Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

The Role of Serine Protease 8 in Mediating Gefitinib Resistance in Non-small Cell Lung Cancer

In Press, (this is not the final "Version of Record"). Available online 22 July, 2024
Author(s): Hai-Jing Gao, Xue-Li Geng*, Ling-Ling Wang, Chun-Nan Zhao, Zong-Ying Liang and En-Hong Xing
Published on: 22 July, 2024

DOI: 10.2174/0118715206296807240717165200

Price: $95

Abstract

Objective: This investigation aims to explore the expression levels of serine protease 8 (PRSS8) in gefitinib-resistant Non-Small Cell Lung Cancer (NSCLC) cell lines (PC9/GR) and elucidate its mechanism of action.

Methodology: We measured PRSS8 expression in gefitinib-resistant (PC9/GR) and sensitive (PC9) NSCLC cell lines using Western blot analysis. PRSS8-specific small interfering RNA (PRSS8-siRNA), a recombinant plasmid, and a corresponding blank control were transfected into PC9/GR cells. Subsequently, Western blot analyses were conducted to assess the expression levels of PRSS8, phosphorylated AKT (p-AKT), AKT, phosphorylated mTOR (p-mTOR), mTOR, and various apoptosis-related proteins within each group. Additionally, a cell proliferation assay utilizing Cell Counting Kit-8 (CCK8) was performed on each group treated with gefitinib.

Result: PRSS8 expression was markedly higher in PC9/GR cells compared to PC9 cells (p < 0.05). The group treated with PRSS8-siRNA exhibited significantly reduced protein expression levels of PRSS8, p-AKT, p-mTOR, β-catenin, and BCL-2 compared to the control siRNA (Con-siRNA) group, whereas expressions of Caspase9 and Bax were significantly increased. In the untransfected PC9/GR cells, protein expressions of PRSS8, p-AKT, pmTOR, and BCL-2 were significantly elevated when compared with the plasmid-transfected group, which also showed a significant reduction in Bax expression. The proliferative activity of the PRSS8-siRNA group postgefitinib treatment was significantly diminished at 24, 48, and 72 hours in comparison to the Con-siRNA group.

Conclusion: The findings indicate that PRSS8 contributes to the acquisition of resistance to gefitinib in NSCLC, potentially through regulation of the AKT/mTOR signaling pathway.

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Chen, P.; Liu, Y.; Wen, Y.; Zhou, C. Non‐small cell lung cancer in China. Cancer Commun., 2022, 42(10), 937-970.
[http://dx.doi.org/10.1002/cac2.12359] [PMID: 36075878]
[3]
Guo, H.; Zhao, L.; Zhu, J.; Chen, P.; Wang, H.; Jiang, M.; Liu, X.; Sun, H.; Zhao, W.; Zheng, Z.; Li, W.; Chen, B.; Fang, Q.; Yang, M.; He, Y.; Yang, Y. Microbes in lung cancer initiation, treatment, and outcome: Boon or bane? Semin. Cancer Biol., 2022, 86(Pt 2), 1190-1206.
[http://dx.doi.org/10.1016/j.semcancer.2021.05.025] [PMID: 34029741]
[4]
Xie, S.; Wu, Z.; Qi, Y.; Wu, B.; Zhu, X. The metastasizing mechanisms of lung cancer: Recent advances and therapeutic challenges. Biomed. Pharmacother., 2021, 138, 111450.
[http://dx.doi.org/10.1016/j.biopha.2021.111450] [PMID: 33690088]
[5]
Zhang, Y.; Xiong, L.; Xie, F.; Zheng, X.; Li, Y.; Zhu, L.; Sun, J. Next‐generation sequencing of tissue and circulating tumor DNA: Resistance mechanisms to EGFR targeted therapy in a cohort of patients with advanced non‐small cell lung cancer. Cancer Med., 2021, 10(14), 4697-4709.
[http://dx.doi.org/10.1002/cam4.3948] [PMID: 34173341]
[6]
To, C.; Beyett, T.S.; Jang, J.; Feng, W.W.; Bahcall, M.; Haikala, H.M.; Shin, B.H.; Heppner, D.E.; Rana, J.K.; Leeper, B.A.; Soroko, K.M.; Poitras, M.J.; Gokhale, P.C.; Kobayashi, Y.; Wahid, K.; Kurppa, K.J.; Gero, T.W.; Cameron, M.D.; Ogino, A.; Mushajiang, M.; Xu, C.; Zhang, Y.; Scott, D.A.; Eck, M.J.; Gray, N.S.; Jänne, P.A. An allosteric inhibitor against the therapy-resistant mutant forms of EGFR in non-small cell lung cancer. Nat. Cancer, 2022, 3(4), 402-417.
[http://dx.doi.org/10.1038/s43018-022-00351-8] [PMID: 35422503]
[7]
Lu, H.L.; Jie, G.L.; Wu, Y.L. Epidermal growth factor receptor-targeted therapy for the treatment of non-small cell lung cancer: A review of phase II and III trials. Expert Opin. Emerg. Drugs, 2022, 27(2), 111-126.
[http://dx.doi.org/10.1080/14728214.2022.2063836] [PMID: 35385682]
[8]
Rossi, A.; Galetta, D. Systemic therapy for oligoprogression in patients with metastatic NSCLC harboring activating EGFR mutations. Cancers, 2022, 14(3), 832.
[http://dx.doi.org/10.3390/cancers14030832] [PMID: 35159099]
[9]
Shamseldin, H.E.; Derar, N.; Alzaidan, H.; AlHathal, N.; Alfalah, A.; Abdulwahab, F.; Alzaid, T.; Alkeraye, S.; Alobaida, S.A.; Alkuraya, F.S. PRSS8, encoding prostasin, is mutated in patients with autosomal recessive ichthyosis. Hum. Genet., 2023, 142(4), 477-482.
[http://dx.doi.org/10.1007/s00439-023-02527-3] [PMID: 36715754]
[10]
Wu, L.; Gong, Y.; Yan, T.; Zhang, H. LINP1 promotes the progression of cervical cancer by scaffolding EZH2, LSD1, and DNMT1 to inhibit the expression of KLF2 and PRSS8. Biochem. Cell Biol., 2020, 98(5), 591-599.
[http://dx.doi.org/10.1139/bcb-2019-0446] [PMID: 32348690]
[11]
Chen, L.M.; Chai, J.C.; Liu, B.; Strutt, T.M.; McKinstry, K.K.; Chai, K.X. Prostasin regulates PD-L1 expression in human lung cancer cells. Biosci. Rep., 2021, 41(7), BSR20211370.
[http://dx.doi.org/10.1042/BSR20211370] [PMID: 34240739]
[12]
Jiang, L.; Zhang, J.; Xu, Y.; Xu, H.; Wang, M. Treating non-small cell lung cancer by targeting the PI3K signaling pathway. Chin. Med. J., 2022, 135(11), 1272-1284.
[http://dx.doi.org/10.1097/CM9.0000000000002195] [PMID: 35830272]
[13]
Liu, R.; Chen, Y.; Liu, G.; Li, C.; Song, Y.; Cao, Z.; Li, W.; Hu, J.; Lu, C.; Liu, Y. PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis., 2020, 11(9), 797.
[http://dx.doi.org/10.1038/s41419-020-02998-6] [PMID: 32973135]
[14]
Wang, S.; Rong, R.; Yang, D.M.; Fujimoto, J.; Bishop, J.A.; Yan, S.; Cai, L.; Behrens, C.; Berry, L.D.; Wilhelm, C.; Aisner, D.; Sholl, L.; Johnson, B.E.; Kwiatkowski, D.J.; Wistuba, I.I.; Bunn, P.A., Jr; Minna, J.; Xiao, G.; Kris, M.G.; Xie, Y. Features of tumor-microenvironment images predict targeted therapy survival benefit in patients with EGFR-mutant lung cancer. J. Clin. Invest., 2023, 133(2), e160330.
[http://dx.doi.org/10.1172/JCI160330] [PMID: 36647832]
[15]
Wang, W.; Xia, X.; Chen, K.; Chen, M.; Meng, Y.; Lv, D.; Yang, H. Reduced PHLPP expression leads to EGFR-TKI resistance in lung cancer by activating PI3K-AKT and MAPK-ERK dual signaling. Front. Oncol., 2021, 11, 665045.
[http://dx.doi.org/10.3389/fonc.2021.665045] [PMID: 34168988]
[16]
Cai, C.; Zhang, Y.; Peng, X. Knocking down Sterol regulatory element binding protein 2 (SREBF2) inhibits the Serine Protease 8 (PRSS8)/sodium channel epithelial 1alpha subunit (SCNN1A) axis to reduce the cell proliferation, migration and epithelial-mesenchymal transformation of ovarian cancer. Bioengineered, 2021, 12(2), 9390-9400.
[http://dx.doi.org/10.1080/21655979.2021.1978615] [PMID: 34823420]
[17]
Miyai, K.; Yonekura, Y.; Ito, K.; Matsukuma, S.; Tsuda, H. Gene expression microarray analysis of adult testicular germ cell tumor: A comparison between pure-type seminomas and seminoma components in mixed tumors. Virchows Arch., 2021, 479(6), 1177-1186.
[http://dx.doi.org/10.1007/s00428-021-03168-5] [PMID: 34347114]
[18]
Bao, Y.; Guo, Y.; Yang, Y.; Wei, X.; Zhang, S.; Zhang, Y.; Li, K.; Yuan, M.; Guo, D.; Macias, V.; Zhu, X.; Zhang, W.; Yang, W. Correction to: PRSS8 suppresses colorectal carcinogenesis and metastasis. Oncogene, 2021, 40(10), 1922-1924.
[http://dx.doi.org/10.1038/s41388-021-01646-3] [PMID: 33619325]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy