Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Advances in N-Arylation of Heterocycles in the Past Decade

In Press, (this is not the final "Version of Record"). Available online 24 July, 2024
Author(s): Xun Yang, Haiyan Li, Quan Jiang, Zhiguo Lei, Yuxuan Xiao, Jialing Liu, Wengui Duan* and Lin Yu*
Published on: 24 July, 2024

DOI: 10.2174/0113852728320325240710053300

Price: $95

Abstract

N-arylated heterocycles are a significant class of core scaffolds in medicinal chemistry, materials science, and agrochemistry, highlighting their importance in various fields. The development of innovative methodologies for synthesizing these fundamental structures has been a central focus in organic synthesis. Over the past few decades, numerous approaches have been established to synthesize N-aryl heterocycles efficiently. Among these methods, the direct N-arylation of N-H heterocycles stands out as one of the most straightforward and robust strategies for accessing N-arylated heterocycles. This review provides a comprehensive review of the recent advances in the synthesis of N-arylated heterocycles, encompassing the relevant literature from the past decade. The review summarizes the N-arylation of N-H heterocycles using various catalytic systems, including palladium, nickel, copper, visible light-induced metal-catalyzed, and metal-free catalyzed methodologies. These advances highlighted the continuous evolution and optimization of synthetic strategies to create diverse and complex N-arylated heterocycles, which are pivotal for furthering research and development in multiple scientific domains.

[1]
Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y.N.; Al-aizari, F.A.; Ansar, M. Synthesis and pharmacological activities of pyrazole derivatives: a review. Molecules, 2018, 23(1), 134.
[http://dx.doi.org/10.3390/molecules23010134] [PMID: 29329257]
[2]
Tripathi, G.; Singh, A.K.; Kumar, A. Arylpyrazoles: Heterocyclic scaffold of immense therapeutic application. Curr. Org. Chem., 2020, 24(14), 1555-1581.
[http://dx.doi.org/10.2174/1570179417999200628035645]
[3]
Mermer, A.; Keles, T.; Sirin, Y. Recent studies of nitrogen containing heterocyclic compounds as novel antiviral agents: A review. Bioorg. Chem., 2021, 114, 105076.
[http://dx.doi.org/10.1016/j.bioorg.2021.105076] [PMID: 34157555]
[4]
Bansal, Y.; Minhas, R.; Singhal, A.; Arora, R.K.; Bansal, G. Benzimidazole: a multifacted nucelus for anticancer agents. Curr. Org. Chem., 2021, 25(6), 669-694.
[http://dx.doi.org/10.2174/1385272825666210208141107]
[5]
Hashem, H.E.; El Bakri, Y. An overview on novel synthetic approaches and medicinal applications of benzimidazole compounds. Arab. J. Chem., 2021, 14(11), 103418.
[http://dx.doi.org/10.1016/j.arabjc.2021.103418]
[6]
Mir, R.H. Mohi-ud-din, R.; Wani, T.U.; Dar, M.O.; Shah, A.J.; Lone, B.; Pooja, C.; Masoodi, M.H. Indole: A privileged heterocyclic moiety in the management of cancer. Curr. Org. Chem., 2021, 25(6), 724-736.
[http://dx.doi.org/10.2174/1385272825666210208142108]
[7]
Rani, M.; Utreja, D.; Sharma, S. Role of indole derivatives in agrochemistry: synthesis and future insights. Curr. Org. Chem., 2022, 26(7), 651-678.
[http://dx.doi.org/10.2174/1385272826666220426103835]
[8]
Mondal, D.; Kalar, P.L.; Kori, S.; Gayen, S.; Das, K. Recent developments on synthesis of indole derivatives through green approaches and their pharmaceutical applications. Curr. Org. Chem., 2020, 24(22), 2665-2693.
[http://dx.doi.org/10.2174/1385272824999201111203812]
[9]
Allen, L.A.T.; Natho, P. Trends in carbazole synthesis – an update (2013–2023). Org. Biomol. Chem., 2023, 21(45), 8956-8974.
[http://dx.doi.org/10.1039/D3OB01605F] [PMID: 37906471]
[10]
Hou, W.; Dai, W.; Huang, H.; Liu, S.L.; Liu, J.; Huang, L.J.; Huang, X.H.; Zeng, J.L.; Gan, Z.W.; Zhang, Z.Y.; Lan, J.X. Pharmacological activity and mechanism of pyrazines. Eur. J. Med. Chem., 2023, 258, 115544.
[http://dx.doi.org/10.1016/j.ejmech.2023.115544] [PMID: 37300915]
[11]
Singh, S.; Tahlan, S.; Singh, K.; Verma, P.K. Synthetic update on antimicrobial potential of novel pyrazole derivatives: a review. Curr. Org. Chem., 2024, 28(5), 325-345.
[http://dx.doi.org/10.2174/0113852728292094240216045039]
[12]
Boyd, E.M.; Sperry, J. Total synthesis of (-)-aspergilazine A. Org. Lett., 2014, 16(19), 5056-5059.
[http://dx.doi.org/10.1021/ol5024097] [PMID: 25248025]
[13]
Wyche, T.P.; Ruzzini, A.C.; Schwab, L.; Currie, C.R.; Clardy, J. Tryptorubin a: A polycyclic peptide from a fungus-derived streptomycete. J. Am. Chem. Soc., 2017, 139(37), 12899-12902.
[http://dx.doi.org/10.1021/jacs.7b06176] [PMID: 28853867]
[14]
Tasler, S.; Bringmann, G. Biarylic biscarbazole alkaloids: occurrence, stereochemistry, synthesis, and bioactivity. Chem. Rec., 2002, 2(2), 113-126.
[http://dx.doi.org/10.1002/tcr.10014] [PMID: 12001210]
[15]
Ahmad, S.; Alam, O.; Naim, M.J.; Shaquiquzzaman, M.; Alam, M.M.; Iqbal, M. Pyrrole: An insight into recent pharmacological advances with structure activity relationship. Eur. J. Med. Chem., 2018, 157, 527-561.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.002] [PMID: 30119011]
[16]
Li Petri, G.; Spanò, V.; Spatola, R.; Holl, R.; Raimondi, M.V.; Barraja, P.; Montalbano, A. Bioactive pyrrole-based compounds with target selectivity. Eur. J. Med. Chem., 2020, 208, 112783.
[http://dx.doi.org/10.1016/j.ejmech.2020.112783] [PMID: 32916311]
[17]
Kulkarni, A.; Soni, I.; Kelkar, D.S.; Dharmaraja, A.T.; Sankar, R.K.; Beniwal, G.; Rajendran, A.; Tamhankar, S.; Chopra, S.; Kamat, S.S.; Chakrapani, H. Chemoproteomics of an indole-based quinone epoxide identifies druggable vulnerabilities in vancomycin-resistant Staphylococcus aureus. J. Med. Chem., 2019, 62(14), 6785-6795.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00774] [PMID: 31241934]
[18]
Puxeddu, M.; Shen, H.; Bai, R.; Coluccia, A.; Bufano, M.; Nalli, M.; Sebastiani, J.; Brancaccio, D.; Da Pozzo, E.; Tremolanti, C.; Martini, C.; Orlando, V.; Biagioni, S.; Sinicropi, M.S.; Ceramella, J.; Iacopetta, D.; Coluccia, A.M.L.; Hamel, E.; Liu, T.; Silvestri, R.; La Regina, G. Discovery of pyrrole derivatives for the treatment of glioblastoma and chronic myeloid leukemia. Eur. J. Med. Chem., 2021, 221, 113532.
[http://dx.doi.org/10.1016/j.ejmech.2021.113532] [PMID: 34052717]
[19]
Andersen, K.; Liljefors, T.; Hyttel, J.; Perregaard, J. Serotonin 5-HT2 receptor, dopamine D2 receptor, and α 1 adrenoceptor antagonists. Conformationally flexible analogues of the atypical antipsychotic sertindole. J. Med. Chem., 1996, 39(19), 3723-3738.
[http://dx.doi.org/10.1021/jm960159f] [PMID: 8809161]
[20]
Xu, H.; Liu, W.Q.; Fan, L.L.; Chen, Y.; Yang, L.M.; Lv, L.; Zheng, Y.T. Synthesis and HIV-1 integrase inhibition activity of some N-arylindoles. Chem. Pharm. Bull. (Tokyo), 2008, 56(5), 720-722.
[http://dx.doi.org/10.1248/cpb.56.720] [PMID: 18451566]
[21]
Tao, Y.; Yang, C.; Qin, J. Organic host materials for phosphorescent organic light-emitting diodes. Chem. Soc. Rev., 2011, 40(5), 2943-2970.
[http://dx.doi.org/10.1039/c0cs00160k] [PMID: 21369622]
[22]
Wu, Y.; Li, Y.; Gardner, S.; Ong, B.S. Indolo[3,2-b]carbazole-based thin-film transistors with high mobility and stability. J. Am. Chem. Soc., 2005, 127(2), 614-618.
[http://dx.doi.org/10.1021/ja0456149] [PMID: 15643885]
[23]
Shang, T.Y.; Lu, L.H.; Cao, Z.; Liu, Y.; He, W.M.; Yu, B. Recent advances of 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) in photocatalytic transformations. Chem. Commun. (Camb.), 2019, 55(38), 5408-5419.
[http://dx.doi.org/10.1039/C9CC01047E] [PMID: 31020957]
[24]
Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature, 2012, 492(7428), 234-238.
[http://dx.doi.org/10.1038/nature11687] [PMID: 23235877]
[25]
Huang, Z.; Chen, Z.; Jiang, Y.; Li, N.; Yang, S.; Wang, G.; Pan, X. Metal-free hydrosilylation polymerization by merging photoredox and hydrogen atom transfer catalysis. J. Am. Chem. Soc., 2021, 143(45), 19167-19177.
[http://dx.doi.org/10.1021/jacs.1c09263] [PMID: 34738793]
[26]
Kamboj, M.; Bajpai, S.; Banik, B.K. Microwave-induced reactions for pyrrole synthesis. Curr. Org. Chem., 2023, 27(7), 559-567.
[http://dx.doi.org/10.2174/1385272827666230508124450]
[27]
Beifuss, U.; Moustafa, A.; Malakar, C.; Aljaar, N.; Merisor, E.; Conrad, J. Microwave-assisted molybdenum-catalyzed reductive cyclization of o-Nitrobenzylidene amines to 2-aryl-2H-Indazoles. Synlett, 2013, 24(12), 1573-1577.
[http://dx.doi.org/10.1055/s-0033-1339195]
[28]
Singh, D.; Devi, N.; Kumar, V.; Malakar, C.C.; Mehra, S.; Rawal, R.K.; Kaith, B.S.; Singh, V. Metal-free 1,3-dipolar cycloaddition approach towards the regioselective synthesis of β-carboline and isoxazole based molecular hybrids. RSC Advances, 2016, 6(91), 88066-88076.
[http://dx.doi.org/10.1039/C6RA15875G]
[29]
Singh, D.; Kumar, V.; Devi, N.; Malakar, C.C.; Shankar, R.; Singh, V. Metal–free decarboxylative amination: an alternative approach towards regioselective synthesis of β-carboline N-fused imidazoles. Adv. Synth. Catal., 2017, 359(7), 1213-1226.
[http://dx.doi.org/10.1002/adsc.201600970]
[30]
Gujjarappa, R.; Vodnala, N.; Kabi, A.; Kaldhi, D.; Kumar, M.; Beifuss, U.; Malakar, C. Efficient syntheses of diverse N-heterocycles: The molybdenum (vi)-catalyzed reductive cyclization of nitroarenes using pinacol as a deoxygenating agent. SynOpen, 2018, 2(2), 0138-0144.
[http://dx.doi.org/10.1055/s-0036-1591572]
[31]
Iqbal, S.; Rasheed, H.; Awan, R.J.; Awan, R.J.; Mukhtar, A.; Moloney, M.G. Recent advances in the synthesis of pyrroles. Curr. Org. Chem., 2020, 24(11), 1196-1229.
[http://dx.doi.org/10.2174/1385272824999200528125651]
[32]
Chebieb, A.; Kim, Y.G.; Cha, J.K. Synthesis of Indoles from o-Haloanilines. J. Org. Chem., 2023, 88(14), 10164-10170.
[http://dx.doi.org/10.1021/acs.joc.3c01047] [PMID: 37410990]
[33]
Kumar, S.; Kumar, R.; Malakar, C.C.; Singh, V. Copper catalysed regioselective synthesis of pyrimidine substituted Indolizino[8,7-b]indole derivatives via cascade A3 annulation. Tetrahedron, 2023, 142, 133547.
[http://dx.doi.org/10.1016/j.tet.2023.133547]
[34]
Patel, C.K.; Gujjarappa, R.; Kant, K.; Ghanta, S.; Singh, V.; Kabi, A.K.; Al-Zaqri, N.; Malakar, C.C. Copper-catalyzed c(sp3)− functionalization and annulation of 2-bromoaryl oximes with active methylene compounds towards synthesis of isoquinoline N-oxides. Adv. Synth. Catal., 2023, 365(13), 2203-2210.
[http://dx.doi.org/10.1002/adsc.202300217]
[35]
Singh, L.S.; Kant, K.; Banerjee, S.; Sengupta, R.; AlObaid, A.A.; Pal, M.; Dutta, S.; Aljaar, N.; Malakar, C.C. The γ-valerolactone (GVL) as innoxious reaction media for the synthesis of 2-aryl-2H-indazoles via C-N and N-N bond formation under Cu(I)-catalyzed ligand and base free conditions. Polycyl. Arom. Comp, 2023, 2023, 1-12.
[http://dx.doi.org/10.1080/10406638.2023.2257846]
[36]
Singh, D.; Sharma, S.; Thakur, R.K. Vaishali; Nain, S.; Jyoti; Malakar, C.C.; Singh, V. Cu-catalysed diversity-oriented synthesis of isoxazole and imidazo[1,2-a]azine conjugates. Tetrahedron, 2024, 152, 133809.
[http://dx.doi.org/10.1016/j.tet.2023.133809]
[37]
He, L.; Xu, Y. Palladium-catalyzed synthesis of carbazoles by perester. Adv. Synth. Catal., 2022, 364(14), 2352-2357.
[http://dx.doi.org/10.1002/adsc.202200419]
[38]
Points, G.L., III; Beaudry, C.M. Regioselective synthesis of substituted carbazoles, bicarbazoles, and clausine c. Org. Lett., 2021, 23(17), 6882-6885.
[http://dx.doi.org/10.1021/acs.orglett.1c02449] [PMID: 34424701]
[39]
Lintott, M.; Perry, A. Straightforward synthesis of N -arylindoles via one-pot Fischer indolisation–indole N -arylation. RSC Advances, 2023, 13(23), 15993-15997.
[http://dx.doi.org/10.1039/D3RA02658B] [PMID: 37250219]
[40]
Hieu, T.T.; Dung, V.C.; Chung, N.T.; Duc, D.X. Recent achievement in the synthesis of imidazoles. Curr. Org. Chem., 2023, 27(16), 1398-1446.
[http://dx.doi.org/10.2174/0113852728259414231010050749]
[41]
Roughley, S.D.; Jordan, A.M. The medicinal chemist’s toolbox: an analysis of reactions used in the pursuit of drug candidates. J. Med. Chem., 2011, 54(10), 3451-3479.
[http://dx.doi.org/10.1021/jm200187y] [PMID: 21504168]
[42]
Dorel, R.; Grugel, C.P.; Haydl, A.M. The Buchwald–Hartwig amination after 25 years. Angew. Chem. Int. Ed., 2019, 58(48), 17118-17129.
[http://dx.doi.org/10.1002/anie.201904795] [PMID: 31166642]
[43]
Forero-Cortés, P.A.; Haydl, A.M. The 25th anniversary of the Buchwald–Hartwig amination: development, applications, and outlook. Org. Process Res. Dev., 2019, 23(8), 1478-1483.
[http://dx.doi.org/10.1021/acs.oprd.9b00161]
[44]
Heravi, M.M.; Kheilkordi, Z.; Zadsirjan, V.; Heydari, M.; Malmir, M. Buchwald-Hartwig reaction: An overview. J. Organomet. Chem., 2018, 861, 17-104.
[http://dx.doi.org/10.1016/j.jorganchem.2018.02.023]
[45]
Kunz, K.; Scholz, U.; Ganzer, D. Renaissance of Ullmann and goldberg reactions - progress in copper catalyzed C-N-, C-O- and C-S-coupling. Synlett, 2003, 2003(15), 2428-2439.
[http://dx.doi.org/10.1055/s-2003-42473]
[46]
Sambiagio, C.; Marsden, S.P.; Blacker, A.J.; McGowan, P.C. Copper catalysed Ullmann type chemistry: from mechanistic aspects to modern development. Chem. Soc. Rev., 2014, 43(10), 3525-3550.
[http://dx.doi.org/10.1039/C3CS60289C] [PMID: 24585151]
[47]
Chen, J.Q.; Li, J.H.; Dong, Z.B. A review on the latest progress of Chan-Lam coupling reaction. Adv. Synth. Catal., 2020, 362(16), 3311-3331.
[http://dx.doi.org/10.1002/adsc.202000495]
[48]
Munir, I.; Zahoor, A.F.; Rasool, N.; Naqvi, S.A.R.; Zia, K.M.; Ahmad, R. Synthetic applications and methodology development of Chan–Lam coupling: a review. Mol. Divers., 2019, 23(1), 215-259.
[http://dx.doi.org/10.1007/s11030-018-9870-z] [PMID: 30159807]
[49]
West, M.J.; Fyfe, J.W.B.; Vantourout, J.C.; Watson, A.J.B. Mechanistic development and recent applications of the Chan–Lam amination. Chem. Rev., 2019, 119(24), 12491-12523.
[http://dx.doi.org/10.1021/acs.chemrev.9b00491] [PMID: 31756093]
[50]
Hisana, K.N.; Afsina, C.M.A.; Anilkumar, G. Copper-catalyzed N -arylation of pyrroles: an overview. New J. Chem., 2021, 45(37), 17061-17076.
[http://dx.doi.org/10.1039/D1NJ02638K]
[51]
Marín, M.; Rama, R.J.; Nicasio, M.C. Ni-catalyzed amination reactions: an overview. Chem. Rec., 2016, 16(4), 1819-1832.
[http://dx.doi.org/10.1002/tcr.201500305] [PMID: 27265724]
[52]
Hayler, J.D.; Leahy, D.K.; Simmons, E.M. A pharmaceutical industry perspective on sustainable metal catalysis. Organometallics, 2019, 38(1), 36-46.
[http://dx.doi.org/10.1021/acs.organomet.8b00566]
[53]
Gujjarappa, R.; Vodnala, N.; Malakar, C.C. Comprehensive strategies for the synthesis of isoquinolines: progress since 2008. Adv. Synth. Catal., 2020, 362(22), 4896-4990.
[http://dx.doi.org/10.1002/adsc.202000658]
[54]
Gujjarappa, R.; Vodnala, N.; Malakar, C.C. Recent advances in pyridine-based organocatalysis and its application towards valuable chemical transformations. ChemistrySelect, 2020, 5(28), 8745-8758.
[http://dx.doi.org/10.1002/slct.202002765]
[55]
Reetu, R.; Gujjarappa, R.; Malakar, C.C. Recent advances in synthesis and medicinal evaluation of 1,2-benzothiazine analogues. Asian J. Org. Chem., 2022, 11(8), e202200163.
[http://dx.doi.org/10.1002/ajoc.202200163]
[56]
Malakar, C.C.; Dell’Amico, L.; Zhang, W. Dual catalysis in organic synthesis: current challenges and new trends. Eur. J. Org. Chem., 2023, 26(1), e202201114.
[http://dx.doi.org/10.1002/ejoc.202201114]
[57]
Aljaar, N.; Ibrahim, M.M.; Younes, E.A.; Al-Noaimi, M.; Abu-Safieh, K.A.; Ali, B.F.; Kant, K.; Al-Zaqri, N.; Sengupta, R.; Malakar, C.C. Strategies towards the synthesis of 2-ketoaryl azole derivatives using C-H functionalization approach and 1,2-bis-nucleophile precursors. Asian J. Org. Chem., 2023, 12(4), e202300036.
[http://dx.doi.org/10.1002/ajoc.202300036]
[58]
Patel, C.K.; Banerjee, S.; Kant, K.; Sengupta, R.; Aljaar, N.; Malakar, C.C. Roles of alkali metals tert-butoxide as catalysts and activators in organic transformations. Asian J. Org. Chem., 2023, 12(8), e202300311.
[http://dx.doi.org/10.1002/ajoc.202300311]
[59]
Kant, K.; Patel, C.K.; Banerjee, S.; Naik, P.; Atta, A.K.; Kabi, A.K.; Malakar, C.C. Recent advancements in strategies for the synthesis of imidazoles, thiazoles, oxazoles, and benzimidazoles. ChemistrySelect, 2023, 8(47), e202303988.
[http://dx.doi.org/10.1002/slct.202303988]
[60]
Ananthu, S.; Aneeja, T.; Anilkumar, G. N-arylation of imidazoles: An overview. ChemistrySelect, 2021, 6(37), 9794-9805.
[http://dx.doi.org/10.1002/slct.202102411]
[61]
Oeser, P.; Koudelka, J.; Petrenko, A.; Tobrman, T. Recent progress concerning the N-arylation of indoles. Molecules, 2021, 26(16), 5079.
[http://dx.doi.org/10.3390/molecules26165079] [PMID: 34443667]
[62]
Crawford, S.M.; Lavery, C.B.; Stradiotto, M. BippyPhos: a single ligand with unprecedented scope in the Buchwald-Hartwig amination of (hetero)aryl chlorides. Chemistry, 2013, 19(49), 16760-16771.
[http://dx.doi.org/10.1002/chem.201302453] [PMID: 24281816]
[63]
Chen, H.; Yang, H.; Li, N.; Xue, X.; He, Z.; Zeng, Q. Palladium-catalyzed C–N cross-coupling of NH-heteroarenes and quaternary ammonium salts via C–N bond cleavage. Org. Process Res. Dev., 2019, 23(8), 1679-1685.
[http://dx.doi.org/10.1021/acs.oprd.9b00194]
[64]
He, X.; Hu, S.; Xiao, Y.; Yu, L.; Duan, W. Access to ketones through palladium-catalyzed cross-coupling of phenol derivatives with nitroalkanes followed by nef reaction. Eur. J. Org. Chem., 2022, 2022(35), e202200731.
[http://dx.doi.org/10.1002/ejoc.202200731]
[65]
Yao, J.; Yu, L.; Duan, W.; Li, C.J. Palladium-catalyzed C–Si bond formation via denitrative cross-coupling of nitroarenes with hexamethyldisilane. Org. Chem. Front., 2023, 10(2), 524-530.
[http://dx.doi.org/10.1039/D2QO01764D]
[66]
Hu, S.; He, X.; Lei, Z.; Yu, L.; Duan, W. Palladium-catalyzed α-arylation of nitroalkanes with aryl triflates through the C(sp2)−C(sp3) bond coupling. J. Mol. Struct., 2023, 1286, 135565.
[http://dx.doi.org/10.1016/j.molstruc.2023.135565]
[67]
Liu, J.; Yao, J.; Du, J.; Yu, L.; Duan, W.; Xiao, Y.; Lei, Z. Direct synthesis of α-ketoamides via copper-catalyzed reductive amidation of nitroarenes with α-oxocarboxylic acids. J. Org. Chem., 2024, 89(9), 6575-6583.
[http://dx.doi.org/10.1021/acs.joc.4c00237] [PMID: 38656973]
[68]
Lei, Z.; Yao, J.; Xiao, Y.; Liu, W.H.; Yu, L.; Duan, W.; Li, C.J. Dual role of nitroarenes as electrophiles and arylamine surrogates in Buchwald–Hartwig-type coupling for C–N bond construction. Chem. Sci., 2024, 15(10), 3552-3561.
[http://dx.doi.org/10.1039/D3SC06618E] [PMID: 38455022]
[69]
Feng, L.; Yao, J.; Yu, L.; Duan, W. Palladium-catalyzed denitrative N -arylation of nitroarenes with pyrroles, indoles, and carbazoles. Org. Chem. Front., 2022, 9(9), 2351-2356.
[http://dx.doi.org/10.1039/D2QO00010E]
[70]
Paul, A.; Chatterjee, D.; Banerjee, S.; Yadav, S. Ligand and Cu free N -arylation of indoles, pyrroles and benzylamines with aryl halides catalyzed by a Pd nanocatalyst. New J. Chem., 2020, 44(34), 14447-14452.
[http://dx.doi.org/10.1039/D0NJ02129F]
[71]
Rull, S.G.; Funes-Ardoiz, I.; Maya, C.; Maseras, F.; Fructos, M.R.; Belderrain, T.R.; Nicasio, M.C. Elucidating the mechanism of aryl aminations mediated by NHC-supported nickel complexes: Evidence for a nonradical Ni(0)/Ni(ii) pathway. ACS Catal., 2018, 8(5), 3733-3742.
[http://dx.doi.org/10.1021/acscatal.8b00856]
[72]
McGuire, R.T.; Paffile, J.F.J.; Zhou, Y.; Stradiotto, M. Nickel-catalyzed C–N cross-coupling of ammonia, (hetero)anilines, and indoles with activated (hetero)aryl chlorides enabled by ligand design. ACS Catal., 2019, 9(10), 9292-9297.
[http://dx.doi.org/10.1021/acscatal.9b03715]
[73]
Morioka, T.; Nakatani, S.; Sakamoto, Y.; Kodama, T.; Ogoshi, S.; Chatani, N.; Tobisu, M. Nickel-catalyzed decarbonylation of N -acylated N-heteroarenes. Chem. Sci. (Camb.), 2019, 10(27), 6666-6671.
[http://dx.doi.org/10.1039/C9SC02035G] [PMID: 31367320]
[74]
Malapit, C.A.; Borrell, M.; Milbauer, M.W.; Brigham, C.E.; Sanford, M.S. Nickel-catalyzed decarbonylative amination of carboxylic acid esters. J. Am. Chem. Soc., 2020, 142(13), 5918-5923.
[http://dx.doi.org/10.1021/jacs.9b13531] [PMID: 32207616]
[75]
Dindarloo Inaloo, I.; Majnooni, S.; Eslahi, H.; Esmaeilpour, M. N -Arylation of (hetero)arylamines using aryl sulfamates and carbamates via C–O bond activation enabled by a reusable and durable nickel(0) catalyst. New J. Chem., 2020, 44(31), 13266-13278.
[http://dx.doi.org/10.1039/D0NJ01610A]
[76]
Iranpoor, N.; Firouzabadi, H.; Etemadi Davan, E.; Rostami, A.; Nematollahi, A. Triphenyltin chloride as a new source of phenyl group for C-heteroatom and C–C bond formation. J. Organomet. Chem., 2013, 740, 123-130.
[http://dx.doi.org/10.1016/j.jorganchem.2013.04.053]
[77]
Toummini, D.; Tlili, A.; Bergès, J.; Ouazzani, F.; Taillefer, M. Copper-catalyzed arylation of nitrogen heterocycles from anilines under ligand-free conditions. Chemistry, 2014, 20(45), 14619-14623.
[http://dx.doi.org/10.1002/chem.201404982] [PMID: 25284684]
[78]
Pawar, G.G.; Wu, H.; De, S.; Ma, D. Copper(i) oxide/N,N′-bis[(2-furyl)methyl]oxalamide-catalyzed coupling of (hetero)aryl halides and nitrogen heterocycles at low catalytic loading. Adv. Synth. Catal., 2017, 359(10), 1631-1636.
[http://dx.doi.org/10.1002/adsc.201700026]
[79]
Sharghi, H.; Sepehri, S.; Aberi, M. Cu(II) complex of pyridine-based polydentate as a novel, efficient, and highly reusable catalyst in C–N bond-forming reaction. Mol. Divers., 2017, 21(4), 855-864.
[http://dx.doi.org/10.1007/s11030-017-9759-2] [PMID: 28653129]
[80]
Minnick, J.L.; Domyati, D.; Ammons, R.; Tahsini, L. (X = N, O) cross-coupling reactions catalyzed by copper-pincer bis(N-heterocyclic carbene) complexes. Front Chem., 2019, 7, 12.
[http://dx.doi.org/10.3389/fchem.2019.00012] [PMID: 30766865]
[81]
Zhang, M.; Zhang, Y.; Zhang, H.; Zeng, Y.; Liu, G. N-heterocyclic carbene copper(I) complex catalyzed coupling of (hetero)aryl chlorides and nitrogen heterocycles: Highly efficient catalytic system. Chin. J. Chem., 2020, 38(11), 1252-1256.
[http://dx.doi.org/10.1002/cjoc.201900461]
[82]
Xie, Q.; Zhang, X.; Liu, H.; Zhang, F.; Luo, X.; Luo, H. Copper-catalyzed N-arylation of indoles and anilines with aryltrialkoxysilanes. Asian J. Org. Chem., 2022, 11(3), e202100792.
[http://dx.doi.org/10.1002/ajoc.202100792]
[83]
Wu, F.; Yan, F.; Wu, L.; Zhang, C.; Zeng, R.; Sun, Y.; Liu, X.; Cui, C.; Wang, P. Reduction system “vitamin C/glycerol” promoted copper(II)‐catalyzed N ‐arylation. Appl. Organomet. Chem., 2022, 36(5), e6618.
[http://dx.doi.org/10.1002/aoc.6618]
[84]
Németh, J.; Debreczeni, N.; Gresits, I.; Bálint, M.; Hell, Z. An efficient heterogeneous catalytic method for the N-arylation of pyrrole and other N-heterocycles. Catal. Lett., 2015, 145(5), 1113-1119.
[http://dx.doi.org/10.1007/s10562-015-1523-6]
[85]
Das, S.K.; Deka, P.; Chetia, M.; Deka, R.C.; Bharali, P.; Bora, U. Spherical CuO nanoparticles as catalyst for Chan–Lam cross-coupling reaction under base free condition. Catal. Lett., 2018, 148(2), 547-554.
[http://dx.doi.org/10.1007/s10562-017-2278-z]
[86]
Lü, X.; Ruan, J.; Chen, X.; Qian, C. Cross-linked chitosan bead supported copper complex in water as a green and efficient catalytic protocol for Ullmann reaction. Youji Huaxue, 2019, 39(6), 1720-1726.
[http://dx.doi.org/10.6023/cjoc201901018]
[87]
Saikia, R.; Boruah, P.K.; Ahmed, S.M.; Das, M.R.; Thakur, A.J.; Bora, U. An avenue to Chan-Lam N-arylation by Cu(0) nanoparticles immobilized graphitic carbon-nitride oxide surface. Appl. Catal. A Gen., 2022, 643, 118767.
[http://dx.doi.org/10.1016/j.apcata.2022.118767]
[88]
Kaviani, N.; Behrouz, S.; Jafari, A.A.; Soltani Rad, M.N. Functionalization of Fe3O4@SiO2 nanoparticles with Cu(I)-thiosemicarbazone complex as a robust and efficient heterogeneous nanocatalyst for N-arylation of N-heterocycles with aryl halides. RSC Advances, 2023, 13(43), 30293-30305.
[http://dx.doi.org/10.1039/D3RA06327E] [PMID: 37849694]
[89]
Mo, B.; Li, Z.; Peng, J.; Chen, C. Novel lignin-supported copper complex as a highly efficient and recyclable nanocatalyst for Ullmann reaction. Int. J. Biol. Macromol., 2023, 239, 124263.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.124263] [PMID: 37004929]
[90]
Creutz, S.E.; Lotito, K.J.; Fu, G.C.; Peters, J.C. Photoinduced Ullmann C-N coupling: demonstrating the viability of a radical pathway. Science, 2012, 338(6107), 647-651.
[http://dx.doi.org/10.1126/science.1226458] [PMID: 23118186]
[91]
Ziegler, D.T.; Choi, J.; Muñoz-Molina, J.M.; Bissember, A.C.; Peters, J.C.; Fu, G.C. A versatile approach to Ullmann C-N couplings at room temperature: new families of nucleophiles and electrophiles for photoinduced, copper-catalyzed processes. J. Am. Chem. Soc., 2013, 135(35), 13107-13112.
[http://dx.doi.org/10.1021/ja4060806] [PMID: 23968565]
[92]
Yoo, W.J.; Tsukamoto, T.; Kobayashi, S. Visible light-mediated Ullmann-type C–N coupling reactions of carbazole derivatives and aryl iodides. Org. Lett., 2015, 17(14), 3640-3642.
[http://dx.doi.org/10.1021/acs.orglett.5b01645] [PMID: 26151428]
[93]
Barange, S.H.; Bhagat, P.R. A metal/solvent/additive free compliant route to Ullmann-type C−N coupling using ionic liquid entangled porphyrin heterogeneous photocatalyst. ChemistrySelect, 2022, 7(35), e202201177.
[http://dx.doi.org/10.1002/slct.202201177]
[94]
Mataghare, B.C.; Bhagat, P.R. Construction of porphyrin-based photocatalyst comprising pyridinium ionic liquid moiety for the metal-free visible light-assisted N-arylation of amines: facile approach to afford drug intermediates. New J. Chem., 2023, 47(47), 21764-21780.
[http://dx.doi.org/10.1039/D3NJ04295B]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy