Generic placeholder image

Recent Advances in Drug Delivery and Formulation

Editor-in-Chief

ISSN (Print): 2667-3878
ISSN (Online): 2667-3886

Review Article

Nanocarriers for Cannabinoid Delivery: Enhancing Therapeutic Potential

In Press, (this is not the final "Version of Record"). Available online 22 July, 2024
Author(s): Varun Singh, Samar Vihal, Rupali Rana and Charul Rathore*
Published on: 22 July, 2024

DOI: 10.2174/0126673878300347240718100814

Price: $95

Abstract

Medical cannabis has potential therapeutic benefits in managing pain, anxiety, depression, and neurological and movement disorders. Phytocannabinoids derived from the cannabis plant are responsible for their pharmacological and therapeutic properties. However, the complexity of cannabis components, especially cannabinoids, poses a challenge to effective medicinal administration. Even with the increasing acceptance of cannabis-based medicines, achieving consistent bioavailability and targeted distribution remains difficult. Conventional administration methods are plagued by solubility and absorption problems requiring innovative solutions. After conducting a thorough review of research papers and patents, it has become evident that nanotechnology holds great promise as a solution. The comprehensive review of 36 research papers has yielded valuable insights, with 7 papers reporting enhanced bioavailability, while others have focused on improvements in release, solubility, and stability. Additionally, 19 patents have been analyzed, of which 7 specifically claim enhanced bioavailability, while the remaining patents describe various formulation methods. These patents outline effective techniques for encapsulating cannabis using nanocarriers, effectively addressing solubility and controlled release. Studies on the delivery of cannabis using nanocarriers focus on improving bioavailability, prolonging release, and targeting specific areas. This synthesis highlights the potential of nanotechnology to enhance cannabis therapies and pave the way for innovative interventions and precision medicine.

[1]
ElSohly MA, Radwan MM, Gul W, Chandra S, Galal A. Phytochemistry of Cannabis sativa L. Prog Chem Org Nat Prod 2017; 103: 1-36.
[http://dx.doi.org/10.1007/978-3-319-45541-9_1]
[2]
Madras BK. Update of cannabis and its medical use. Geneva: World Health Organization 2015.
[3]
Rupasinghe HPV, Davis A, Kumar SK, Murray B, Zheljazkov VD. Industrial hemp (Cannabis sativa subsp. sativa) as an emerging source for value-added functional food ingredients and nutraceuticals. Molecules 2020; 25(18): 4078.
[http://dx.doi.org/10.3390/molecules25184078] [PMID: 32906622]
[4]
Ruheel MA, Gomes Z, Usman S, Homayouni P, Ng JY. Facilitators and barriers to the regulation of medical cannabis: A scoping review of the peer-reviewed literature. Harm Reduct J 2021; 18(1): 106.
[http://dx.doi.org/10.1186/s12954-021-00547-8] [PMID: 34649577]
[5]
Crocq MA. History of cannabis and the endocannabinoid system. Dialogues Clin Neurosci 2020; 22(3): 223-8.
[http://dx.doi.org/10.31887/DCNS.2020.22.3/mcrocq] [PMID: 33162765]
[6]
Dhopeshwarkar A, Mackie K. CB2 Cannabinoid receptors as a therapeutic target-what does the future hold? Mol Pharmacol 2014; 86(4): 430-7.
[http://dx.doi.org/10.1124/mol.114.094649] [PMID: 25106425]
[7]
Di Marzo V, Piscitelli F. The endocannabinoid system and its modulation by phytocannabinoids. Neurotherapeutics 2015; 12(4): 692-8.
[http://dx.doi.org/10.1007/s13311-015-0374-6] [PMID: 26271952]
[8]
Newman CL, Mason MJ, Langenderfer J. The shifting landscape of cannabis legalization: Potential benefits and regulatory perspectives. J Consum Aff 2021; 55(3): 1169-77.
[http://dx.doi.org/10.1111/joca.12387]
[9]
Potter G, Bouchard MM, Decorte MT. World wide weed: Global trends in cannabis cultivation and its control. Ashgate Publishing, Ltd. 2013.
[10]
Gaoni Y, Mechoulam R. Isolation, structure, and partial synthesis of an active constituent of hashish. J Am Chem Soc 1964; 86(8): 1646-7.
[http://dx.doi.org/10.1021/ja01062a046]
[11]
Aggarwal SK, Carter GT, Sullivan MD, ZumBrunnen C, Morrill R, Mayer JD. Medicinal use of cannabis in the United States: Historical perspectives, current trends, and future directions. J Opioid Manag 2009; 5(3): 153-68.
[http://dx.doi.org/10.5055/jom.2009.0016] [PMID: 19662925]
[12]
Kumar P, Mahato DK, Kamle M, et al. Pharmacological properties, therapeutic potential, and legal status of Cannabis sativa L.: An overview. Phytother Res 2021; 35(11): 6010-29.
[http://dx.doi.org/10.1002/ptr.7213] [PMID: 34237796]
[13]
Guindon J, Hohmann AG. The endocannabinoid system and pain. CNS Neurol Disord Drug Targets 2009; 8(6): 403-21.
[http://dx.doi.org/10.2174/187152709789824660]
[14]
Hill KP, Palastro MD, Johnson B, Ditre JW. Cannabis and pain: A clinical review. Cannabis Cannabinoid Res 2017; 2(1): 96-104.
[http://dx.doi.org/10.1089/can.2017.0017] [PMID: 28861509]
[15]
Savage SR, Romero-Sandoval A, Schatman M, et al. Cannabis in pain treatment: Clinical and research considerations. J Pain 2016; 17(6): 654-68.
[http://dx.doi.org/10.1016/j.jpain.2016.02.007] [PMID: 26961090]
[16]
Järvinen T, Pate DW, Laine K. Cannabinoids in the treatment of glaucoma. Pharmacol Ther 2002; 95(2): 203-20.
[http://dx.doi.org/10.1016/S0163-7258(02)00259-0] [PMID: 12182967]
[17]
Rafuse P, Buys YM. Medical use of cannabis for glaucoma. Can J Ophthalmol 2019; 54(1): 7-8.
[http://dx.doi.org/10.1016/j.jcjo.2018.11.001] [PMID: 30851777]
[18]
Stith SS, Li X, Orozco J, et al. The effectiveness of common cannabis products for treatment of nausea. J Clin Gastroenterol 2022; 56(4): 331-8.
[http://dx.doi.org/10.1097/MCG.0000000000001534] [PMID: 35258504]
[19]
Castañeda J. User perspectives on cannabis and SSRIs as treatment for depression. Drugs Alcohol Today 2020; 20(1): 74-83.
[http://dx.doi.org/10.1108/DAT-08-2019-0038]
[20]
Viveros M, Marco E. Cannabinoids, anxiety and depression. Natural products II 2007; 227-49.
[21]
Fogarty A, Rawstorne P, Prestage G, Crawford J, Grierson J, Kippax S. Marijuana as therapy for people living with HIV/AIDS: Social and health aspects. AIDS Care 2007; 19(2): 295-301.
[http://dx.doi.org/10.1080/09540120600841930] [PMID: 17364413]
[22]
Fiani B, Sarhadi KJ, Soula M, Zafar A, Quadri SA. Current application of cannabidiol (CBD) in the management and treatment of neurological disorders. Neurol Sci 2020; 41(11): 3085-98.
[http://dx.doi.org/10.1007/s10072-020-04514-2] [PMID: 32556748]
[23]
Abrams DI, Jay CA, Shade SB, et al. Cannabis in painful HIV-associated sensory neuropathy. Neurology 2007; 68(7): 515-21.
[http://dx.doi.org/10.1212/01.wnl.0000253187.66183.9c] [PMID: 17296917]
[24]
Liang Y, Huang C, Hsu K. Therapeutic potential of cannabinoids in trigeminal neuralgia. Curr Drug Targets CNS Neurol Disord 2004; 3(6): 507-14.
[http://dx.doi.org/10.2174/1568007043336833] [PMID: 15578967]
[25]
Pryce G, Baker D. Emerging properties of cannabinoid medicines in management of multiple sclerosis. Trends Neurosci 2005; 28(5): 272-6.
[http://dx.doi.org/10.1016/j.tins.2005.03.006] [PMID: 15866202]
[26]
Chen PX, Rogers MA. Opportunities and challenges in developing orally administered cannabis edibles. Curr Opin Food Sci 2019; 28: 7-13.
[http://dx.doi.org/10.1016/j.cofs.2019.02.005]
[27]
Hartsel JA, et al. Cannabis sativa and Hemp Nutraceuticals. Elsevier 2016; pp. 735-54.
[http://dx.doi.org/10.1016/B978-0-12-802147-7.00053-X]
[28]
Mechoulam R. The pharmacohistory of Cannabis sativa. Chapman and Hall/CRC 2019; pp. 1-20.
[http://dx.doi.org/10.1201/9780429260667-1]
[29]
Small E. Classification of Cannabis sativa L. in relation to agricultural, biotechnological, medical and recreational utilization. In: Cannabis sativa L- Botany and Biotechnology. Cham: Springer 2017; pp. 1-62.
[30]
Rock EM, Parker LA. Constituents of Cannabis sativa. In: Adv Exp Med Biol 2021; 1-13.
[31]
Stern CA, Bertoglio LJ, Takahashi RN. Overview of cannabis use, misuse, and addiction. neuropathology of drug addictions and substance misuse. Elsevier 2016; pp. 665-71.
[http://dx.doi.org/10.1016/B978-0-12-800213-1.00061-4]
[32]
Chouvy P-A. Cannabis cultivation in the world: Heritages, trends and challenges. EchoGéo 2019; 48: 17591.
[http://dx.doi.org/10.4000/echogeo.17591]
[33]
Sadiya MR, Ravindra BM, Simuzar SM, Kiran PK. Cannabis sativa: A therapeutic medicinal plant-global marketing updates. World J Biol Pharm Heal Sci 2024; 17(2): 170-83.
[http://dx.doi.org/10.30574/wjbphs.2024.17.2.0044]
[34]
Pacula RL, Smart R. Medical marijuana and marijuana legalization. Annu Rev Clin Psychol 2017; 13(1): 397-419.
[http://dx.doi.org/10.1146/annurev-clinpsy-032816-045128] [PMID: 28482686]
[35]
Levinsohn EA, Hill KP. Clinical uses of cannabis and cannabinoids in the United States. J Neurol Sci 2020; 411: 116717.
[http://dx.doi.org/10.1016/j.jns.2020.116717] [PMID: 32044684]
[36]
Bourgeois BFD, Douglass LM, Sankar R. Lennox‐Gastaut syndrome: A consensus approach to differential diagnosis. Epilepsia 2014; 55(4): 4-9.
[http://dx.doi.org/10.1111/epi.12567] [PMID: 25284032]
[37]
Golub V, Reddy DS. Cannabidiol therapy for refractory epilepsy and seizure disorders. In: Cannabinoids and Neuropsychiatric Disorders. Springer 2021; pp. 93-110.
[http://dx.doi.org/10.1007/978-3-030-57369-0_7]
[38]
Dravet C. Dravet syndrome (severe myoclonic epilepsy in infancy). Handb Clin Neurol 2002; 111: 627-33.
[39]
Keating GM. Delta-9-tetrahydrocannabinol/cannabidiol oromucosal spray (Sativex®): A review in multiple sclerosis-related spasticity. Drugs 2017; 77(5): 563-74.
[http://dx.doi.org/10.1007/s40265-017-0720-6] [PMID: 28293911]
[40]
Kumar V, Wang L, Riebe M, Tung HH, Prud’homme RK. Formulation and stability of itraconazole and odanacatib nanoparticles: Governing physical parameters. Mol Pharm 2009; 6(4): 1118-24.
[http://dx.doi.org/10.1021/mp900002t] [PMID: 19366261]
[41]
Lazzarotto Rebelatto ER, Rauber GS, Caon T. An update of nano-based drug delivery systems for cannabinoids: Biopharmaceutical aspects & therapeutic applications. Int J Pharm 2023; 635: 122727.
[http://dx.doi.org/10.1016/j.ijpharm.2023.122727] [PMID: 36803924]
[42]
Fairbairn JW, Liebmann JA, Rowan MG. The stability of cannabis and its preparations on storage. J Pharm Pharmacol 2011; 28(1): 1-7.
[http://dx.doi.org/10.1111/j.2042-7158.1976.tb04014.x] [PMID: 6643]
[43]
Pacifici R, Marchei E, Salvatore F, Guandalini L, Busardò FP, Pichini S. Evaluation of long-term stability of cannabinoids in standardized preparations of cannabis flowering tops and cannabis oil by ultra-high-performance liquid chromatography tandem mass spectrometry. Clin Chem Lab Med (CCLM) 2018; 56(4): 94-6.
[http://dx.doi.org/10.1515/cclm-2017-0758] [PMID: 29176009]
[44]
Ramalho ÍMM, Pereira DT, Galvão GBL, et al. Current trends on cannabidiol delivery systems: Where are we and where are we going? Expert Opin Drug Deliv 2021; 18(11): 1577-87.
[http://dx.doi.org/10.1080/17425247.2021.1952978] [PMID: 34253133]
[45]
Alvebratt C, Keemink J, Edueng K, Cheung O, Strømme M, Bergström CAS. An in vitro dissolution–digestion–permeation assay for the study of advanced drug delivery systems. Eur J Pharm Biopharm 2020; 149: 21-9.
[http://dx.doi.org/10.1016/j.ejpb.2020.01.010] [PMID: 31982572]
[46]
Franco V, Gershkovich P, Perucca E, Bialer M. The interplay between liver first-pass effect and lymphatic absorption of cannabidiol and its implications for cannabidiol oral formulations. Clin Pharmacokinet 2020; 59(12): 1493-500.
