Kuszlewicz, B.; Dave, R.V.; Peckham-Cooper, A.; Tidswell, E.; Kingston, J.; Johnpulle, M.; da Silva, B.; Jennings, V.A.; Bendjama, K.; Stojkowitz, N.; Lusky, M.; Prasad, K.R.; Toogood, G.J.; Auer, R.; Bell, J.; Twelves, C.J.; Harrington, K.J.; Vile, R.G.; Pandha, H.; Errington-Mais, F.; Ralph, C.; Newton, D.J.; Anthoney, A.; Melcher, A.A.; Collinson, F. Neoadjuvant intravenous oncolytic vaccinia virus therapy promotes anticancer immunity in patients. Cancer Immunol. Res., 2022, 10(6), 745-756.
[http://dx.doi.org/10.1158/2326-6066.CIR-21-0171] [PMID: 35439304]
[103]
Advani, S.J.; Buckel, L.; Chen, N.G.; Scanderbeg, D.J.; Geissinger, U.; Zhang, Q.; Yu, Y.A.; Aguilar, R.J.; Mundt, A.J.; Szalay, A.A. Preferential replication of systemically delivered oncolytic vaccinia virus in focally irradiated glioma xenografts. Clin. Cancer Res., 2012, 18(9), 2579-2590.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2394] [PMID: 22379115]
[104]
Cheng, X.; Wang, W.; Xu, Q.; Harper, J.; Carroll, D.; Galinski, M.S.; Suzich, J.; Jin, H. Genetic modification of oncolytic newcastle disease virus for cancer therapy. J. Virol., 2016, 90(11), 5343-5352.
[http://dx.doi.org/10.1128/JVI.00136-16] [PMID: 27009956]
[105]
Xu, Q.; Rangaswamy, U.S.; Wang, W.; Robbins, S.H.; Harper, J.; Jin, H.; Cheng, X. Evaluation of Newcastle disease virus mediated dendritic cell activation and cross‐priming tumor‐specific immune responses ex vivo. Int. J. Cancer, 2020, 146(2), 531-541.
[http://dx.doi.org/10.1002/ijc.32694] [PMID: 31584185]
[106]
Tanoue, K.; Rosewell Shaw, A.; Watanabe, N.; Porter, C.; Rana, B.; Gottschalk, S.; Brenner, M.; Suzuki, M. Armed oncolytic adenovirus–expressing PD-L1 mini-body enhances antitumor effects of chimeric antigen receptor T cells in solid tumors. Cancer Res., 2017, 77(8), 2040-2051.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1577] [PMID: 28235763]
[107]
Yang, Y.; Xu, W.; Peng, D.; Wang, H.; Zhang, X.; Wang, H.; Xiao, F.; Zhu, Y.; Ji, Y.; Gulukota, K.; Helseth, D.L., Jr; Mangold, K.A.; Sullivan, M.; Kaul, K.; Wang, E.; Prabhakar, B.S.; Li, J.; Wu, X.; Wang, L.; Seth, P. An oncolytic adenovirus targeting transforming growth factor β inhibits protumorigenic signals and produces immune activation: A novel approach to enhance anti-PD-1 and anti-CTLA-4 therapy. Hum. Gene Ther., 2019, 30(9), 1117-1132.
[http://dx.doi.org/10.1089/hum.2019.059] [PMID: 31126191]
[108]
Nishio, N.; Diaconu, I.; Liu, H.; Cerullo, V.; Caruana, I.; Hoyos, V.; Bouchier-Hayes, L.; Savoldo, B.; Dotti, G. Armed oncolytic virus enhances immune functions of chimeric antigen receptor-modified T cells in solid tumors. Cancer Res., 2014, 74(18), 5195-5205.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0697] [PMID: 25060519]
[109]
Watanabe, K.; Luo, Y.; Da, T.; Guedan, S.; Ruella, M.; Scholler, J.; Keith, B.; Young, R.M.; Engels, B.; Sorsa, S.; Siurala, M.; Havunen, R.; Tähtinen, S.; Hemminki, A.; June, C.H. Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor T cells and cytokine-armed oncolytic adenoviruses. JCI Insight, 2018, 3(7), e99573.
[http://dx.doi.org/10.1172/jci.insight.99573] [PMID: 29618658]
[110]
Wing, A.; Fajardo, C.A.; Posey, A.D., Jr; Shaw, C.; Da, T.; Young, R.M.; Alemany, R.; June, C.H.; Guedan, S. Improving CART-cell therapy of solid tumors with oncolytic virus–driven production of a bispecific T-cell engager. Cancer Immunol. Res., 2018, 6(5), 605-616.
[http://dx.doi.org/10.1158/2326-6066.CIR-17-0314] [PMID: 29588319]
[111]
Park, A.K.; Fong, Y.; Kim, S.I.; Yang, J.; Murad, J.P.; Lu, J.; Jeang, B.; Chang, W.C.; Chen, N.G.; Thomas, S.H.; Forman, S.J.; Priceman, S.J. Effective combination immunotherapy using oncolytic viruses to deliver CAR targets to solid tumors. Sci. Transl. Med., 2020, 12(559), eaaz1863.
[http://dx.doi.org/ 10.1126/scitranslmed.aaz1863] [PMID: 32878978]
[112]
Zhang, A.Q.; Hostetler, A.; Chen, L.E.; Mukkamala, V.; Abraham, W.; Padilla, L.T.; Wolff, A.N.; Maiorino, L.; Backlund, C.M.; Aung, A.; Melo, M.; Li, N.; Wu, S.; Irvine, D.J. Universal redirection of CAR T cells against solid tumours via membrane-inserted ligands for the CAR. Nat. Biomed. Eng., 2023, 7(9), 1113-1128.
[http://dx.doi.org/10.1038/s41551-023-01048-8] [PMID: 37291434]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy