Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Current Status and Applications of Gamma Radiation-induced Graft Copolymerized Chitosan

In Press, (this is not the final "Version of Record"). Available online 22 July, 2024
Author(s): Maykel González Torres*
Published on: 22 July, 2024

DOI: 10.2174/0113852728317918240710112955

Price: $95

Abstract

Chitosan (CS) is a natural polymer obtained by removing acetyl groups from chitin through alkaline hydrolysis. It possesses biodegradable properties and exhibits immunological, antibacterial, and wound-healing activities. This polysaccharide has undergone modification through radiation-induced graft copolymerization to broaden its application scope. The potential applications of CS can be expanded by introducing side chains through grafting. This article aims to review the innovative alternatives of gamma-graft-copolymerized CS and, for the first time, comprehensively examines the current applications of CS derivatives in dye removal, metal adsorption, antibacterial interventions, biomedical practices, drug delivery systems, and tissue engineering.

[1]
Novikov, V.Y.; Derkach, S.R.; Konovalova, I.N.; Dolgopyatova, N.V.; Kuchina, Y.A. Mechanism of heterogeneous alkaline deacetylation of chitin: A review. Polymers (Basel), 2023, 15(7), 1729.
[http://dx.doi.org/10.3390/polym15071729] [PMID: 37050343]
[2]
Ali, G.; Sharma, M.; Salama, E.S.; Ling, Z.; Li, X. Applications of chitin and chitosan as natural biopolymer: Potential sources, pretreatments, and degradation pathways. Biomass Convers. Biorefin., 2024, 14(4), 4567-4581.
[http://dx.doi.org/10.1007/s13399-022-02684-x]
[3]
Xu, C.; Xing, R.; Liu, S.; Qin, Y.; Li, K.; Yu, H.; Li, P. In vivo immunological activity of chitosan-derived nanoparticles. Int. J. Biol. Macromol., 2024, 262(Pt 2), 130105.
[http://dx.doi.org/10.1016/j.ijbiomac.2024.130105] [PMID: 38346623]
[4]
Salam, M.A.; Das, T.R.; Paul, S.I.; Islam, F.; Baidya, A.; Rahman, M.L.; Shaha, D.C.; Mazumder, S.K. Dietary chitosan positively influences the immunity and reproductive performances of mature silver barb (Barbonymus gonionotus). Aquacult. Rep., 2024, 36, 102155.
[http://dx.doi.org/10.1016/j.aqrep.2024.102155]
[5]
Yang, X.; Lan, W.; Sun, X. Antibacterial and antioxidant properties of phenolic acid grafted chitosan and its application in food preservation: A review. Food Chem., 2023, 428, 136788.
[http://dx.doi.org/10.1016/j.foodchem.2023.136788] [PMID: 37467692]
[6]
Khubiev, O.M.; Egorov, A.R.; Kirichuk, A.A.; Khrustalev, V.N.; Tskhovrebov, A.G.; Kritchenkov, A.S. Chitosan-based antibacterial films for biomedical and food applications. Int. J. Mol. Sci., 2023, 24(13), 10738.
[http://dx.doi.org/10.3390/ijms241310738] [PMID: 37445916]
[7]
Jiang, A.; Patel, R.; Padhan, B.; Palimkar, S.; Galgali, P.; Adhikari, A.; Varga, I.; Patel, M. Chitosan based biodegradable composite for antibacterial food packaging application. Polymers (Basel), 2023, 15(10), 2235.
[http://dx.doi.org/10.3390/polym15102235] [PMID: 37242810]
[8]
Prasathkumar, M.; George, A.; Sadhasivam, S. Influence of chitosan and hydroxyethyl cellulose modifications towards the design of cross-linked double networks hydrogel for diabetic wound healing. Int. J. Biol. Macromol., 2024, 265(Pt 1), 130851.
[http://dx.doi.org/10.1016/j.ijbiomac.2024.130851] [PMID: 38484821]
[9]
Chen, Z.; Yuan, M.; Li, H.; Li, L.; Luo, B.; Lu, L.; Xiang, Q.; Ding, S. Succinylated chitosan derivative restore HUVEC cells function damaged by TNF-α and high glucose in vitro and enhanced wound healing. Int. J. Biol. Macromol., 2024, 265(Pt 2), 130825.
[http://dx.doi.org/10.1016/j.ijbiomac.2024.130825] [PMID: 38492705]
[10]
Beram, F.M.; Ali, S.N.; Mesbahian, G.; Pashizeh, F.; Keshvadi, M.; Mashayekhi, F.; Khodadadi, B.; Bashiri, Z.; Moeinzadeh, A.; Rezaei, N.; Namazifard, S.; Hossein-khannazer, N.; Tavakkoli Yaraki, M. 3D printing of alginate/chitosan-based scaffold empowered by tyrosol-loaded niosome for wound healing applications: In vitro and in vivo performances. ACS Appl. Bio Mater., 2024, 7(3), 1449-1468.
[http://dx.doi.org/10.1021/acsabm.3c00814] [PMID: 38442406]
[11]
Li, A.; Ma, B.; Hua, S.; Ping, R.; Ding, L.; Tian, B.; Zhang, X. Chitosan-based injectable hydrogel with multifunction for wound healing: A critical review. Carbohydr. Polym., 2024, 333, 121952.
[http://dx.doi.org/10.1016/j.carbpol.2024.121952] [PMID: 38494217]
[12]
Thakur, V.K.; Thakur, M.K. Recent advances in graft copolymerization and applications of chitosan: A review. ACS Sustain. Chem.& Eng., 2014, 2(12), 2637-2652.
[http://dx.doi.org/10.1021/sc500634p]
[13]
Zhao, X.; Yi, W.; Mu, J.; Qiu, Z.; Kang, Y.; Wang, Z. Development and performance evaluation of chitosan-graft-poly(N-vinyl pyrrolidone) as a dual-function inhibitor for hydrate decomposition and reformation. J. Mol. Liq., 2024, 401, 124625.
[http://dx.doi.org/10.1016/j.molliq.2024.124625]
[14]
Temüz, M.M.; Çataldaş, E. Investigation of chitosan grafting and uptake properties of some metal ions by atomic absorption spectrophotometry. J. Macromol. Sci. Phys, 2024, 2024, 2310438.
[http://dx.doi.org/10.1080/00222348.2024.2310438]
[15]
Feng, M.; Zeng, X.; Lin, Q.; Wang, Y.; Wei, H.; Yang, S.; Wang, G.; Chen, X.; Guo, M.; Yang, X.; Hu, J.; Zhang, Y.; Yang, X.; Du, Y.; Zhao, Y. Characterization of chitosan‐gallic acid graft copolymer for periodontal dressing hydrogel application. Adv. Healthc. Mater., 2024, 13(7), 2302877.
[http://dx.doi.org/10.1002/adhm.202302877] [PMID: 38041691]
[16]
Barleany, D.R. Jayanudin; Utama, A.S.; Riyupi, U.; Alwan, H.; Lestari, R.S.D.; Pitaloka, A.B.; Yulvianti, M. Erizal, synthesis and characterization of chitosan/polyvinyl alcohol crosslinked poly(N-isopropylacrylamide) smart hydrogels via γ-radiation. Mater. Today Proc., 2023, 87, 1-7.
[http://dx.doi.org/10.1016/j.matpr.2023.01.366]
[17]
Aim-O, P.; Pamungkas, N.S.; Nawong, S.; Thamrongsiripak, N.; Thongphanit, S. Synchrotron Radiation Fourier Transform Infrared (SR-FTIR) spectroscopy in exploring crosslinked chitosan-rice husk bio-composites by gamma irradiation. J. Phys. Conf. Ser., 2023, 2431(1), 012069.
[http://dx.doi.org/10.1088/1742-6596/2431/1/012069]
[18]
Zaghlool, R.A.; Ali, H.E. Awadallah - F, A.; Aboulfotouh, M.E. Electrochemical study of carboxylated chitosan-graft-poly(Vinyl-2-Pyrrolidone) films for supercapacitor applications. Polymer-Plastics Technol. Mater., 2023, 62(18), 2450-2467.
[http://dx.doi.org/10.1080/25740881.2023.2263077]
[19]
Satti, A.J. Heterogeneous radioinduced graft copolymerization of caprolactone in nanochitosan. Radiat. Phys. Chem., 2023, 212, 111197.
[http://dx.doi.org/10.1016/j.radphyschem.2023.111197]
[20]
Emara, A.M.; Elsharma, E.M.; Abdelmonem, I.M. Adsorption of radioactive cesium using synthesized chitosan-g-poly(acrylic acid/N-vinylcaprolactam) by γ-irradiation. Radiat. Phys. Chem., 2023, 208, 110892.
[http://dx.doi.org/10.1016/j.radphyschem.2023.110892]
[21]
Shigeno, Y.; Kondo, K.; Takemoto, K. Functional monomers and polymers. 90 radiation-induced graft polymerization of styrene onto chitin and chitosan. J. Macromol. Sci. Chem., 1982, 17(4), 571-583.
[http://dx.doi.org/10.1080/00222338208062409]
[22]
Pengfei, L.; Maolin, Z.; Jilan, W. Study on radiation-induced grafting of styrene onto chitin and chitosan. Radiat. Phys. Chem., 2001, 61(2), 149-153.
[http://dx.doi.org/10.1016/S0969-806X(00)00389-3]
[23]
Shokri, Z.; Seidi, F.; Saeb, M.R.; Jin, Y.; Li, C.; Xiao, H. Elucidating the impact of enzymatic modifications on the structure, properties, and applications of cellulose, chitosan, starch and their derivatives: A review. Mater. Today Chem., 2022, 24, 100780.
[http://dx.doi.org/10.1016/j.mtchem.2022.100780]
[24]
Fujioka, M.; Okada, H.; Kusaka, Y.; Nishiyama, S.; Noguchi, H.; Ishii, S.; Yoshida, Y. Enzymatic synthesis of chitin‐ and chitosan‐graft‐aliphatic polyesters. Macromol. Rapid Commun., 2004, 25(20), 1776-1780.
[http://dx.doi.org/10.1002/marc.200400288]
[25]
Chao, A.; Shyu, S-S.; Lin, Y-C.; Mi, F-L. Enzymatic grafting of carboxyl groups on to chitosan-to confer on chitosan the property of a cationic dye adsorbent. Bioresour. Technol., 2004, 91(2), 157-162.
[http://dx.doi.org/10.1016/S0960-8524(03)00171-8] [PMID: 14592745]
[26]
Kumar, G.; Smith, P.J.; Payne, G.F. Enzymatic grafting of a natural product onto chitosan to confer water solubility under basic conditions. Biotechnol. Bioeng., 1999, 63(2), 154-165.
[http://dx.doi.org/10.1002/(SICI)1097-0290(19990420)63:2<154::AID-BIT4>3.0.CO;2-R] [PMID: 10099592]
[27]
Chen, T.; Kumar, G.; Harris, M.T.; Smith, P.J.; Payne, G.F. Enzymatic grafting of hexyloxyphenol onto chitosan to alter surface and rheological properties. Biotechnol. Bioeng., 2000, 70(5), 564-573.
[http://dx.doi.org/10.1002/1097-0290(20001205)70:5<564::AID-BIT11>3.0.CO;2-W] [PMID: 11042553]
[28]
Aljawish, A.; Chevalot, I.; Jasniewski, J.; Scher, J.; Muniglia, L. Enzymatic synthesis of chitosan derivatives and their potential applications. J. Mol. Catal., B Enzym., 2015, 112, 25-39.
[http://dx.doi.org/10.1016/j.molcatb.2014.10.014]
[29]
Yang, F.; Chen, L.; Zhao, D.; Guo, T.; Yu, D.; Zhang, X.; Li, P.; Chen, J. A novel water-soluble chitosan grafted with nerol: Synthesis, characterization and biological activity. Int. J. Biol. Macromol., 2023, 232, 123498.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123498] [PMID: 36731699]
[30]
Zhang, W.; Sun, J.; Li, Q.; Liu, C.; Niu, F.; Yue, R.; Zhang, Y.; Zhu, H.; Ma, C.; Deng, S. Free radical-mediated grafting of natural polysaccharides such as chitosan, starch, inulin, and pectin with some polyphenols: Synthesis, structural characterization, bioactivities, and applications-A review. Foods, 2023, 12(19), 3688.
[http://dx.doi.org/10.3390/foods12193688] [PMID: 37835341]
[31]
Piroonpan, T.; Huajaikaew, E.; Kurantowicz, N.; Potiyaraj, P.; Pasanphan, W. pH-responsive chitosan nanoparticles for controlled-release nitrogen fertilizer: Template-tampering free radical graft copolymerization under energetic radiation study. Eur. Polym. J., 2024, 203, 112670.
[http://dx.doi.org/10.1016/j.eurpolymj.2023.112670]
[32]
Mohamady Hussein, M.A.; Olmos, J.M.; Pierański, M.K.; Grinholc, M.; Buhl, E.M.; Gunduz, O.; Youssef, A.M.; Pereira, C.M.; El-Sherbiny, I.M.; Megahed, M. Post grafted gallic acid to chitosan-Ag hybrid nanoparticles via free radical-induced grafting reactions. Int. J. Biol. Macromol., 2023, 233, 123395.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123395] [PMID: 36702225]
[33]
Zhang, D.; Wang, J.; Ren, L.; Meng, X.; Luan, B.; Zhang, Y. A novel cationic-modified chitosan flocculant efficiently treats alkali‒surfactant‒polymer flooding-produced water. Polym. Bull., 2023, 80(12), 12865-12879.
[http://dx.doi.org/10.1007/s00289-023-04682-z]
[34]
Yuan, Y.; Wang, Z.; Su, S.; Lin, C.; Mi, Y.; Tan, W.; Guo, Z. Self-assembled low molecular weight chitosan-based cationic micelle for improved water solubility, stability and sustained release of α-tocopherol. Food Chem., 2023, 429, 136886.
[http://dx.doi.org/10.1016/j.foodchem.2023.136886] [PMID: 37499506]
[35]
Gothwal, A.; Lamptey, R.N.L.; Singh, J. Multifunctionalized cationic chitosan polymeric micelles polyplexed with pVGF for noninvasive delivery to the mouse brain through the intranasal route for developing therapeutics for Alzheimer’s disease. Mol. Pharm., 2023, 20(6), 3009-3019.
[http://dx.doi.org/10.1021/acs.molpharmaceut.3c00031] [PMID: 37093958]
[36]
Cele, Z.E.D.; Matshe, W.; Mdlalose, L.; Setshedi, K.; Malatji, K.; Mkhwanazi, N.P.; Ntombela, T.; Balogun, M. Cationic chitosan derivatives for the inactivation of HIV-1 and SARS-CoV-2 enveloped viruses. ACS Omega, 2023, 8(35), 31714-31724.
[http://dx.doi.org/10.1021/acsomega.3c02143] [PMID: 37692209]
[37]
Haleem, A.; Wu, F.; Ullah, M.; Saeed, T.; Li, H.; Pan, J. Chitosan functionalization with vinyl monomers via ultraviolet illumination under cryogenic conditions for efficient palladium recovery from waste electronic materials. Separ. Purif. Tech., 2024, 329, 125213.
[http://dx.doi.org/10.1016/j.seppur.2023.125213]
[38]
Wang, J.; Xu, W.; Zhang, W.; Da, J.; Liu, L.; Huang, X.; Yang, C.; Zhan, Y.; Jin, H.; Li, Y.; Zhang, B. UV cross-linked injectable non-swelling dihydrocaffeic acid grafted chitosan hydrogel for promoting wound healing. Carbohydr. Polym., 2023, 314, 120926.
[http://dx.doi.org/10.1016/j.carbpol.2023.120926] [PMID: 37173025]
[39]
Mostafa, K. Fabrication of poly(AA)-chitosan nanoparticles graft copolymer via microwave irradiation system for enhancing water solubility and antimicrobial properties. Pigm. Resin Technol., 2023, 52(4), 431-438.
[http://dx.doi.org/10.1108/PRT-12-2021-0137]
[40]
Jayakumar, R.; Prabaharan, M.; Reis, R.L.; Mano, J.F. Graft copolymerized chitosan-present status and applications. Carbohydr. Polym., 2005, 62(2), 142-158.
[http://dx.doi.org/10.1016/j.carbpol.2005.07.017]
[41]
Casimiro, M.H.; Gil, M.H.; Leal, J.P. Suitability of gamma irradiated chitosan based membranes as matrix in drug release system. Int. J. Pharm., 2010, 395(1-2), 142-146.
[http://dx.doi.org/10.1016/j.ijpharm.2010.05.034] [PMID: 20562002]
[42]
Casimiro, M.H.; Lancastre, J.J.H.; Rodrigues, A.P.; Gomes, S.R.; Rodrigues, G.; Ferreira, L.M. Chitosan-based matrices prepared by gamma irradiation for tissue regeneration: Structural properties vs. preparation method. Top. Curr. Chem. (Cham), 2017, 375(1), 5.
[http://dx.doi.org/10.1007/s41061-016-0092-5] [PMID: 27995526]
[43]
Yadav, D.; Dutta, J. A systematic review on recent development of chitosan/alginate-based polyelectrolyte complexes for wastewater treatment. Int. J. Environ. Sci. Technol., 2024, 21(3), 3381-3406.
[http://dx.doi.org/10.1007/s13762-023-05244-6]
[44]
Saiyad, M.; Shah, N.; Joshipura, M.; Dwivedi, A.; Pillai, S. Modified biopolymers in wastewater treatment: A review. Mater. Today Proc., 2024.
[http://dx.doi.org/10.1016/j.matpr.2024.01.031]
[45]
Singh, A.; Mittal, A.; Benjakul, S. Chitosan, chitooligosaccharides and their polyphenol conjugates: Preparation, bioactivities, functionalities and applications in food systems. Food Rev. Int., 2023, 39(4), 2297-2319.
[http://dx.doi.org/10.1080/87559129.2021.1950176]
[46]
Chen, Y.; Liu, Y.; Dong, Q.; Xu, C.; Deng, S.; Kang, Y.; Fan, M.; Li, L. Application of functionalized chitosan in food: A review. Int. J. Biol. Macromol., 2023, 235, 123716.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123716] [PMID: 36801297]
[47]
Kumar, D.; Gihar, S.; Shrivash, M.K.; Kumar, P.; Kundu, P.P. A review on the synthesis of graft copolymers of chitosan and their potential applications. Int. J. Biol. Macromol., 2020, 163, 2097-2112.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.060] [PMID: 32949625]
[48]
Begum, R.; Singh, S.; Prajapati, B.; Sumithra, M.; Patel, R.J. Advanced targeted drug delivery of bioactive agents fortified with graft chitosan in management of cancer: A review. Curr. Med. Chem., 2024, 31, 1-31.
[PMID: 38415441]
[49]
Lv, S.; Zhang, S.; Zuo, J.; Liang, S.; Yang, J.; Wang, J.; Wei, D. Progress in preparation and properties of chitosan-based hydrogels. Int. J. Biol. Macromol., 2023, 242(Pt 2), 124915.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.124915] [PMID: 37211080]
[50]
Kankariya, Y.; Chatterjee, B. Biomedical application of chitosan and chitosan derivatives: A comprehensive review. Curr. Pharm. Des., 2023, 29(17), 1311-1325.
[http://dx.doi.org/10.2174/1381612829666230524153002] [PMID: 37226781]
[51]
Vijayasri, K.; Tiwari, A. Chemical and radiation grafted chitosan for the mitigation of arsenic from contaminated water. J. Dispers. Sci. Technol., 2020, 41(7), 967-979.
[http://dx.doi.org/10.1080/01932691.2019.1614035]
[52]
Sosnik, A.; Imperiale, J.C.; Vázquez-González, B.; Raskin, M.M.; Muñoz-Muñoz, F.; Burillo, G.; Cedillo, G.; Bucio, E. Mucoadhesive thermo-responsive chitosan-g-poly(N-isopropylacrylamide) polymeric micelles via a one-pot gamma-radiation-assisted pathway. Colloids Surf. B Biointerfaces, 2015, 136, 900-907.
[http://dx.doi.org/10.1016/j.colsurfb.2015.10.036] [PMID: 26551867]
[53]
Ramaprasad, A.T.; Rao, V.; Sanjeev, G.; Ramanani, S.P.; Sabharwal, S. Grafting of polyaniline onto the radiation crosslinked chitosan. Synth. Met., 2009, 159(19-20), 1983-1990.
[http://dx.doi.org/10.1016/j.synthmet.2009.07.006]
[54]
Nisar, S.; Pandit, A.H.; Nadeem, M.; Pandit, A.H.; Rizvi, M.M.A.; Rattan, S. γ-Radiation induced L-glutamic acid grafted highly porous, pH-responsive chitosan hydrogel beads: A smart and biocompatible vehicle for controlled anti-cancer drug delivery. Int. J. Biol. Macromol., 2021, 182, 37-50.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.03.134] [PMID: 33775765]
[55]
Ghobashy, M.M.; Elbarbary, A.M.; Hegazy, D.E. Gamma radiation synthesis of a novel amphiphilic terpolymer hydrogel pH-responsive based chitosan for colon cancer drug delivery. Carbohydr. Polym., 2021, 263, 117975.
[http://dx.doi.org/10.1016/j.carbpol.2021.117975] [PMID: 33858572]
[56]
Gad, Y.H. Preparation and characterization of poly(2-acrylamido-2-methylpropane-sulfonic acid)/Chitosan hydrogel using gamma irradiation and its application in wastewater treatment. Radiat. Phys. Chem., 2008, 77(9), 1101-1107.
[http://dx.doi.org/10.1016/j.radphyschem.2008.05.002]
[57]
Li, Y.; Liu, L.; Shen, X.; Fang, Y. Preparation of chitosan/poly(butyl acrylate) hybrid materials by radiation-induced graft copolymerization based on phthaloylchitosan. Radiat. Phys. Chem., 2005, 74(5), 297-301.
[http://dx.doi.org/10.1016/j.radphyschem.2005.03.005]
[58]
Singh, D.K.; Ray, A.R. Graft copolymerization of 2‐hydroxyethylmeth-acrylate onto chitosan films and their blood compatibility. J. Appl. Polym. Sci., 1994, 53(8), 1115-1121.
[http://dx.doi.org/10.1002/app.1994.070530814]
[59]
Islas, L.; Burillo, G.; Ortega, A. Graft copolymerization of 2-hydroxyethyl methacrylate onto chitosan using radiation technique for release of diclofenac. Macromol. Res., 2018, 26(8), 690-695.
[http://dx.doi.org/10.1007/s13233-018-6100-6]
[60]
Casimiro, M.H.; Botelho, M.L.; Leal, J.P.; Gil, M.H. Study on chemical, UV and gamma radiation-induced grafting of 2-hydroxyethyl methacrylate onto chitosan. Radiat. Phys. Chem., 2005, 72(6), 731-735.
[http://dx.doi.org/10.1016/j.radphyschem.2004.04.029]
[61]
Jaafar, N.K.; Lepit, A.; Aini, N.A.; Ali, A.M.M.; Saat, A.; Yahya, M.Z.A. Radiation-Induced graft copolymerization base polymer electrolytes 2012 IEEE Symposium on Business, Engineering and Industrial Applications; , 2012, pp. 563-567.
[http://dx.doi.org/10.1109/ISBEIA.2012.6422950]
[62]
Dergunov, S.A.; Nam, I.K.; Maimakov, T.P.; Nurkeeva, Z.S.; Shaikhutdinov, E.M.; Mun, G.A. Study on radiation‐induced grafting of hydrophilic monomers onto chitosan. J. Appl. Polym. Sci., 2008, 110(1), 558-563.
[http://dx.doi.org/10.1002/app.28618]
[63]
Singh, D.K.; Ray, A.R. Radiation-induced grafting of N,N-dimethylamino-ethylmethacrylate onto chitosan films. J. Appl. Polym. Sci., 1997, 66(5), 869-877.
[http://dx.doi.org/10.1002/(SICI)1097-4628(19971031)66:5<869::AID-APP7>3.0.CO;2-T]
[64]
Montes, J.Á.; Ortega, A.; Burillo, G. Dual-stimuli responsive copolymers based on N-vinylcaprolactam/chitosan. J. Radioanal. Nucl. Chem., 2015, 303, 2143-2150.
[65]
Vanichvattanadecha, C.; Supaphol, P.; Nagasawa, N.; Tamada, M.; Tokura, S.; Furuike, T.; Tamura, H.; Rujiravanit, R. Effect of gamma radiation on dilute aqueous solutions and thin films of N-succinyl chitosan. Polym. Degrad. Stabil., 2010, 95(2), 234-244.
[http://dx.doi.org/10.1016/j.polymdegradstab.2009.10.007]
[66]
Khan, A.; Huq, T.; Khan, R.A.; Dussault, D.; Salmieri, S.; Lacroix, M. Effect of gamma radiation on the mechanical and barrier properties of HEMA grafted chitosan-based films. Radiat. Phys. Chem., 2012, 81(8), 941-944.
[http://dx.doi.org/10.1016/j.radphyschem.2011.11.056]
[67]
Singh, D.K.; Ray, A.R. Characterization of grafted chitosan films. Carbohydr. Polym., 1998, 36(2-3), 251-255.
[http://dx.doi.org/10.1016/S0144-8617(97)00260-9]
[68]
Akter, N.; Khan, R.A.; Salmieri, S.; Sharmin, N.; Dussault, D.; Lacroix, M. Fabrication and mechanical characterization of biodegradable and synthetic polymeric films: Effect of gamma radiation. Radiat. Phys. Chem., 2012, 81(8), 995-998.
[http://dx.doi.org/10.1016/j.radphyschem.2011.10.029]
[69]
Yu, L.; Li, L.; Wei’an, Z.; Yue’e, F. A new hybrid nanocomposite prepared by graft copolymerization of butyl acrylate onto chitosan in the presence of organophilic montmorillonite. Radiat. Phys. Chem., 2004, 69(6), 467-471.
[http://dx.doi.org/10.1016/j.radphyschem.2003.10.012]
[70]
Sharmin, N.; Khan, R.A.; Dussault, D.; Salmieri, S.; Akter, N.; Lacroix, M. Effectiveness of silane monomer and gamma radiation on chitosan films and PCL-based composites. Radiat. Phys. Chem., 2012, 81(8), 932-935.
[http://dx.doi.org/10.1016/j.radphyschem.2011.12.047]
[71]
El-Arnaouty, M.B.; Eid, M.; Abdel Ghaffar, A.M.; Abd El-Wahab, Y. Electrical conductivity of chitosan/dimethyl amino ethyl methacrylate/metal composite prepared by gamma radiation. Polym. Sci. Ser. A, 2020, 62, 714-721.
[http://dx.doi.org/10.1134/S0965545X20060012]
[72]
Nasef, S.M.; Khozemy, E.E.; Kamoun, E.A.; El-Gendi, H. Gamma radiation-induced crosslinked composite membranes based on polyvinyl alcohol/chitosan/AgNO3/vitamin E for biomedical applications. Int. J. Biol. Macromol., 2019, 137, 878-885.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.07.033] [PMID: 31284002]
[73]
Kongkaoroptham, P.; Piroonpan, T.; Hemvichian, K.; Suwanmala, P.; Rattanasakulthong, W.; Pasanphan, W. Poly(ethylene glycol) methyl ether methacrylate‐graft‐chitosan nanoparticles as a biobased nanofiller for a poly(lactic acid) blend: Radiation‐induced grafting and performance studies. J. Appl. Polym. Sci., 2015, 132(37), 42522.
[http://dx.doi.org/10.1002/app.42522]
[74]
Wang, J.P.; Chen, Y.Z.; Zhang, S.J.; Yu, H.Q. A chitosan-based flocculant prepared with gamma-irradiation-induced grafting. Bioresour. Technol., 2008, 99(9), 3397-3402.
[http://dx.doi.org/10.1016/j.biortech.2007.08.014] [PMID: 17888656]
[75]
Wang, J.P.; Chen, Y.Z.; Wang, Y.; Yuan, S.J.; Sheng, G.P.; Yu, H.Q. A novel efficient cationic flocculant prepared through grafting two monomers onto chitosan induced by gamma radiation. RSC Advances, 2012, 2(2), 494-500.
[http://dx.doi.org/10.1039/C1RA00473E]
[76]
Wang, J.P.; Chen, Y.Z.; Ge, X.W.; Yu, H.Q. Gamma radiation-induced grafting of a cationic monomer onto chitosan as a flocculant. Chemosphere, 2007, 66(9), 1752-1757.
[http://dx.doi.org/10.1016/j.chemosphere.2006.06.072] [PMID: 16904161]
[77]
Swantomo, D.; Faturrahman, I.R.; Basuki, K.T.; Wongsawaeng, D. Chitosan-polyacrylamide graft copolymers prepared with gamma irradiation for gold cyanide adsorption. Polymer-Plastics Technol. Mater., 2020, 59(12), 1284-1291.
[http://dx.doi.org/10.1080/25740881.2020.1738469]
[78]
Ibrahim, A.G.; Saleh, A.S.; Elsharma, E.M.; Metwally, E.; Siyam, T. Chitosan g maleic acid for effective removal of copper and nickel ions from their solutions. Int. J. Biol. Macromol., 2019, 121, 1287-1294.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.107] [PMID: 30340005]
[79]
Saleh, A.S.; Ibrahim, A.G.; Elsharma, E.M.; Metwally, E.; Siyam, T. Radiation grafting of acrylamide and maleic acid on chitosan and effective application for removal of Co(II) from aqueous solutions. Radiat. Phys. Chem., 2018, 144, 116-124.
[http://dx.doi.org/10.1016/j.radphyschem.2017.11.018]
[80]
Abdelmonem, I.M.; Metwally, E.; Siyam, T.E.; Abou El-Nour, F.; Mousa, A.R.M. Gamma radiation-induced preparation of chitosan-acrylic acid-1-vinyl-2-vinylpyrrolidone/multiwalled carbon nanotubes composite for removal of 152+154Eu, 60Co and 134Cs radionuclides. Int. J. Biol. Macromol., 2020, 164, 2258-2266.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.120] [PMID: 32805290]
[81]
Vijayasri, K.; Tiwari, A. Detoxification of arsenic from contaminated water using chitosan and radiation-induced grafted chitosan: A comparative study. Chem. Ecol., 2021, 37(4), 323-341.
[http://dx.doi.org/10.1080/02757540.2021.1886280]
[82]
Abou El Fadl, F.I. Radiation grafting of ionically crosslinked alginate/chitosan beads with acrylic acid for lead sorption. J. Radioanal. Nucl. Chem., 2014, 301(2), 529-535.
[http://dx.doi.org/10.1007/s10967-014-3149-3]
[83]
Benamer, S.; Mahlous, M.; Tahtat, D.; Nacer-Khodja, A.; Arabi, M.; Lounici, H.; Mameri, N. Radiation synthesis of chitosan beads grafted with acrylic acid for metal ions sorption. Radiat. Phys. Chem., 2011, 80(12), 1391-1397.
[http://dx.doi.org/10.1016/j.radphyschem.2011.06.013]
[84]
Puspitasari, T. Oktaviani; Pangerteni, D.S.; Nurfilah, E.; Darwis, D. Study of metal ions removal from aqueous solution by using radiation crosslinked chitosan‐co‐Poly(Acrylamide)‐based adsorbent. Macromol. Symp., 2015, 353(1), 168-177.
[http://dx.doi.org/10.1002/masy.201550323]
[85]
Elkholy, S.S. Chemical and radiation-induced grafting of p-Carboxy N-phenyl maleimide onto chitosan. Polym. Plast. Technol. Eng., 2008, 47(3), 299-306.
[http://dx.doi.org/10.1080/03602550701869984]
[86]
Barleany, D.R.; Ilhami, A.; Yudanto, D.Y. Erizal, degradation behaviour of gamma irradiated poly(acrylic acid)-graft-chitosan superabsorbent hydrogel. IOP Conf. Series Mater. Sci. Eng., 2018, 316, 012007.
[http://dx.doi.org/10.1088/1757-899X/316/1/012007]
[87]
Ortega, A.; Sánchez, A.; Burillo, G. Binary Graft of Poly(N-vinylcapro-lactam) and poly(acrylic acid) onto chitosan hydrogels using ionizing radiation for the retention and controlled release of therapeutic compounds. Polymers (Basel), 2021, 13(16), 2641.
[http://dx.doi.org/10.3390/polym13162641] [PMID: 34451181]
[88]
Taleb, M.F.A. Radiation synthesis of polyampholytic and reversible pH-responsive hydrogel and its application as drug delivery system. Polym. Bull., 2008, 61(3), 341-351.
[http://dx.doi.org/10.1007/s00289-008-0952-4]
[89]
Sokker, H.H.; El-Sawy, N.M.; Hassan, M.A.; El-Anadouli, B.E. Adsorption of crude oil from aqueous solution by hydrogel of chitosan based polyacrylamide prepared by radiation induced graft polymerization. J. Hazard. Mater., 2011, 190(1-3), 359-365.
[http://dx.doi.org/10.1016/j.jhazmat.2011.03.055] [PMID: 21497016]
[90]
Nizam El-Din, H.M.; Ibraheim, D.M. Biological applications of nanocomposite hydrogels prepared by gamma-radiation copolymerization of acrylic acid (AAc) onto plasticized starch (PLST)/montmorillonite clay (MMT)/chitosan (CS) blends. Int. J. Biol. Macromol., 2021, 192, 151-160.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.09.196] [PMID: 34619272]
[91]
Burillo, J.C.; Castro-Larragoitia, J.; Burillo, G.; Ortega, A.; Medellin-Castillo, N. Removal of arsenic and iron from mine-tailing leachate using chitosan hydrogels synthesized by gamma radiation. Environ. Earth Sci., 2017, 76(13), 450.
[http://dx.doi.org/10.1007/s12665-017-6780-9]
[92]
Shim, J.W.; Nho, Y.C. Preparation of poly(acrylic acid)-chitosan hydrogels by gamma irradiation and in vitro drug release. J. Appl. Polym. Sci., 2003, 90(13), 3660-3667.
[http://dx.doi.org/10.1002/app.13120]
[93]
Leyva-Gómez, G.; Santillan-Reyes, E.; Lima, E.; Madrid-Martínez, A.; Krötzsch, E.; Quintanar-Guerrero, D.; Garciadiego-Cázares, D.; Martínez-Jiménez, A.; Hernández Morales, M.; Ortega-Peña, S.; Contreras-Figueroa, M.E.; Cortina-Ramírez, G.E.; Abarca-Buis, R.F. A novel hydrogel of poloxamer 407 and chitosan obtained by gamma irradiation exhibits physicochemical properties for wound management. Mater. Sci. Eng. C, 2017, 74, 36-46.
[http://dx.doi.org/10.1016/j.msec.2016.12.127] [PMID: 28254305]
[94]
Cai, H.; Zhang, Z.P.; Chuan, Sun P.; Lin He, B.; Xia Zhu, X. Synthesis and characterization of thermo- and pH-sensitive hydrogels based on chitosan-grafted N-isopropylacrylamide via γ-radiation. Radiat. Phys. Chem., 2005, 74(1), 26-30.
[http://dx.doi.org/10.1016/j.radphyschem.2004.10.007]
[95]
Nho, Y.C.; Park, K.R. Preparation and properties of PVA/PVP hydrogels containing chitosan by radiation. J. Appl. Polym. Sci., 2002, 85(8), 1787-1794.
[http://dx.doi.org/10.1002/app.10812]
[96]
Cruz, A.; García-Uriostegui, L.; Ortega, A.; Isoshima, T.; Burillo, G. Radiation grafting of N-vinylcaprolactam onto nano and macrogels of chitosan: Synthesis and characterization. Carbohydr. Polym., 2017, 155, 303-312.
[http://dx.doi.org/10.1016/j.carbpol.2016.08.083] [PMID: 27702516]
[97]
Casimiro, M.H.; Pereira, A.; Leal, J.P.; Rodrigues, G.; Ferreira, L.M. Chitosan/PVA based membranes processed by gamma radiation as scaffolding materials for skin regeneration. Membranes (Basel), 2021, 11(8), 561.
[http://dx.doi.org/10.3390/membranes11080561] [PMID: 34436324]
[98]
El Salmawi, K.M. Gamma radiation‐induced crosslinked PVA/chitosan blends for wound dressing. J. Macromol. Sci. Part A Pure Appl. Chem., 2007, 44(5), 541-545.
[http://dx.doi.org/10.1080/10601320701235891]
[99]
Bisen, D.S.; Bhatt, R.; Bajpai, A.K.; Bajpai, R.; Katare, R. Reverse indentation size effects in gamma irradiated blood compatible blend films of chitosan-poly (vinyl alcohol) for possible medical applications. Mater. Sci. Eng. C, 2017, 71, 982-993.
[http://dx.doi.org/10.1016/j.msec.2016.11.001] [PMID: 27987797]
[100]
Casimiro, M.H.; Gomes, S.R.; Rodrigues, G.; Leal, J.P.; Ferreira, L.M. Chitosan/poly(vinylpyrrolidone) matrices obtained by gamma-irradiation for skin scaffolds: Characterization and preliminary cell response studies. Materials (Basel), 2018, 11(12), 2535.
[http://dx.doi.org/10.3390/ma11122535] [PMID: 30551595]
[101]
Pasanphan, W.; Rattanawongwiboon, T.; Rimdusit, P.; Piroonpan, T. Radiation-induced graft copolymerization of poly(ethylene glycol) monomethacrylate onto deoxycholate-chitosan nanoparticles as a drug carrier. Radiat. Phys. Chem., 2014, 94, 199-204.
[http://dx.doi.org/10.1016/j.radphyschem.2013.06.026]
[102]
Casimiro, M.H.; Gil, M.H.; Leal, J.P. Drug release assays from new chitosan/pHEMA membranes obtained by gamma irradiation. Nucl. Instrum. Methods Phys. Res. B, 2007, 265(1), 406-409.
[http://dx.doi.org/10.1016/j.nimb.2007.09.013]
[103]
Rattanawongwiboon, T.; Hemvichian, K.; Lertsarawut, P.; Suwanmala, P. Chitosan-poly(ethylene glycol) diacrylate beads prepared by radiation-induced crosslinking and their promising applications derived from encapsulation of essential oils. Radiat. Phys. Chem., 2020, 170, 108656.
[http://dx.doi.org/10.1016/j.radphyschem.2019.108656]
[104]
Radwan, R.R.; Abdel Ghaffar, A.M.; Ali, H.E. Gamma radiation preparation of chitosan nanoparticles for controlled delivery of memantine. J. Biomater. Appl., 2020, 34(8), 1150-1162.
[http://dx.doi.org/10.1177/0885328219890071] [PMID: 31771402]
[105]
Uddin, I.; Islam, J.M.M.; Haque, A.; Zubair, A.; Barua, R.; Rahaman, S.; Rahman, L.; Khan, M.A. Significant influence of gamma-radiation-treated chitosan and alginate on increased productivity as well as improved taste and flavor of pineapple. Int. J. Fruit Sci., 2020, 20(sup2), 455-469.
[http://dx.doi.org/10.1080/15538362.2020.1740909]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy