Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

An Overview of the Natural Neuroprotective Agents for the Management of Cognitive Impairment Induced by Scopolamine in Zebrafish (Danio rerio)

In Press, (this is not the final "Version of Record"). Available online 19 July, 2024
Author(s): Sara Abidar, Lucian Hritcu* and Mohamed Nhiri
Published on: 19 July, 2024

DOI: 10.2174/0118715273309256240702053609

Price: $95

Abstract

Alzheimer’s Disease (AD) is a neurodegenerative disorder mainly characterized by dementia and cognitive decline. AD is essentially associated with the presence of aggregates of the amyloid-β peptide and the hyperphosphorylated microtubule-associated protein tau. The available AD therapies can only alleviate the symptoms; therefore, the development of natural treatments that exhibit neuroprotective effects and correct the behavioral impairment is a critical requirement. The present review aims to collect the natural substances that have been evaluated for their neuroprotective profile against AD-like behaviors induced in zebrafish (Danio rerio) by scopolamine. We focused on articles retrieved from the PubMed database via preset searching strings from 2010 to 2023. Our review assembled 21 studies that elucidated the activities of 28 various natural substances, including bioactive compounds, extracts, fractions, commercial compounds, and essential oils. The listed compounds enhanced cognition and showed several mechanisms of action, namely antioxidant potential, acetylcholinesterase’s inhibition, and reduction of lipid peroxidation. Additional studies should be achieved to demonstrate their preventive and therapeutic activities in cellular and rodent models. Further clinical trials would be extremely solicited to support more insight into the neuroprotective effects of the most promising drugs in an AD context.

[1]
Vaz M, Silvestre S. Alzheimer’s disease: Recent treatment strategies. Eur J Pharmacol 2020; 887: 173554.
[http://dx.doi.org/10.1016/j.ejphar.2020.173554] [PMID: 32941929]
[2]
Liu PP, Xie Y, Meng XY, Kang JS. History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal Transduct Target Ther 2019; 4(1): 29.
[http://dx.doi.org/10.1038/s41392-019-0063-8] [PMID: 31637009]
[3]
Ebrahimighahnavieh MA, Luo S, Chiong R. Deep learning to detect Alzheimer’s disease from neuroimaging: A systematic literature review. Comput Methods Programs Biomed 2020; 187: 105242.
[http://dx.doi.org/10.1016/j.cmpb.2019.105242] [PMID: 31837630]
[4]
Zhang Y, Chen H, Li R, Sterling K, Song W. Amyloid β-based therapy for Alzheimer’s disease: challenges, successes and future. Signal Transduct Target Ther 2023; 8(1): 248.
[http://dx.doi.org/10.1038/s41392-023-01484-7]
[5]
Monzio Compagnoni G, Di Fonzo A, Corti S, Comi GP, Bresolin N, Masliah E. The role of mitochondria in neurodegenerative diseases: the lesson from Alzheimer’s disease and parkinson’s disease. Mol Neurobiol 2020; 57(7): 2959-80.
[http://dx.doi.org/10.1007/s12035-020-01926-1] [PMID: 32445085]
[6]
Habib N, McCabe C, Medina S, et al. Disease-associated astrocytes in Alzheimer’s disease and aging. Nature Neurosci 2020; 23(6): 701-6.
[http://dx.doi.org/10.1038/s41593-020-0624-8]
[7]
Verkhratsky A, Rodrigues JJ, Pivoriunas A, Zorec R, Semyanov A. Astroglial atrophy in Alzheimer’s disease. Pflugers Arch 2019; 471(10): 1247-61.
[http://dx.doi.org/10.1007/s00424-019-02310-2] [PMID: 31520182]
[8]
Swarbrick S, Wragg N, Ghosh S, Stolzing A. Systematic review of miRNA as biomarkers in Alzheimer’s disease. Mol Neurobiol 2019; 56(9): 6156-67.
[http://dx.doi.org/10.1007/s12035-019-1500-y] [PMID: 30734227]
[9]
Rahman SO, Panda BP, Parvez S, et al. Neuroprotective role of astaxanthin in hippocampal insulin resistance induced by Aβ peptides in animal model of Alzheimer’s disease. Biomed Pharmacother 2019; 110: 47-58.