[http://dx.doi.org/10.1007/s40262-020-00931-w] [PMID: 32785853]
[47]
Bruni N, Della Pepa C, Oliaro-Bosso S, Pessione E, Gastaldi D, Dosio F. Cannabinoid delivery systems for pain and inflammation treatment. Molecules 2018; 23(10): 2478.
[http://dx.doi.org/10.3390/molecules23102478] [PMID: 30262735]
[48]
Grimsey NL, Savinainen JR, Attili B, Ahamed M. Regulating membrane lipid levels at the synapse by small-molecule inhibitors of monoacylglycerol lipase: New developments in therapeutic and PET imaging applications. Drug Discov Today 2020; 25(2): 330-43.
[http://dx.doi.org/10.1016/j.drudis.2019.10.004] [PMID: 31622747]
[49]
Ngwa W, Kumar R, Moreau M, Dabney R, Herman A. Nanoparticle drones to target lung cancer with radiosensitizers and cannabinoids. Front Oncol 2017; 7: 208.
[http://dx.doi.org/10.3389/fonc.2017.00208] [PMID: 28971063]
[50]
Esposito E, Drechsler M, Cortesi R, Nastruzzi C. Encapsulation of cannabinoid drugs in nanostructured lipid carriers. Eur J Pharm Biopharm 2016; 102: 87-91.
[http://dx.doi.org/10.1016/j.ejpb.2016.03.005] [PMID: 26952905]
[51]
Onaivi ES, Singh Chauhan BP, Sharma V. Challenges of cannabinoid delivery: How can nanomedicine help? Nanomedicine 2020; 2023-8.
[52]
Assadpour E, Rezaei A, Das SS, et al. Cannabidiol-loaded nanocarriers and their therapeutic applications. Pharmaceuticals 2023; 16(4): 487.
[http://dx.doi.org/10.3390/ph16040487] [PMID: 37111244]
[53]
Grifoni L, Vanti G, Donato R, Sacco C, Bilia AR. Promising nanocarriers to enhance solubility and bioavailability of cannabidiol for a plethora of therapeutic opportunities. Molecules 2022; 27(18): 6070.
[http://dx.doi.org/10.3390/molecules27186070] [PMID: 36144803]
[54]
Δεμισλή ΣK. Development of nanocarriers for the encapsulation of cannabinoids and other bioactive compounds. University of Thessaly 2023.
[55]
Din F, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 2017; 12: 7291-309.
[http://dx.doi.org/10.2147/IJN.S146315] [PMID: 29042776]
[56]
Alshawwa SZ, Kassem AA, Farid RM, Mostafa SK, Labib GS. Nanocarrier drug delivery systems: Characterization, limitations, future perspectives and implementation of artificial intelligence. Pharmaceutics 2022; 14(4): 883.
[http://dx.doi.org/10.3390/pharmaceutics14040883] [PMID: 35456717]
[57]
Shahbazi M-A, Santos HA. Improving oral absorption via drug-loaded nanocarriers: Absorption mechanisms, intestinal models and rational fabrication. Curr Drug Metab 2013; 14(1): 28-56.
[http://dx.doi.org/10.2174/138920013804545133] [PMID: 22497568]
[58]
Chamundeeswari M, Jeslin J, Verma ML. Nanocarriers for drug delivery applications. Environ Chem Lett 2019; 17(2): 849-65.
[http://dx.doi.org/10.1007/s10311-018-00841-1]
[59]
Onzi G, et al. Active targeting of nanocarriersThe ADME Encyclopedia: A Comprehensive Guide on Biopharmacy and Pharmacokinetics. Springer 2021; pp. 1-13.
[60]
Paszko E, Senge MO. Immunoliposomes. Curr Med Chem 2012; 19(31): 5239-77.
[http://dx.doi.org/10.2174/092986712803833362] [PMID: 22934774]
[61]
Batool S, Sohail S. ud Din F, et al. A detailed insight of the tumor targeting using nanocarrier drug delivery system. Drug Deliv 2023; 30(1): 2183815.
[http://dx.doi.org/10.1080/10717544.2023.2183815] [PMID: 36866455]
[62]
Yu B, Tai HC, Xue W, Lee LJ, Lee RJ. Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol Membr Biol 2010; 27(7): 286-98.
[http://dx.doi.org/10.3109/09687688.2010.521200] [PMID: 21028937]
[63]
Gullotti E, Yeo Y. Extracellularly activated nanocarriers: A new paradigm of tumor targeted drug delivery. Mol Pharm 2009; 6(4): 1041-51.
[http://dx.doi.org/10.1021/mp900090z] [PMID: 19366234]
[64]
Tu AB, Lewis JS. Biomaterial-based immunotherapeutic strategies for rheumatoid arthritis. Drug Deliv Transl Res 2021; 11(6): 2371-93.
[http://dx.doi.org/10.1007/s13346-021-01038-w] [PMID: 34414564]
[65]
Mishra DK, Shandilya R, Mishra PK. Lipid based nanocarriers: A translational perspective. Nanomedicine 2018; 14(7): 2023-50.
[http://dx.doi.org/10.1016/j.nano.2018.05.021] [PMID: 29944981]
[66]
Rawat M, Singh D, Saraf S, Saraf S. Nanocarriers: promising vehicle for bioactive drugs. Biol Pharm Bull 2006; 29(9): 1790-8.
[http://dx.doi.org/10.1248/bpb.29.1790] [PMID: 16946487]
[67]
Ainbinder D, Paolino D, Fresta M, Touitou E. Drug delivery applications with ethosomes. J Biomed Nanotechnol 2010; 6(5): 558-68.
[http://dx.doi.org/10.1166/jbn.2010.1152] [PMID: 21329048]
[68]
Tijani AO, Thakur D, Mishra D, Frempong D, Chukwunyere UI, Puri A. Delivering therapeutic cannabinoids via skin: Current state and future perspectives. J Control Release 2021; 334: 427-51.
[http://dx.doi.org/10.1016/j.jconrel.2021.05.005] [PMID: 33964365]
[69]
Lodzki M, Godin B, Rakou L, Mechoulam R, Gallily R, Touitou E. Cannabidiol—transdermal delivery and anti-inflammatory effect in a murine model. J Control Release 2003; 93(3): 377-87.
[http://dx.doi.org/10.1016/j.jconrel.2003.09.001] [PMID: 14644587]
[70]
Jaiswal M, Dudhe R, Sharma P. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech 2015; 5(2): 123-7.
[http://dx.doi.org/10.1007/s13205-014-0214-0]
[71]
Nakano Y, Tajima M, Sugiyama E, Sato VH, Sato H. Development of a novel nano-emulsion formulation to improve intestinal absorption of cannabidiol. Med Cannabis Cannabinoids 2019; 2(1): 35-42.
[http://dx.doi.org/10.1159/000497361] [PMID: 34676332]
[72]
Banerjee A, Hosie W, Ventura ACT. Rational design, synthesis, and characterization of a solid Δ9-tetrahydrocannabinol nanoformulation suitable for “microdosing” applications. Cannabis Cannabinoid Res 2023.
[73]
Paliwal R, Paliwal SR, Kenwat R, Kurmi BD, Sahu MK. Solid lipid nanoparticles: A review on recent perspectives and patents. Expert Opin Ther Pat 2020; 30(3): 179-94.
[http://dx.doi.org/10.1080/13543776.2020.1720649] [PMID: 32003260]
[74]
Punyamurthula NS, Adelli GR, Gul W, Repka MA, ElSohly MA, Majumdar S. Ocular disposition of ∆ 8-tetrahydrocannabinol from various topical ophthalmic formulations. AAPS PharmSciTech 2017; 18(6): 1936-45.
[http://dx.doi.org/10.1208/s12249-016-0672-2] [PMID: 27905004]
[75]
Mozafari MR. Nanoliposomes: preparation and analysis. Methods Mol Biol 2010; 605: 29-50.
[http://dx.doi.org/10.1007/978-1-60327-360-2_2]
[76]
Fathi M, Mozafari MR, Mohebbi M. Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci Technol 2012; 23(1): 13-27.
[http://dx.doi.org/10.1016/j.tifs.2011.08.003]
[77]
Shilo-Benjamini Y, Cern A, Zilbersheid D, et al. A case report of subcutaneously injected liposomal cannabidiol formulation used as a compassion therapy for pain management in a dog. Front Vet Sci 2022; 9: 892306.
[http://dx.doi.org/10.3389/fvets.2022.892306] [PMID: 35573415]
[78]
Arora R, Katiyar SS, Kushwah V, Jain S. Solid lipid nanoparticles and nanostructured lipid carrier-based nanotherapeutics in treatment of psoriasis: a comparative study. Expert Opin Drug Deliv 2017; 14(2): 165-77.
[http://dx.doi.org/10.1080/17425247.2017.1264386] [PMID: 27882780]
[79]
Iqbal MA, Md S, Sahni JK, Baboota S, Dang S, Ali J. Nanostructured lipid carriers system: Recent advances in drug delivery. J Drug Target 2012; 20(10): 813-30.
[http://dx.doi.org/10.3109/1061186X.2012.716845] [PMID: 22931500]
[80]
Hommoss G, Pyo SM, Müller RH. Mucoadhesive tetrahydrocannabinol-loaded NLC: Formulation optimization and long-term physicochemical stability. Eur J Pharm Biopharm 2017; 117: 408-17.
[http://dx.doi.org/10.1016/j.ejpb.2017.04.009] [PMID: 28433786]
[81]
Matarazzo AP, Elisei LMS, Carvalho FC, et al. Mucoadhesive nanostructured lipid carriers as a cannabidiol nasal delivery system for the treatment of neuropathic pain. Eur J Pharm Sci 2021; 159: 105698.
[http://dx.doi.org/10.1016/j.ejps.2020.105698] [PMID: 33406408]
[82]
Morakul B, Junyaprasert VB, Sakchaisri K, Teeranachaideekul V. Cannabidiol-loaded nanostructured lipid carriers (NLCs) for dermal delivery: enhancement of photostability, cell viability, and anti-inflammatory activity. Pharmaceutics 2023; 15(2): 537.
[http://dx.doi.org/10.3390/pharmaceutics15020537] [PMID: 36839859]
[83]
Puglia C, Pignatello R, Fuochi V, et al. Lipid nanoparticles and active natural compounds: A perfect combination for pharmaceutical applications. Curr Med Chem 2019; 26(24): 4681-96.
[http://dx.doi.org/10.2174/0929867326666190614123835] [PMID: 31203795]
[84]
Aparicio-Blanco J, Sebastián V, Benoit JP, Torres-Suárez AI. Lipid nanocapsules decorated and loaded with cannabidiol as targeted prolonged release carriers for glioma therapy: In vitro screening of critical parameters. Eur J Pharm Biopharm 2019; 134: 126-37.
[http://dx.doi.org/10.1016/j.ejpb.2018.11.020] [PMID: 30472144]
[85]
Atsmon J, Cherniakov I, Izgelov D, et al. PTL401, a new formulation based on pro-nano dispersion technology, improves oral cannabinoids bioavailability in healthy volunteers. J Pharm Sci 2018; 107(5): 1423-9.
[http://dx.doi.org/10.1016/j.xphs.2017.12.020] [PMID: 29287930]
[86]
Date AA, Desai N, Dixit R, Nagarsenker M. Self-nanoemulsifying drug delivery systems: Formulation insights, applications and advances. Nanomedicine 2010; 5(10): 1595-616.
[http://dx.doi.org/10.2217/nnm.10.126] [PMID: 21143036]
[87]
Divate MP, et al. Self nano-emulsifying drug delivery system: A review. Int J Adv Sci Res 2021; 12(3)(2): 1-12.
[88]
Knaub K, Sartorius T, Dharsono T, Wacker R, Wilhelm M, Schön C. A novel self-emulsifying drug delivery system (SEDDS) based on VESIsorb® formulation technology improving the oral bioavailability of cannabidiol in healthy subjects. Molecules 2019; 24(16): 2967.
[http://dx.doi.org/10.3390/molecules24162967] [PMID: 31426272]
[89]
Begines B, Ortiz T, Pérez-Aranda M, et al. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials 2020; 10(7): 1403.
[http://dx.doi.org/10.3390/nano10071403] [PMID: 32707641]
[90]
Kulhari H, Pooja D, Kota R, et al. Cyclic RGDfK peptide functionalized polymeric nanocarriers for targeting gemcitabine to ovarian cancer cells. Mol Pharm 2016; 13(5): 1491-500.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00935] [PMID: 26930230]
[91]
More MP, Pardeshi SR, Pardeshi CV, et al. Recent advances in phytochemical-based Nano-formulation for drug-resistant Cancer. Med Drug Disc 2021; 10: 100082.
[http://dx.doi.org/10.1016/j.medidd.2021.100082]
[92]
Martín-Banderas L, Muñoz-Rubio I, Álvarez-Fuentes J, et al. Engineering of Δ 9-tetrahydrocannabinol delivery systems based on surface modified-PLGA nanoplatforms. Colloids Surf B Biointerfaces 2014; 123: 114-22.
[http://dx.doi.org/10.1016/j.colsurfb.2014.09.002] [PMID: 25262411]
[93]
Fraguas-Sánchez AI, Torres-Suárez AI, Cohen M, et al. PLGA nanoparticles for the intraperitoneal administration of CBD in the treatment of ovarian cancer: In vitro and In Ovo assessment. Pharmaceutics 2020; 12(5): 439.
[http://dx.doi.org/10.3390/pharmaceutics12050439] [PMID: 32397428]
[94]
El-Hammadi MM, Small-Howard AL, Fernández-Arévalo M, Martín-Banderas L. Development of enhanced drug delivery vehicles for three cannabis-based terpenes using poly(lactic-co-glycolic acid) based nanoparticles. Ind Crops Prod 2021; 164: 113345.
[http://dx.doi.org/10.1016/j.indcrop.2021.113345]
[95]
Durán-Lobato M, Álvarez-Fuentes J, Fernández-Arévalo M, Martín-Banderas L. Receptor-targeted nanoparticles modulate cannabinoid anticancer activity through delayed cell internalization. Sci Rep 2022; 12(1): 1297.
[http://dx.doi.org/10.1038/s41598-022-05301-z] [PMID: 35079042]
[96]
Momekova D, Ivanov E, Konstantinov S, Ublekov F, Petrov PD. Nanocomposite cryogel carriers from 2-hydroxyethyl cellulose network and cannabidiol-loaded polymeric micelles for sustained topical delivery. Polymers 2020; 12(5): 1172.
[http://dx.doi.org/10.3390/polym12051172] [PMID: 32443724]
[97]
Sosnik A, Shabo RB, Halamish HM. Cannabidiol-loaded mixed polymeric micelles of chitosan/poly (vinyl alcohol) and poly (methyl methacrylate) for trans-corneal delivery. Pharmaceutics 2021; 13(12): 2142.
[http://dx.doi.org/10.3390/pharmaceutics13122142] [PMID: 34959427]
[98]
De Matteis V. Exposure to inorganic nanoparticles: Routes of entry, immune response, biodistribution and in vitro/in vivo toxicity evaluation. Toxics 2017; 5(4): 29.
[http://dx.doi.org/10.3390/toxics5040029] [PMID: 29051461]
[99]
Rosi NL, Mirkin CA. Nanostructures in biodiagnostics. Chem Rev 2005; 105(4): 1547-62.
[http://dx.doi.org/10.1021/cr030067f] [PMID: 15826019]
[100]
Wang YXJ, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: Physicochemical characteristics and applications in MR imaging. Eur Radiol 2001; 11(11): 2319-31.
[http://dx.doi.org/10.1007/s003300100908] [PMID: 11702180]
[101]
Rousserie G, Sukhanova A, Even-Desrumeaux K, et al. Semiconductor quantum dots for multiplexed bio-detection on solid-state microarrays. Crit Rev Oncol Hematol 2010; 74(1): 1-15.
[http://dx.doi.org/10.1016/j.critrevonc.2009.04.006] [PMID: 19467882]
[102]
Jain PK, El-Sayed IH, El-Sayed MA. Au nanoparticles target cancer. nano today 2007; 2(1): 18-29.
[103]
Brongersma ML. Nanoshells: Gifts in a gold wrapper. Nat Mater 2003; 2(5): 296-7.
[http://dx.doi.org/10.1038/nmat891] [PMID: 12728232]
[104]
Radwan-Pragłowska J, Janus Ł, Piątkowski M, et al. Development of stimuli-responsive chitosan/ZnO NPs transdermal systems for controlled cannabidiol delivery. Polymers 2021; 13(2): 211.
[http://dx.doi.org/10.3390/polym13020211] [PMID: 33435623]
[105]
Loftsson T, Duchêne D. Cyclodextrins and their pharmaceutical applications. Int J Pharm 2007; 329(1-2): 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2006.10.044] [PMID: 17137734]
[106]
Mellet CO, Fernández JMG, Benito JM. Cyclodextrin-based gene delivery systems. Chem Soc Rev 2011; 40(3): 1586-608.
[http://dx.doi.org/10.1039/C0CS00019A] [PMID: 21042619]
[107]
Lv P, Zhang D, Guo M, et al. Structural analysis and cytotoxicity of host-guest inclusion complexes of cannabidiol with three native cyclodextrins. J Drug Deliv Sci Technol 2019; 51: 337-44.
[http://dx.doi.org/10.1016/j.jddst.2019.03.015]
[108]
Chen L, Yang W, Gao C, Liao X, Yang J, Yang B. The complexes of cannabidiol mediated by bridged cyclodextrins dimers with high solubilization, in vitro antioxidant activity and cytotoxicity. J Mol Liq 2022; 345: 117017.
[http://dx.doi.org/10.1016/j.molliq.2021.117017]
[109]
Shoyama Y, Morimoto S, Nishioka I. Cannabis. XV. preparation and stability of Δ9-tetrahydrocannabinol-β-cyclodextrin inclusion complex. J Nat Prod 1983; 46(5): 633-7.
[http://dx.doi.org/10.1021/np50029a007]
[110]
Jarho P, Pate DW, Brenneisen R, Järvinen T. Hydroxypropyl-β-cyclodextrin and its combination with hydroxypropyl-methylcellulose increases aqueous solubility of Δ9-tetrahydrocannabinol. Life Sci 1998; 63(26): PL381-4.
[http://dx.doi.org/10.1016/S0024-3205(98)00528-1] [PMID: 9877229]
[111]
Luo Y, Yang H, Zhou YF, Hu B. Dual and multi-targeted nanoparticles for site-specific brain drug delivery. J Control Release 2020; 317: 195-215.
[http://dx.doi.org/10.1016/j.jconrel.2019.11.037] [PMID: 31794799]
[112]
Davoodi P, Lee LY, Xu Q, et al. Drug delivery systems for programmed and on-demand release. Adv Drug Deliv Rev 2018; 132: 104-38.
[http://dx.doi.org/10.1016/j.addr.2018.07.002] [PMID: 30415656]
[113]
Tabboon P, Pongjanyakul T, Limpongsa E, Jaipakdee N. In vitro release, mucosal permeation and deposition of cannabidiol from liquisolid systems: The influence of liquid vehicles. Pharmaceutics 2022; 14(9): 1787.
[http://dx.doi.org/10.3390/pharmaceutics14091787] [PMID: 36145536]
[114]
Caggiano NJ, Wilson BK, Priestley RD, Prud’homme RK. Development of an in vitro release assay for low-density cannabidiol nanoparticles prepared by flash nanoprecipitation. Mol Pharm 2022; 19(5): 1515-25.
[http://dx.doi.org/10.1021/acs.molpharmaceut.2c00041] [PMID: 35412842]
[115]
Patel N, Kommineni N, Surapaneni SK, et al. Cannabidiol loaded extracellular vesicles sensitize triple-negative breast cancer to doxorubicin in both in-vitro and in vivo models. Int J Pharm 2021; 607: 120943.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120943] [PMID: 34324983]
[116]
Söpper U, Hoffmann A, Daniels R. Mucoadhesion and mucopenetration of cannabidiol (CBD)-loaded mesoporous carrier systems for buccal drug delivery. Sci Pharm 2021; 89(3): 35.
[http://dx.doi.org/10.3390/scipharm89030035]
[117]
Andriotis EG, Chachlioutaki K, Monou PK, et al. Development of water-soluble electrospun fibers for the oral delivery of cannabinoids. AAPS PharmSciTech 2021; 22(1): 23.
[http://dx.doi.org/10.1208/s12249-020-01895-7] [PMID: 33400042]
[118]
Shi J, Ma Q, Su W, et al. Effervescent cannabidiol solid dispersion-doped dissolving microneedles for boosted melanoma therapy via the TRPV1-NFATc1-ATF3 pathway and tumor microenvironment engineering. Biomater Res 2023; 27(1): 48.
[http://dx.doi.org/10.1186/s40824-023-00390-x] [PMID: 37198657]
[119]
Kamali A, Oryan A, Hosseini S, et al. Cannabidiol-loaded microspheres incorporated into osteoconductive scaffold enhance mesenchymal stem cell recruitment and regeneration of critical-sized bone defects. Mater Sci Eng C 2019; 101: 64-75.
[http://dx.doi.org/10.1016/j.msec.2019.03.070] [PMID: 31029357]
[120]
Rao Y, Li R, Liu S, et al. Enhanced bioavailability and biosafety of cannabidiol nanomicelles for effective anti-inflammatory therapy. Particuology 2022; 69: 1-9.
[http://dx.doi.org/10.1016/j.partic.2021.11.010]
[121]
Amini M, Abdolmaleki Z. The effect of cannabidiol coated by nano-chitosan on learning and memory, hippocampal CB1 and CB2 levels, and amyloid plaques in an alzheimer’s disease rat model. Neuropsychobiology 2022; 81(3): 171-83.
[http://dx.doi.org/10.1159/000519534] [PMID: 34727550]
[122]
Das SS, Sarkar A, Chabattula SC, et al. Food-grade quercetin-loaded nanoemulsion ameliorates effects associated with parkinson’s disease and cancer: Studies employing a transgenic c. elegans model and human cancer cell lines. Antioxidants 2022; 11(7): 1378.
[http://dx.doi.org/10.3390/antiox11071378] [PMID: 35883869]
[123]
Moqejwa T, Marimuthu T, Kondiah PPD, Choonara YE. Development of stable nano-sized transfersomes as a rectal colloid for enhanced delivery of cannabidiol. Pharmaceutics 2022; 14(4): 703.
[http://dx.doi.org/10.3390/pharmaceutics14040703] [PMID: 35456536]
[124]
Greish K, Mathur A, Al Zahrani R, et al. Synthetic cannabinoids nano-micelles for the management of triple negative breast cancer. J Control Release 2018; 291: 184-95.
[http://dx.doi.org/10.1016/j.jconrel.2018.10.030] [PMID: 30367922]
[125]
Kok LY, Bannigan P, Sanaee F, et al. Development and pharmacokinetic evaluation of a self-nanoemulsifying drug delivery system for the oral delivery of cannabidiol. Eur J Pharm Sci 2022; 168: 106058.
[http://dx.doi.org/10.1016/j.ejps.2021.106058] [PMID: 34763088]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy