Note! Please note that this article is currently in the "Article in Press" stage and is not the final "Version of record". While it has been accepted, copy-edited, and formatted, however, it is still undergoing proofreading and corrections by the authors. Therefore, the text may still change before the final publication. Although "Articles in Press" may not have all bibliographic details available, the DOI and the year of online publication can still be used to cite them. The article title, DOI, publication year, and author(s) should all be included in the citation format. Once the final "Version of record" becomes available the "Article in Press" will be replaced by that.
Abstract
Objective: The objective of the research was the development and validation of a simple, sensitive, accurate, robust, and precise UV-spectroscopic method for the quantitative determination of chlorogenic acid loaded in solid-lipid nanoparticles as per the guidelines of the International Conference on Harmonization.
Methods: The solid-lipid nanoparticles of chlorogenic acid were prepared using the hot melt emulsification method and the high-speed homogenizer method. Glyceryl monostearate was used as a solid lipid, and Tween 80 was used as a surfactant for the preparation of chlorogenic acid-loaded solid lipid nanoparticles. The method was validated in terms of linearity, accuracy, precision, robustness, ruggedness, limit of detection, and limit of quantification. Results: The chlorogenic acid exhibited absorption maxima at the wavelength of 330 nm. The regression equation from the calibration curve was y=0.006x + 0.0193 with a correlation coefficient of 0.9989. The percentage recovery was found to be 99.92, 99.80, and 99.86, respectively (within the acceptable limit of 98-102%), which validated the accuracy of the method. Furthermore, the method exhibited precision, robustness, and ruggedness, as illustrated by a relative standard deviation (RSD) of less than 2%. The limit of detection and limit of quantification were found to be 6.97 and 21.13 μg/ml, respectively. Conclusion: It was concluded that the proposed spectrophotometer analytical method for the determination of Chlorogenic acid was found reliable, accurate, consistent, precise, accurate, and robust. Therefore, the proposed analytical technique could be an integral part of further evaluation and characterization of Chlorogenic acid-solid lipid nanoparticles.[1]
Farah, A.; Monteiro, M.; Donangelo, C.M.; Lafay, S. Chlorogenic acids from green coffee extract are highly bioavailable in humans. J. Nutr., 2008, 138(12), 2309-2315.
[http://dx.doi.org/10.3945/jn.108.095554] [PMID: 19022950]
[http://dx.doi.org/10.3945/jn.108.095554] [PMID: 19022950]
[2]
Zheng, W.; Clifford, M.N. Profiling the chlorogenic acids of sweet potato (Ipomoea batatas) from China. Food Chem., 2008, 106(1), 147-152.
[http://dx.doi.org/10.1016/j.foodchem.2007.05.053]
[http://dx.doi.org/10.1016/j.foodchem.2007.05.053]
[3]
Clifford, M.N.; Johnston, K.L.; Knight, S.; Kuhnert, N. Hierarchical scheme for LC-MSn identification of chlorogenic acids. J. Agric. Food Chem., 2003, 51(10), 2900-2911.
[http://dx.doi.org/10.1021/jf026187q] [PMID: 12720369]
[http://dx.doi.org/10.1021/jf026187q] [PMID: 12720369]
[4]
Perrone, D.; Farah, A.; Donangelo, C.M.; de Paulis, T.; Martin, P.R. Comprehensive analysis of major and minor chlorogenic acids and lactones in economically relevant Brazilian coffee cultivars. Food Chem., 2008, 106(2), 859-867.
[http://dx.doi.org/10.1016/j.foodchem.2007.06.053]
[http://dx.doi.org/10.1016/j.foodchem.2007.06.053]
[5]
Cho, A.S.; Jeon, S.M.; Kim, M.J.; Yeo, J.; Seo, K.I.; Choi, M.S.; Lee, M.K. Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem. Toxicol., 2010, 48(3), 937-943.
[http://dx.doi.org/10.1016/j.fct.2010.01.003] [PMID: 20064576]
[http://dx.doi.org/10.1016/j.fct.2010.01.003] [PMID: 20064576]
[6]
Shan, J.; Fu, J.; Zhao, Z.; Kong, X.; Huang, H.; Luo, L.; Yin, Z. Chlorogenic acid inhibits lipopolysaccharide-induced cyclooxygenase-2 expression in RAW264.7 cells through suppressing NF-κB and JNK/AP-1 activation. Int. Immunopharmacol., 2009, 9(9), 1042-1048.
[http://dx.doi.org/10.1016/j.intimp.2009.04.011] [PMID: 19393773]
[http://dx.doi.org/10.1016/j.intimp.2009.04.011] [PMID: 19393773]
[7]
Shin, H.S.; Satsu, H.; Bae, M.J.; Zhao, Z.; Ogiwara, H.; Totsuka, M.; Shimizu, M. Anti-inflammatory effect of chlorogenic acid on the IL-8 production in Caco-2 cells and the dextran sulphate sodium-induced colitis symptoms in C57BL/6 mice. Food Chem., 2015, 168, 167-175.
[http://dx.doi.org/10.1016/j.foodchem.2014.06.100] [PMID: 25172696]
[http://dx.doi.org/10.1016/j.foodchem.2014.06.100] [PMID: 25172696]
[8]
Bouayed, J.; Rammal, H.; Dicko, A.; Younos, C.; Soulimani, R. Chlorogenic acid, a polyphenol from Prunus domestica (Mirabelle), with coupled anxiolytic and antioxidant effects. J. Neurol. Sci., 2007, 262(1-2), 77-84.
[http://dx.doi.org/10.1016/j.jns.2007.06.028] [PMID: 17698084]
[http://dx.doi.org/10.1016/j.jns.2007.06.028] [PMID: 17698084]
[9]
Li, Y.; Shi, W.; Li, Y.; Zhou, Y.; Hu, X.; Song, C.; Ma, H.; Wang, C.; Li, Y. Neuroprotective effects of chlorogenic acid against apoptosis of PC12 cells induced by methylmercury. Environ. Toxicol. Pharmacol., 2008, 26(1), 13-21.
[http://dx.doi.org/10.1016/j.etap.2007.12.008] [PMID: 21783882]
[http://dx.doi.org/10.1016/j.etap.2007.12.008] [PMID: 21783882]
[10]
Karthikesan, K.; Pari, L.; Menon, V.P. Antihyperlipidemic effect of chlorogenic acid and tetrahydrocurcumin in rats subjected to diabetogenic agents. Chem. Biol. Interact., 2010, 188(3), 643-650.
[http://dx.doi.org/10.1016/j.cbi.2010.07.026] [PMID: 20696151]
[http://dx.doi.org/10.1016/j.cbi.2010.07.026] [PMID: 20696151]
[11]
Sato, Y.; Itagaki, S.; Kurokawa, T.; Ogura, J.; Kobayashi, M.; Hirano, T.; Sugawara, M.; Iseki, K. In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int. J. Pharm., 2011, 403(1-2), 136-138.
[http://dx.doi.org/10.1016/j.ijpharm.2010.09.035] [PMID: 20933071]
[http://dx.doi.org/10.1016/j.ijpharm.2010.09.035] [PMID: 20933071]
[12]
Kasai, H.; Fukada, S.; Yamaizumi, Z.; Sugie, S.; Mori, H. Action of chlorogenic acid in vegetables and fruits as an inhibitor of 8-hydroxydeoxyguanosine formation in vitro and in a rat carcinogenesis model. Food Chem. Toxicol., 2000, 38(5), 467-471.
[http://dx.doi.org/10.1016/S0278-6915(00)00014-4] [PMID: 10762733]
[http://dx.doi.org/10.1016/S0278-6915(00)00014-4] [PMID: 10762733]
[13]
Park, S.H.; Sim, Y.B.; Han, P.L.; Lee, J.K.; Suh, H.W. Antidepressant-like effect of chlorogenic acid isolated from Artemisia capillaris Thunb. Anim. Cells Syst., 2010, 14(4), 253-259.
[http://dx.doi.org/10.1080/19768354.2010.528192]
[http://dx.doi.org/10.1080/19768354.2010.528192]
[14]
Wu, J.; Chen, H.; Li, H.; Tang, Y.; Yang, L.; Cao, S.; Qin, D. Antidepressant potential of chlorogenic acid-enriched extract from Eucommia ulmoides Oliver bark with neuron protection and promotion of serotonin release through enhancing synapsin I expression. Molecules, 2016, 21(3), 260.
[http://dx.doi.org/10.3390/molecules21030260] [PMID: 26927040]
[http://dx.doi.org/10.3390/molecules21030260] [PMID: 26927040]
[15]
Lee, K.; Lee, J.S.; Jang, H.J.; Kim, S.M.; Chang, M.S.; Park, S.H.; Kim, K.S.; Bae, J.; Park, J.W.; Lee, B.; Choi, H.Y.; Jeong, C.H.; Bu, Y. Chlorogenic acid ameliorates brain damage and edema by inhibiting matrix metalloproteinase-2 and 9 in a rat model of focal cerebral ischemia. Eur. J. Pharmacol., 2012, 689(1-3), 89-95.
[http://dx.doi.org/10.1016/j.ejphar.2012.05.028] [PMID: 22659584]
[http://dx.doi.org/10.1016/j.ejphar.2012.05.028] [PMID: 22659584]
[16]
Azuma, K.; Ippoushi, K.; Nakayama, M.; Ito, H.; Higashio, H.; Terao, J. Absorption of chlorogenic acid and caffeic acid in rats after oral administration. J. Agric. Food Chem., 2000, 48(11), 5496-5500.
[http://dx.doi.org/10.1021/jf000483q] [PMID: 11087508]
[http://dx.doi.org/10.1021/jf000483q] [PMID: 11087508]
[17]
Shi, G.; Rao, L.; Yu, H.; Xiang, H.; Pen, G.; Long, S.; Yang, C. Yeast-cell-based microencapsulation of chlorogenic acid as a water-soluble antioxidant. J. Food Eng., 2007, 80(4), 1060-1067.
[http://dx.doi.org/10.1016/j.jfoodeng.2006.06.038]
[http://dx.doi.org/10.1016/j.jfoodeng.2006.06.038]
[18]
Olthof, M.R.; Katan, M.B.; Hollman, P.C.H. Chlorogenic acid and caffeic acid are absorbed in humans. J. Nutr., 2001, 131(1), 66-71.
[http://dx.doi.org/10.1093/jn/131.1.66] [PMID: 11208940]
[http://dx.doi.org/10.1093/jn/131.1.66] [PMID: 11208940]
[19]
Jaiswal, R.; Matei, M.F.; Subedi, P.; Kuhnert, N. Does roasted coffee contain chlorogenic acid lactones or/and cinnamoylshikimate esters? Food Res. Int., 2014, 61, 214-227.
[http://dx.doi.org/10.1016/j.foodres.2013.09.040]
[http://dx.doi.org/10.1016/j.foodres.2013.09.040]
[20]
Fang, Z.; Bhandari, B. Encapsulation of polyphenols – A review. Trends Food Sci. Technol., 2010, 21(10), 510-523.
[http://dx.doi.org/10.1016/j.tifs.2010.08.003]
[http://dx.doi.org/10.1016/j.tifs.2010.08.003]
[21]
Wu, Y.; Yang, W.; Wang, C.; Hu, J.; Fu, S. Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. Int. J. Pharm., 2005, 295(1-2), 235-245.
[http://dx.doi.org/10.1016/j.ijpharm.2005.01.042] [PMID: 15848008]
[http://dx.doi.org/10.1016/j.ijpharm.2005.01.042] [PMID: 15848008]
[22]
Tan, C.; Nakajima, M. β-Carotene nanodispersions: Preparation, characterization and stability evaluation. Food Chem., 2005, 92(4), 661-671.
[http://dx.doi.org/10.1016/j.foodchem.2004.08.044]
[http://dx.doi.org/10.1016/j.foodchem.2004.08.044]
[23]
International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use In: Validation of analytical procedures: Text and methodology (Q2R1). ; Geneva, 2005; pp. 1-13.
[24]
Gupta, S; Jhawat, V. Quality by design (QbD) approach of pharmacogenomics in drug designing and formulation development for optimization of drug delivery systems. J. Contr. Release., 2017, 245, 15-26.
[25]
Aneesh, T.P.; Rajasekaran, A. Method development and validation for the estimation of sildosin in bulk and pharmaceutical dosage forms using UV-VIS spectrophotometry. Asian J. Pharm. Clin. Res., 2012, 5, 150-152.
[26]
Rathod, B.H.; Rani, S.S.; Kartheek, N.; Kumar, A.A. UV spectrophotometric method development and validation for the quantitative estimation of indinavir sulfate in capsules. Int. J. Pharm. Pharm. Sci., 2014, 6, 598-601.
[27]
Rani, Y.N.; Kumar, B.V.V.R.; Mohanty, S. Development and validation of new analytical methods for the estimation of carvedilol in bulk and pharmaceutical dosage. Asian J. Pharm. Clin. Res., 2013, 6, 138-140.
[28]
Nagisetty, P.; Kumar, S.M.S.; Kumar, P.R. Analytical method development and validation of anti-HIV drug abacavir sulfate. J. Appl. Pharm. Sci., 2012, 2, 85-89.
[29]
Ky, C.L.; Noirot, M.; Hamon, S. Comparison of five purification methods for chlorogenic acid in green coffee beans. J. Agric. Food Chem., 1997, 45(3), 786-790.
[http://dx.doi.org/10.1021/jf9605254]
[http://dx.doi.org/10.1021/jf9605254]
[30]
Belay, A.; Gholap, A.V. Characterization and determination of chlorogenic acids (CGA) in coffee beans by UV-Vis spectroscopy. Afr. J. Pure Appl. Chem., 2009, 3(11), 234-240.
[31]
Adane, T.D.; Yoseph, A.A.; Kusse, G.G. Determination of chlorogenic acid content in beans and leaves of coffea arabica using UV/Vis spectrometer. Afr. J. Pure Appl. Chem., 2019, 13(5), 58-63.
[http://dx.doi.org/10.5897/AJPAC2018.0780]
[http://dx.doi.org/10.5897/AJPAC2018.0780]
[32]
Wang, X.; Zeng, Z.; Tian, Z.; Sun, J.; Li, Y.; Fan, X. Validation of spectrophotometric determination of chlorogenic acid in fermentation broth and fruits. Food Chem., 2019, 278, 170-177.
[http://dx.doi.org/10.1016/j.foodchem.2018.11.041] [PMID: 30583358]
[http://dx.doi.org/10.1016/j.foodchem.2018.11.041] [PMID: 30583358]