[http://dx.doi.org/10.1016/j.biopha.2018.11.043] [PMID: 30463045]
[10]
Sharma HS, Muresanu DF, Nozari A, et al. 2019.Nanowired delivery of cerebrolysin with neprilysin and p-Tau antibodies induces superior neuroprotection in Alzheimer’s disease.
[http://dx.doi.org/10.1016/bs.pbr.2019.03.009]
[11]
Abeysinghe AADT, Deshapriya RDUS, Udawatte C. Alzheimer’s disease; a review of the pathophysiological basis and therapeutic interventions. Life Sci 2020; 256: 117996.
[http://dx.doi.org/10.1016/j.lfs.2020.117996] [PMID: 32585249]
[12]
Wan YW, Al-Ouran R, Mangleburg CG, et al. Meta-analysis of the Alzheimer’s disease human brain transcriptome and functional dissection in mouse models. Cell Rep 2020; 32(2): 107908.
[http://dx.doi.org/10.1016/j.celrep.2020.107908] [PMID: 32668255]
[13]
Jia J, Wei C, Chen S, et al. The cost of Alzheimer’s disease in China and re‐estimation of costs worldwide. Alzheimers Dement 2018; 14(4): 483-91.
[http://dx.doi.org/10.1016/j.jalz.2017.12.006] [PMID: 29433981]
[14]
Breijyeh Z, Karaman R. Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules 2020; 25(24): 5789.
[http://dx.doi.org/10.3390/molecules25245789] [PMID: 33302541]
[15]
Giacomeli R, Izoton JC, dos Santos RB, Boeira SP, Jesse CR, Haas SE. Neuroprotective effects of curcumin lipid-core nanocapsules in a model Alzheimer’s disease induced by β-amyloid 1-42 peptide in aged female mice. Brain Res 2019; 1721: 146325.
[http://dx.doi.org/10.1016/j.brainres.2019.146325] [PMID: 31325424]
[16]
Andrews SJ, Fulton-Howard B, Goate A. Interpretation of risk loci from genome-wide association studies of Alzheimer’s disease. Lancet Neurol 2020; 19(4): 326-35.
[http://dx.doi.org/10.1016/S1474-4422(19)30435-1] [PMID: 31986256]
[17]
Sadigh-Eteghad S, Sabermarouf B, Majdi A, Talebi M, Farhoudi M, Mahmoudi J. Amyloid-beta: A crucial factor in Alzheimer’s disease. Med Princ Pract 2015; 24(1): 1-10.
[http://dx.doi.org/10.1159/000369101] [PMID: 25471398]
[18]
Wiciński M, Socha M, Malinowski B, et al. Liraglutide and its neuroprotective properties—focus on possible biochemical mechanisms in Alzheimer’s disease and cerebral ischemic events. Int J Mol Sci 2019; 20(5): 1050.
[http://dx.doi.org/10.3390/ijms20051050] [PMID: 30823403]
[19]
Song HL, Demirev AV, Kim NY, Kim DH, Yoon SY. Ouabain activates transcription factor EB and exerts neuroprotection in models of Alzheimer’s disease. Mol Cell Neurosci 2019; 95: 13-24.
[http://dx.doi.org/10.1016/j.mcn.2018.12.007] [PMID: 30594669]
[20]
Mathys H, Davila-Velderrain J, Peng Z, et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 2019; 570(7761): 332-7.
[http://dx.doi.org/10.1038/s41586-019-1195-2] [PMID: 31042697]
[21]
Essa MM, Vijayan RK, Castellano-Gonzalez G, Memon MA, Braidy N, Guillemin GJ. Neuroprotective effect of natural products against Alzheimer’s disease. Neurochem Res 2012; 37(9): 1829-42.
[http://dx.doi.org/10.1007/s11064-012-0799-9] [PMID: 22614926]
[22]
Griñán-Ferré C, Bellver-Sanchis A, Izquierdo V, et al. The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer’s disease pathology: From antioxidant to epigenetic therapy. Ageing Res Rev 2021; 67: 101271.
[http://dx.doi.org/10.1016/j.arr.2021.101271] [PMID: 33571701]
[23]
Pinto A, Bonucci A, Maggi E, Corsi M, Businaro R. Anti-oxidant and anti-inflammatory activity of ketogenic diet: New perspectives for neuroprotection in Alzheimer’s disease. Antioxidants 2018; 7(5): 63.
[http://dx.doi.org/10.3390/antiox7050063] [PMID: 29710809]
[24]
Wang L, Pu Z, Li M, Wang K, Deng L, Chen W. Antioxidative and antiapoptosis: Neuroprotective effects of dauricine in Alzheimer’s disease models. Life Sci 2020; 243: 117237.
[http://dx.doi.org/10.1016/j.lfs.2019.117237] [PMID: 31887302]
[25]
Ren C, Li D, Zhou Q, Hu X. Mitochondria-targeted TPP-MoS2 with dual enzyme activity provides efficient neuroprotection through M1/M2 microglial polarization in an Alzheimer’s disease model. Biomaterials 2020; 232: 119752.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119752] [PMID: 31923845]
[26]
Sengoku R. Aging and Alzheimer’s disease pathology. Neuropathology 2020; 40(1): 22-9.
[http://dx.doi.org/10.1111/neup.12626] [PMID: 31863504]
[27]
Lee JC, Kim SJ, Hong S, Kim Y. Diagnosis of Alzheimer’s disease utilizing amyloid and tau as fluid biomarkers. Exp Mol Med 2019; 51(5): 1-10.
[http://dx.doi.org/10.1038/s12276-019-0250-2] [PMID: 31073121]
[28]
Bilal M, Barani M, Sabir F, Rahdar A, Kyzas GZ. Nanomaterials for the treatment and diagnosis of Alzheimer’s disease: An overview. NanoImpact 2020; 20: 100251.
[http://dx.doi.org/10.1016/j.impact.2020.100251]
[29]
Pardo-Moreno T, González-Acedo A, Rivas-Domínguez A, et al. Therapeutic approach to Alzheimer’s disease: Current treatments and new perspectives. Pharmaceutics 2022; 14(6): 1117.
[http://dx.doi.org/10.3390/pharmaceutics14061117] [PMID: 35745693]
[30]
Se Thoe E, Fauzi A, Tang YQ, Chamyuang S, Chia AYY. A review on advances of treatment modalities for Alzheimer’s disease. Life Sci 2021; 276: 119129.
[http://dx.doi.org/10.1016/j.lfs.2021.119129] [PMID: 33515559]
[31]
You D, Hasley bin Ramli S, Ibrahim R, et al. A thematic review on therapeutic toys and games for the elderly with Alzheimer’s disease. Disabil Rehabil Assist Technol 2024; 2024: 1-13.
[http://dx.doi.org/10.1080/17483107.2023.2299713] [PMID: 38299880]
[32]
Coles M, Steiner-Lim GZ, Karl T. Therapeutic properties of multi-cannabinoid treatment strategies for Alzheimer’s disease. Front Neurosci 2022; 16: 962922.
[http://dx.doi.org/10.3389/fnins.2022.962922] [PMID: 36117622]
[33]
Cano A, Turowski P, Ettcheto M, et al. Nanomedicine-based technologies and novel biomarkers for the diagnosis and treatment of Alzheimer’s disease: from current to future challenges. J Nanobiotechnology 2021; 19(1): 122.
[http://dx.doi.org/10.1186/s12951-021-00864-x] [PMID: 33926475]
[34]
Athar T, Al Balushi K, Khan SA. Recent advances on drug development and emerging therapeutic agents for Alzheimer’s disease. Mol Biol Rep 2021; 48(7): 5629-45.
[http://dx.doi.org/10.1007/s11033-021-06512-9] [PMID: 34181171]
[35]
Tagliavini F, Tiraboschi P, Federico A. Alzheimer’s disease: The controversial approval of Aducanumab. Neurol Sci 2021; 42(8): 3069-70.
[http://dx.doi.org/10.1007/s10072-021-05497-4] [PMID: 34322762]
[36]
Wainberg M, Luquez T, Koelle DM, et al. The viral hypothesis: How herpesviruses may contribute to Alzheimer’s disease. Mol Psychiatry 2021; 26(10): 5476-80.
[http://dx.doi.org/10.1038/s41380-021-01138-6] [PMID: 33972690]
[37]
Gough SM, Casella A, Ortega KJ, Hackam AS. Neuroprotection by the ketogenic diet: Evidence and controversies. Front Nutr 2021; 8: 782657.
[http://dx.doi.org/10.3389/fnut.2021.782657] [PMID: 34888340]
[38]
Amato A, Terzo S, Mulè F. Natural compounds as beneficial antioxidant agents in neurodegenerative disorders: A focus on Alzheimer’s disease. Antioxidants 2019; 8(12): 608.
[http://dx.doi.org/10.3390/antiox8120608] [PMID: 31801234]
[39]
Dey A, Bhattacharya R, Mukherjee A, Pandey DK. Natural products against Alzheimer’s disease: Pharmaco-therapeutics and biotechnological interventions. Biotechnol Adv 2017; 35(2): 178-216.
[http://dx.doi.org/10.1016/j.biotechadv.2016.12.005] [PMID: 28043897]
[40]
Akram M, Nawaz A. Effects of medicinal plants on Alzheimer’s disease and memory deficits. Neural Regen Res 2017; 12(4): 660-70.
[http://dx.doi.org/10.4103/1673-5374.205108] [PMID: 28553349]
[41]
Ramalho MJ, Andrade S, Loureiro JA, do Carmo Pereira M. Nanotechnology to improve the Alzheimer’s disease therapy with natural compounds. Drug Deliv Transl Res 2020; 10(2): 380-402.
[http://dx.doi.org/10.1007/s13346-019-00694-3] [PMID: 31773421]
[42]
Uddin MS, Mamun AA, Hossain MS, et al. Neuroprotective Effect of Phyllanthus acidu L. on learning and memory impairment in scopolamine-induced animal model of dementia and oxidative stress: Natural wonder for regulating the development and progression of alzheimer’s disease. Adv Alzheimer Dis 2016; 5(2): 53-72.
[http://dx.doi.org/10.4236/aad.2016.52005]
[43]
Silva RFM, Pogačnik L. Polyphenols from food and natural products: Neuroprotection and safety. Antioxidants 2020; 9(1): 61.
[http://dx.doi.org/10.3390/antiox9010061] [PMID: 31936711]
[44]
Nabavi SF, Braidy N, Orhan IE, Badiee A, Daglia M, Nabavi SM. Rhodiola rosea L. and Alzheimer’s disease: From farm to pharmacy. Phytother Res 2016; 30(4): 532-9.
[http://dx.doi.org/10.1002/ptr.5569] [PMID: 27059687]
[45]
Richetti SK, Rosemberg DB, Ventura-Lima J, Monserrat JM, Bogo MR, Bonan CD. Acetylcholinesterase activity and antioxidant capacity of zebrafish brain is altered by heavy metal exposure. Neurotoxicology 2011; 32(1): 116-22.
[http://dx.doi.org/10.1016/j.neuro.2010.11.001] [PMID: 21074552]
[46]
Rao RV, Descamps O, John V, Bredesen DE. Ayurvedic medicinal plants for Alzheimer’s disease: A review. Alzheimers Res Ther 2012; 4(3): 22.
[http://dx.doi.org/10.1186/alzrt125] [PMID: 22747839]
[47]
Kaufmann D, Kaur Dogra A, Tahrani A, Herrmann F, Wink M. Extracts from traditional Chinese medicinal plants inhibit acetylcholinesterase, a known Alzheimer’s disease target. Molecules 2016; 21(9): 1161.
[http://dx.doi.org/10.3390/molecules21091161] [PMID: 27589716]
[48]
Dumitru G, El-Nashar HAS, Mostafa NM, et al. Agathisflavone isolated from Schinus polygamus (Cav.) Cabrera leaves prevents scopolamine-induced memory impairment and brain oxidative stress in zebrafish (Danio rerio). Phytomedicine 2019; 58: 152889.
[http://dx.doi.org/10.1016/j.phymed.2019.152889] [PMID: 30901660]
[49]
Devidas SB, Rahmatkar SN, Singh R, et al. Amelioration of cognitive deficit in zebrafish by an undescribed anthraquinone from Juglans regia L. : An in-silico, in-vitro and in-vivo approach. Eur J Pharmacol 2021; 906: 174234.
[http://dx.doi.org/10.1016/j.ejphar.2021.174234] [PMID: 34090895]
[50]
Brinza I, Ayoub IM, Eldahshan OA, Hritcu L. Baicalein 5,6-dimethyl ether prevents memory deficits in the scopolamine zebrafish model by regulating cholinergic and antioxidant systems. Plants 2021; 10(6): 1245.
[http://dx.doi.org/10.3390/plants10061245] [PMID: 34207381]
[51]
Yendapalli PR, David DC, Balasundaram A. Evaluating the combined cognitive enhancement effect of brassica juncea and cynadon dactylon extract in scopolamine induced amnesia zebrafish model. Toxicol Environ Health Sci 2019; 11(3): 190-6.
[http://dx.doi.org/10.1007/s13530-019-0393-5]
[52]
Valu MV, Soare LC, Ducu C, et al. Hericium erinaceus (Bull.) Pers. ethanolic extract with antioxidant properties on scopolamine-induced memory deficits in a zebrafish model of cognitive impairment. J Fungi 2021; 7(6): 477.
[http://dx.doi.org/10.3390/jof7060477] [PMID: 34204787]
[53]
Valu MV, Ducu C, Moga S, et al. Effects of the hydroethanolic extract of Lycopodium selago L. on scopolamine-induced memory deficits in zebrafish. Pharmaceuticals 2021; 14(6): 568.
[http://dx.doi.org/10.3390/ph14060568] [PMID: 34198639]
[54]
Richetti SK, Blank M, Capiotti KM, et al. Quercetin and rutin prevent scopolamine-induced memory impairment in zebrafish. Behav Brain Res 2011; 217(1): 10-5.
[http://dx.doi.org/10.1016/j.bbr.2010.09.027] [PMID: 20888863]
[55]
Brinza I, Abd-Alkhalek AM, El-Raey MA, Boiangiu RS, Eldahshan OA, Hritcu L. Ameliorative effects of rhoifolin in scopolamine-induced amnesic zebrafish (Danio rerio) model. Antioxidants 2020; 9(7): 580.
[http://dx.doi.org/10.3390/antiox9070580] [PMID: 32635149]
[56]
Todirascu-Ciornea E, El-Nashar HAS, Mostafa NM, et al. Schinus terebinthifolius essential oil attenuates scopolamine-induced memory deficits via cholinergic modulation and antioxidant properties in a zebrafish model. Evid Based Complement Alternat Med 2019; 2019: 1-11.
[http://dx.doi.org/10.1155/2019/5256781] [PMID: 31885652]
[57]
Aly SH, Elissawy AM, Fayez AM, Eldahshan OA, Elshanawany MA, Singab ANB. Neuroprotective effects of Sophora secundiflora, Sophora tomentosa leaves and formononetin on scopolamine-induced dementia. Nat Prod Res 2021; 35(24): 5848-52.
[http://dx.doi.org/10.1080/14786419.2020.1795853] [PMID: 32696670]
[58]
Singsai K, Ladpala N, Dangja N, Boonchuen T, Jaikhamfu N, Fakthong P. Effect of Streblus asper leaf extract on scopolamine-induced memory deficits in zebrafish: The model of Alzheimer’s disease. Adv Pharmacol Pharm Sci 2021; 2021: 1-7.
[http://dx.doi.org/10.1155/2021/6666726] [PMID: 33987539]
[59]
Rajesh V, Ilanthalir S. Cognition enhancing activity of sulforaphane against scopolamine induced cognitive impairment in zebra fish (Danio rerio). Neurochem Res 2016; 41(10): 2538-48.
[http://dx.doi.org/10.1007/s11064-016-1965-2] [PMID: 27255600]
[60]
Capatina L, Todirascu-Ciornea E, Napoli EM, Ruberto G, Hritcu L, Dumitru G. Thymus vulgaris essential oil protects zebrafish against cognitive dysfunction by regulating cholinergic and antioxidants systems. Antioxidants 2020; 9(11): 1083.
[http://dx.doi.org/10.3390/antiox9111083] [PMID: 33158153]
[61]
Capatina L, Boiangiu RS, Dumitru G, et al. Rosmarinus officinalis essential oil improves scopolamine-induced neurobehavioral changes via restoration of cholinergic function and brain antioxidant status in zebrafish (Danio rerio). Antioxidants 2020; 9(1): 62.
[http://dx.doi.org/10.3390/antiox9010062] [PMID: 31936730]
[62]
Kim YH, Lee Y, Kim D, Jung MW, Lee CJ. Scopolamine-induced learning impairment reversed by physostigmine in zebrafish. Neurosci Res 2010; 67(2): 156-61.
[http://dx.doi.org/10.1016/j.neures.2010.03.003] [PMID: 20298728]
[63]
Boiangiu RS, Bagci E, Dumitru G, Hritcu L, Todirascu-Ciornea E. Angelica purpurascens (Avé-Lall.) Gilli. essential oil improved brain function via cholinergic modulation and antioxidant effects in the scopolamine-induced zebrafish (Danio rerio) Model. Plants 2022; 11(8): 1096.
[http://dx.doi.org/10.3390/plants11081096] [PMID: 35448824]
[64]
Karunakaran KB, Thiyagaraj A, Santhakumar K. Novel insights on acetylcholinesterase inhibition by Convolvulus pluricaulis, scopolamine and their combination in zebrafish. Nat Prod Bioprospect 2022; 12(1): 6.
[http://dx.doi.org/10.1007/s13659-022-00332-5] [PMID: 35212831]
[65]
Boiangiu RS, Mihasan M, Gorgan DL, Stache BA, Hritcu L. Anxiolytic, promnesic, anti-acetylcholinesterase and antioxidant effects of cotinine and 6-hydroxy-l-nicotine in scopolamine-induced zebrafish (Danio rerio) model of Alzheimer’s disease. Antioxidants 2021; 10(2): 212.
[http://dx.doi.org/10.3390/antiox10020212] [PMID: 33535660]
[66]
Pecio Ł, Kozachok S, Brinza I, et al. Neuroprotective effect of Yucca schidigera roezl ex ortgies bark phenolic fractions, yuccaol B and gloriosaol A on scopolamine-induced memory deficits in zebrafish. Molecules 2022; 27(12): 3692.
[http://dx.doi.org/10.3390/molecules27123692] [PMID: 35744815]
[67]
Damo JLK, Boiangiu RS, Brinza I, et al. Neuroprotective potential of guiera senegalensis (combretaceae) leaf hydroethanolic extract against cholinergic system dysfunctions and oxidative stress in scopolamine-induced cognitive impairment in zebrafish (Danio rerio). Plants 2022; 11(9): 1149.
[http://dx.doi.org/10.3390/plants11091149] [PMID: 35567150]
[68]
Capatina L, Napoli EM, Ruberto G, Hritcu L. Origanum vulgare ssp. hirtum (Lamiaceae) essential oil prevents behavioral and oxidative stress changes in the scopolamine zebrafish model. Molecules 2021; 26(23): 7085.
[http://dx.doi.org/10.3390/molecules26237085] [PMID: 34885665]
[69]
Sarkar S, Mukherjee S, Chattopadhyay A, Bhattacharya S. Low dose of arsenic trioxide triggers oxidative stress in zebrafish brain: Expression of antioxidant genes. Ecotoxicol Environ Saf 2014; 107: 1-8.
[http://dx.doi.org/10.1016/j.ecoenv.2014.05.012] [PMID: 24905690]
[70]
Dal Santo G, Conterato GMM, Barcellos LJG, Rosemberg DB, Piato AL. Acute restraint stress induces an imbalance in the oxidative status of the zebrafish brain. Neurosci Lett 2014; 558: 103-8.
[http://dx.doi.org/10.1016/j.neulet.2013.11.011] [PMID: 24262751]
[71]
Cardoso BR, Hare DJ, Bush AI, Roberts BR. Glutathione peroxidase 4: A new player in neurodegeneration? Mol Psychiatry 2017; 22(3): 328-35.
[http://dx.doi.org/10.1038/mp.2016.196] [PMID: 27777421]
[72]
Márquez-Valadez B, Maldonado PD, Galván-Arzate S, et al. Alpha-mangostin induces changes in glutathione levels associated with glutathione peroxidase activity in rat brain synaptosomes. Nutr Neurosci 2012; 15(5): 13-9.
[http://dx.doi.org/10.1179/147683012X13327575416400] [PMID: 23232053]
[73]
Zhang DL, Hu CX, Li DH, Liu YD. Lipid peroxidation and antioxidant responses in zebrafish brain induced by Aphanizomenon flos-aquae DC-1 aphantoxins. Aquat Toxicol 2013; 144-145: 250-6.
[http://dx.doi.org/10.1016/j.aquatox.2013.10.011] [PMID: 24189433]
[74]
Alak G, Ucar A, Parlak V, et al. Antioxidant potential of ulexite in zebrafish brain: Assessment of oxidative DNA damage, apoptosis, and response of antioxidant defense system. Biol Trace Elem Res 2021; 199(3): 1092-9.
[http://dx.doi.org/10.1007/s12011-020-02231-7] [PMID: 32557103]
[75]
Bajo R, Pusil S, López ME, et al. Scopolamine effects on functional brain connectivity: A pharmacological model of Alzheimer’s disease. Scientific Reports 2015; 5: 9748.
[http://dx.doi.org/10.1038/srep09748]
[76]
Tang KS. The cellular and molecular processes associated with scopolamine-induced memory deficit: A model of Alzheimer’s biomarkers. Life Sci 2019; 233: 116695.
[http://dx.doi.org/10.1016/j.lfs.2019.116695] [PMID: 31351082]
[77]
Zanandrea R, Abreu MS, Piato A, Barcellos LJG, Giacomini ACVV. Lithium prevents scopolamine-induced memory impairment in zebrafish. Neurosci Lett 2018; 664: 34-7.
[http://dx.doi.org/10.1016/j.neulet.2017.11.010] [PMID: 29126775]
[78]
Cognato GP, Bortolotto JW, Blazina AR, et al. Y-Maze memory task in zebrafish (Danio rerio): The role of glutamatergic and cholinergic systems on the acquisition and consolidation periods. Neurobiol Learn Mem 2012; 98(4): 321-8.
[http://dx.doi.org/10.1016/j.nlm.2012.09.008] [PMID: 23044456]
[79]
Fontana BD, Cleal M, Parker MO. Female adult zebrafish ( Danio rerio ) show higher levels of anxiety‐like behavior than males, but do not differ in learning and memory capacity. Eur J Neurosci 2020; 52(1): 2604-13.
[http://dx.doi.org/10.1111/ejn.14588] [PMID: 31597204]
[80]
Braida D, Ponzoni L, Martucci R, Sala M. A new model to study visual attention in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2014; 55: 80-6.
[http://dx.doi.org/10.1016/j.pnpbp.2014.03.010] [PMID: 24681194]
[81]
Magyary I. Floating novel object recognition in adult zebrafish: a pilot study. Cogn Process 2019; 20(3): 359-62.
[http://dx.doi.org/10.1007/s10339-019-00910-5] [PMID: 30810927]
[82]
Lin FJ, Li H, Wu DT, et al. Recent development in zebrafish model for bioactivity and safety evaluation of natural products. Crit Rev Food Sci Nutr 2022; 62(31): 8646-74.
[http://dx.doi.org/10.1080/10408398.2021.1931023] [PMID: 34058920]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy