Note! Please note that this article is currently in the "Article in Press" stage and is not the final "Version of record". While it has been accepted, copy-edited, and formatted, however, it is still undergoing proofreading and corrections by the authors. Therefore, the text may still change before the final publication. Although "Articles in Press" may not have all bibliographic details available, the DOI and the year of online publication can still be used to cite them. The article title, DOI, publication year, and author(s) should all be included in the citation format. Once the final "Version of record" becomes available the "Article in Press" will be replaced by that.
Abstract
Background: Paclitaxel (PTX) is a key drug used for chemotherapy for various cancers. The hy-droxylation metabolites of paclitaxel are different between humans and rats. Currently, there is little infor-mation available on the metabolic profiles of CYP450 enzymes in rats.
Objective: This study evaluated the dynamic metabolic profiles of PTX and its metabolites in rats and in vitro. Methods: Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrome-try (UHPLC-Q-TOF-MS) and LC-MS/MS were applied to qualitative and quantitative analysis of PTX and its metabolites in rats’ liver microsomes and recombinant enzyme CYP3A1/3A2. Ten specific inhibitors [NF (CYP1A1), FFL (CYP1A2), MOP (CYP2A6), OND (CYP2B6), QCT (CYP2C8), SFP (CYP2C9), NKT (CYP2C19), QND (CYP2D6), MPZ (CYP2E1) and KTZ (CYP3A4)] were used to identify the metabolic pathway in vitro. Results: Four main hydroxylated metabolites of PTX were identified. Among them, 3'-p-OH PTX and 2-OH PTX were monohydroxylated metabolites identified in rats and liver microsome samples, and 6α-2-di-OH PTX and 6α-5"-di-OH PTX were dihydroxylated metabolites identified in rats. CYP3A recombinant enzyme studies showed that the CYP3A1/3A2 in rat liver microsomes was mainly responsible for metabolizing PTX into 3'-p-OH-PTX and 2-OH-PTX. However, 6α-OH PTX was not detected in rat plasma and liver microsome samples. Conclusion: The results indicated that the CYP3A1/3A2 enzyme, metabolizing PTX into 3'-p-OH-PTX and 2-OH-PTX, is responsible for the metabolic of PTX in rats. The CYP2C8 metabolite 6α-OH PTX in humans was not detected in rat plasma in this study, which might account for the interspecies metabolic differences between rats and humans. This study will provide evidence for drug-drug interaction research in rats.[1]
Shi, M.Z.; Xing, T.Y.; Chen, J.J.; Jiang, B.; Xiao, X.; Yang, J.; Zhu, J.; Guo, C.; Hu, J.D.; Han, Y.L. Effect of Xiao-Ai-Ping injection on paclitaxel pharmacokinetics in rats by LC–MS/MS method. J. Pharm. Biomed. Anal., 2019, 174, 728-733.
[http://dx.doi.org/10.1016/j.jpba.2019.07.003] [PMID: 31299453]
[http://dx.doi.org/10.1016/j.jpba.2019.07.003] [PMID: 31299453]
[2]
Murphy, W.K.; Fossella, F.V.; Winn, R.J.; Shin, D.M.; Hynes, H.E.; Gross, H.M.; Davilla, E.; Leimert, J.; Dhingra, H.; Raber, M.N.; Krakoff, I.H.; Hong, W.K. Phase II study of taxol in patients with untreated advanced non-small-cell lung cancer. J. Natl. Cancer Inst., 1993, 85(5), 384-388.
[http://dx.doi.org/10.1093/jnci/85.5.384] [PMID: 8094466]
[http://dx.doi.org/10.1093/jnci/85.5.384] [PMID: 8094466]
[3]
Gatzemeier, U.; Heckmayr, M.; Neuhauss, R.; Schlüter, I.; Pawel, J.V.; Wagner, H.; Dreps, A. Phase II study with paclitaxel for the treatment of advanced inoperable non-small cell lung cancer. Lung Cancer, 1995, 12(Suppl. 2), S101-S106.
[http://dx.doi.org/10.1016/S0169-5002(10)80008-X] [PMID: 7551941]
[http://dx.doi.org/10.1016/S0169-5002(10)80008-X] [PMID: 7551941]
[4]
Munjal, N.S.; Shukla, R.; Singh, T.R. Physicochemical characterization of paclitaxel prodrugs with cytochrome 3A4 to correlate solubility and bioavailability implementing molecular docking and simulation studies. J. Biomol. Struct. Dyn., 2022, 40(13), 5983-5995.
[http://dx.doi.org/10.1080/07391102.2021.1875881] [PMID: 33491578]
[http://dx.doi.org/10.1080/07391102.2021.1875881] [PMID: 33491578]
[5]
Xiao, B.; Huang, Z.; Li, L.; Hou, L.; Yao, D.; Mo, B. Paclitaxel inhibits proliferation by negatively regulating Cdk1-cell cycle axis in rat airway smooth muscle cells. J. Asthma, 2024, 31, 1-9.
[http://dx.doi.org/10.1080/02770903.2024.2349599] [PMID: 38696283]
[http://dx.doi.org/10.1080/02770903.2024.2349599] [PMID: 38696283]
[6]
Zhang, H.; Xing, C.; Yan, B.; Lei, H.; Guan, Y.; Zhang, S.; Kang, Y.; Pang, J. Paclitaxel overload supramolecular oxidative stress nanoamplifier with a CDK12 inhibitor for enhanced cancer therapy. Biomacromolecules, 2024, 25(6), 3685-3702.
[http://dx.doi.org/10.1021/acs.biomac.4c00260] [PMID: 38779908]
[http://dx.doi.org/10.1021/acs.biomac.4c00260] [PMID: 38779908]
[7]
Barbuti, A.; Chen, Z.S. Paclitaxel through the ages of anticancer therapy: exploring its role in chemoresistance and radiation therapy. Cancers (Basel), 2015, 7(4), 2360-2371.
[http://dx.doi.org/10.3390/cancers7040897] [PMID: 26633515]
[http://dx.doi.org/10.3390/cancers7040897] [PMID: 26633515]
[8]
Zhu, L.; Chen, L. Progress in research on paclitaxel and tumor immunotherapy. Cell. Mol. Biol. Lett., 2019, 24(1), 40.
[http://dx.doi.org/10.1186/s11658-019-0164-y] [PMID: 31223315]
[http://dx.doi.org/10.1186/s11658-019-0164-y] [PMID: 31223315]
[9]
Alqahtani, F.Y.; Aleanizy, F.S.; El Tahir, E.; Alkahtani, H.M.; AlQuadeib, B.T. Paclitaxel. Profiles Drug Subst. Excip. Relat. Methodol., 2019, 44, 205-238.
[http://dx.doi.org/10.1016/bs.podrm.2018.11.001] [PMID: 31029218]
[http://dx.doi.org/10.1016/bs.podrm.2018.11.001] [PMID: 31029218]
[10]
Yang, Q.; Zu, C.; Li, W.; Wu, W.; Ge, Y.; Wang, L.; Wang, L.; Li, Y.; Zhao, X. Enhanced water solubility and oral bioavailability of paclitaxel crystal powders through an innovative antisolvent precipitation process: antisolvent crystallization using ionic liquids as solvent. Pharmaceutics, 2020, 12(11), 1008.
[http://dx.doi.org/10.3390/pharmaceutics12111008] [PMID: 33105832]
[http://dx.doi.org/10.3390/pharmaceutics12111008] [PMID: 33105832]
[11]
Tan, X.; Li, S.; Sheng, R.; Zhang, Q.; Li, C.; Liu, L.; Zhang, Y.; Ge, L. Biointerfacial giant capsules with high paclitaxel loading and magnetic targeting for breast tumor therapy. J. Colloid Interface Sci., 2023, 633, 1055-1068.
[http://dx.doi.org/10.1016/j.jcis.2022.11.151] [PMID: 36516681]
[http://dx.doi.org/10.1016/j.jcis.2022.11.151] [PMID: 36516681]
[12]
Dai, Y.; Zhang, Y.; Zhang, L.; Song, Z. Synthesis and biological evaluation of paclitaxel-aminoguanidine conjugates for suppressing breast cancer. Curr. Org. Synth., 2023, 20(8), 890-896.
[http://dx.doi.org/10.2174/1570179420666230327090545] [PMID: 36974410]
[http://dx.doi.org/10.2174/1570179420666230327090545] [PMID: 36974410]
[13]
Falah, M.; Rayan, M.; Rayan, A. A novel paclitaxel conjugate with higher efficiency and lower toxicity: A new drug candidate for cancer treatment. Int. J. Mol. Sci., 2019, 20(19), 4965.
[http://dx.doi.org/10.3390/ijms20194965] [PMID: 31597361]
[http://dx.doi.org/10.3390/ijms20194965] [PMID: 31597361]
[14]
Wang, X.; Zhou, J.; Wang, Y.; Zhu, Z.; Lu, Y.; Wei, Y.; Chen, L. A phase I clinical and pharmacokinetic study of paclitaxel liposome infused in non-small cell lung cancer patients with malignant pleural effusions. Eur. J. Cancer, 2010, 46(8), 1474-1480.
[http://dx.doi.org/10.1016/j.ejca.2010.02.002] [PMID: 20207133]
[http://dx.doi.org/10.1016/j.ejca.2010.02.002] [PMID: 20207133]
[15]
Zhang, Q.; Wang, J.; Zhang, H.; Liu, D.; Ming, L.; Liu, L.; Dong, Y.; Jian, B.; Cai, D. The anticancer efficacy of paclitaxel liposomes modified with low-toxicity hydrophobic cell-penetrating peptides in breast cancer: An in vitro and in vivo evaluation. RSC Advances, 2018, 8(43), 24084-24093.
[http://dx.doi.org/10.1039/C8RA03607A] [PMID: 35539172]
[http://dx.doi.org/10.1039/C8RA03607A] [PMID: 35539172]
[16]
Martignoni, M.; Groothuis, G.M.M.; de Kanter, R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin. Drug Metab. Toxicol., 2006, 2(6), 875-894.
[http://dx.doi.org/10.1517/17425255.2.6.875] [PMID: 17125407]
[http://dx.doi.org/10.1517/17425255.2.6.875] [PMID: 17125407]
[17]
Lincha, V.R.; Hsiao, C.H.; Zhao, J.; Li, C.; Chow, D.S.L. Sensitive and rapid UHPLC–MS/MS assay for simultaneous quantifications of calcipotriol and paclitaxel in rat whole blood and plasma samples. J. Pharm. Biomed. Anal., 2021, 192, 113685.
[http://dx.doi.org/10.1016/j.jpba.2020.113685] [PMID: 33099115]
[http://dx.doi.org/10.1016/j.jpba.2020.113685] [PMID: 33099115]
[18]
Joshi, A.; Guo, J.; Holleran, J.L.; Kiesel, B.; Taylor, S.; Christner, S.; Parise, R.A.; Miller, B.M.; Ivy, S.P.; Chu, E.; Venkataramanan, R.; Beumer, J.H. Evaluation of the pharmacokinetic drug-drug interaction potential of iohexol, a renal filtration marker. Cancer Chemother. Pharmacol., 2020, 86(4), 535-545.
[http://dx.doi.org/10.1007/s00280-020-04145-6] [PMID: 32948918]
[http://dx.doi.org/10.1007/s00280-020-04145-6] [PMID: 32948918]
[19]
Ma, L.M.; Xu, F.; Wang, J.Z.; Shang, M.Y.; Liu, G.X.; Cai, S.Q. In vivo metabolism of 8,2′-diprenylquercetin 3-methyl ether and the distribution of its metabolites in rats by HPLC-ESI-IT-TOF-MSn. Fitoterapia, 2019, 137, 104191.
[http://dx.doi.org/10.1016/j.fitote.2019.104191] [PMID: 31163200]
[http://dx.doi.org/10.1016/j.fitote.2019.104191] [PMID: 31163200]
[20]
Shen, D.; Ma, N.; Yang, Y.; Liu, X.; Qin, Z.; Li, S.; Jiao, Z.; Kong, X.; Li, J. UPLC-Q-TOF/MS-based plasma metabolomics to evaluate the effects of aspirin eugenol ester on blood stasis in rats. Molecules, 2019, 24(13), 2380.
[http://dx.doi.org/10.3390/molecules24132380] [PMID: 31252591]
[http://dx.doi.org/10.3390/molecules24132380] [PMID: 31252591]
[21]
Chen, Z.; Liu, S.; Zhou, H.; Wang, M.; Pei, S.; Wang, R.; Liu, Z. UPLC-Q-TOF/MS based serum and urine metabolomics strategy to analyze the mechanism of nervonic acid in treating Alzheimer’s disease. J. Pharm. Biomed. Anal., 2024, 240, 115930.
[http://dx.doi.org/10.1016/j.jpba.2023.115930] [PMID: 38157740]
[http://dx.doi.org/10.1016/j.jpba.2023.115930] [PMID: 38157740]
[22]
Lee, Y.K.; Han, S.Y.; Chin, Y.W.; Choi, Y.H. Effects of cysteine on the pharmacokinetics of paclitaxel in rats. Arch. Pharm. Res., 2012, 35(3), 509-516.
[http://dx.doi.org/10.1007/s12272-012-0314-5] [PMID: 22477198]
[http://dx.doi.org/10.1007/s12272-012-0314-5] [PMID: 22477198]
[23]
Jamis-Dow, C.A.; Klecker, R.W.; Katki, A.G.; Collins, J.M. Metabolism of taxol by human and rat liver in vitro: A screen for drug interactions and interspecies differences. Cancer Chemother. Pharmacol., 1995, 36(2), 107-114.
[http://dx.doi.org/10.1007/BF00689193] [PMID: 7767945]
[http://dx.doi.org/10.1007/BF00689193] [PMID: 7767945]
[24]
Gut, I.; Ojima, I.; Vaclavikova, R.; Simek, P.; Horsky, S.; Linhart, I.; Soucek, P.; Kondrova, E.; Kuznetsova, L.V.; Chen, J. Metabolism of new-generation taxanes in human, pig, minipig and rat liver microsomes. Xenobiotica, 2006, 36(9), 772-792.
[http://dx.doi.org/10.1080/00498250600829220] [PMID: 16971343]
[http://dx.doi.org/10.1080/00498250600829220] [PMID: 16971343]
[25]
Nakajima, M.; Fujiki, Y.; Kyo, S.; Kanaya, T.; Nakamura, M.; Maida, Y.; Tanaka, M.; Inoue, M.; Yokoi, T. Pharmacokinetics of paclitaxel in ovarian cancer patients and genetic polymorphisms of CYP2C8, CYP3A4, and MDR1. J. Clin. Pharmacol., 2005, 45(6), 674-682.
[http://dx.doi.org/10.1177/0091270005276204] [PMID: 15901749]
[http://dx.doi.org/10.1177/0091270005276204] [PMID: 15901749]
[26]
Fernandez-Peralbo, M.A.; Priego-Capote, F.; Luque de Castro, M.D.; Casado-Adam, A.; Arjona-Sanchez, A.; Munoz-Casares, F.C. LC-MS/MS quantitative analysis of paclitaxel and its major metabolites in serum, plasma and tissue from women with ovarian cancer after intraperitoneal chemotherapy. J. Pharm. Biomed. Anal., 2014, 91, 131-137.
[http://dx.doi.org/10.1016/j.jpba.2013.12.028]
[http://dx.doi.org/10.1016/j.jpba.2013.12.028]
[27]
Cresteil, T.; Monsarrat, B.; Alvinerie, P.; Tréluyer, J.M.; Vieira, I.; Wright, M. Taxol metabolism by human liver microsomes: Identification of cytochrome P450 isozymes involved in its biotransformation. Cancer Res., 1994, 54(2), 386-392.
[http://dx.doi.org/10.1016/0304-3835(94)90136-8] [PMID: 7903909]
[http://dx.doi.org/10.1016/0304-3835(94)90136-8] [PMID: 7903909]
[28]
Christner, S.M.; Parise, R.A.; Ivy, P.S.; Tawbi, H.; Chu, E.; Beumer, J.H. Quantitation of paclitaxel, and its 6-alpha-OH and 3-para-OH metabolites in human plasma by LC–MS/MS. J. Pharm. Biomed. Anal., 2019, 172, 26-32.
[http://dx.doi.org/10.1016/j.jpba.2019.04.027] [PMID: 31022613]
[http://dx.doi.org/10.1016/j.jpba.2019.04.027] [PMID: 31022613]
[29]
Nakayama, A.; Tsuchiya, K.; Xu, L.; Matsumoto, T.; Makino, T. Drug-interaction between paclitaxel and goshajinkigan extract and its constituents. J. Nat. Med., 2022, 76(1), 59-67.
[http://dx.doi.org/10.1007/s11418-021-01552-8] [PMID: 34304352]
[http://dx.doi.org/10.1007/s11418-021-01552-8] [PMID: 34304352]
[30]
Vaclavikova, R.; Soucek, P.; Svobodova, L.; Anzenbacher, P.; Simek, P.; Guengerich, F.P.; Gut, I. Different in vitro metabolism of paclitaxel and docetaxel in humans, rats, pigs, and minipigs. Drug Metab. Dispos., 2004, 32(6), 666-674.
[http://dx.doi.org/10.1124/dmd.32.6.666] [PMID: 15155559]
[http://dx.doi.org/10.1124/dmd.32.6.666] [PMID: 15155559]
[31]
Václavíková, R.; Horský, S.; Šimek, P.; Gut, I. Paclitaxel metabolism in rat and human liver microsomes is inhibited by phenolic antioxidants. Naunyn Schmiedebergs Arch. Pharmacol., 2003, 368(3), 200-209.
[http://dx.doi.org/10.1007/s00210-003-0781-9] [PMID: 12920504]
[http://dx.doi.org/10.1007/s00210-003-0781-9] [PMID: 12920504]
[32]
Cresteil, T.; Monsarrat, B.; Dubois, J.; Sonnier, M.; Alvinerie, P.; Gueritte, F. Regioselective metabolism of taxoids by human CYP3A4 and 2C8: Structure-activity relationship. Drug Metab. Dispos., 2002, 30(4), 438-445.
[http://dx.doi.org/10.1124/dmd.30.4.438] [PMID: 11901098]
[http://dx.doi.org/10.1124/dmd.30.4.438] [PMID: 11901098]
[33]
Zhao, Y.; Liang, F.; Xie, Y.; Duan, Y.T.; Andeadelli, A.; Pateraki, I.; Makris, A.M.; Pomorski, T.G.; Staerk, D.; Kampranis, S.C. Oxetane ring formation in taxol biosynthesis is catalyzed by a bifunctional cytochrome P450 Enzyme. J. Am. Chem. Soc., 2024, 146(1), 801-810.
[http://dx.doi.org/10.1021/jacs.3c10864] [PMID: 38129385]
[http://dx.doi.org/10.1021/jacs.3c10864] [PMID: 38129385]
[34]
Yue, D.; Hirao, H. Mechanism of selective aromatic hydroxylation in the metabolic transformation of paclitaxel catalyzed by human CYP3A4. J. Chem. Inf. Model., 2023, 63(24), 7826-7836.
[http://dx.doi.org/10.1021/acs.jcim.3c01630] [PMID: 38039955]
[http://dx.doi.org/10.1021/acs.jcim.3c01630] [PMID: 38039955]
[35]
Koh, Y.; Buczko, E.; Dufau, M.L. Requirement of phenylalanine 343 for the preferential delta 4-lyase versus delta 5-lyase activity of rat CYP17. J. Biol. Chem., 1993, 268(24), 18267-18271.
[http://dx.doi.org/10.1016/S0021-9258(17)46839-6] [PMID: 8349703]
[http://dx.doi.org/10.1016/S0021-9258(17)46839-6] [PMID: 8349703]
[36]
Shadley, J.D.; Divakaran, K.; Munson, K.; Hines, R.N.; Douglas, K.; McCarver, D.G. Identification and functional analysis of a novel human CYP2E1 far upstream enhancer. Mol. Pharmacol., 2007, 71(6), 1630-1639.
[http://dx.doi.org/10.1124/mol.106.031302] [PMID: 17353354]
[http://dx.doi.org/10.1124/mol.106.031302] [PMID: 17353354]
[37]
Manikandan, P.; Nagini, S. Cytochrome P450 structure, function and clinical significance: A review. Curr. Drug Targets, 2018, 19(1), 38-54.
[http://dx.doi.org/10.2174/1389450118666170125144557] [PMID: 28124606]
[http://dx.doi.org/10.2174/1389450118666170125144557] [PMID: 28124606]
[38]
Knights, K.M.; Stresser, D.M.; Miners, J.O.; Crespi, C.L. In vitro drug metabolism using liver microsomes. Curr. Protoc. Pharmacol., 2004, 74, 7.8.1-7.8.24.
[http://dx.doi.org/10.1002/0471141755.ph0708s23]
[http://dx.doi.org/10.1002/0471141755.ph0708s23]
[39]
Zhao, M.; Ma, J.; Li, M.; Zhang, Y.; Jiang, B.; Zhao, X.; Huai, C.; Shen, L.; Zhang, N.; He, L.; Qin, S. Cytochrome P450 enzymes and drug metabolism in humans. Int. J. Mol. Sci., 2021, 22(23), 12808.
[http://dx.doi.org/10.3390/ijms222312808] [PMID: 34884615]
[http://dx.doi.org/10.3390/ijms222312808] [PMID: 34884615]
[40]
Taniguchi, R.; Kumai, T.; Matsumoto, N.; Watanabe, M.; Kamio, K.; Suzuki, S.; Kobayashi, S. Utilization of human liver microsomes to explain individual differences in paclitaxel metabolism by CYP2C8 and CYP3A4. J. Pharmacol. Sci., 2005, 97(1), 83-90.
[http://dx.doi.org/10.1254/jphs.FP0040603] [PMID: 15655291]
[http://dx.doi.org/10.1254/jphs.FP0040603] [PMID: 15655291]
[41]
Hendrikx, J.J.M.A.; Lagas, J.S.; Rosing, H.; Schellens, J.H.M.; Beijnen, J.H.; Schinkel, A.H. P‐glycoprotein and cytochrome P450 3A act together in restricting the oral bioavailability of paclitaxel. Int. J. Cancer, 2013, 132(10), 2439-2447.
[http://dx.doi.org/10.1002/ijc.27912] [PMID: 23090875]
[http://dx.doi.org/10.1002/ijc.27912] [PMID: 23090875]
[42]
Said, A.M.; Mansour, Y.E.; Soliman, R.R.; Islam, R.; Fatahala, S.S. Design, synthesis, molecular modeling, in vitro and in vivo biological evaluation of potent anthranilamide derivatives as dual P-glycoprotein and CYP3A4 inhibitors. Eur. J. Med. Chem., 2024, 273, 116492.
[http://dx.doi.org/10.1016/j.ejmech.2024.116492] [PMID: 38762918]
[http://dx.doi.org/10.1016/j.ejmech.2024.116492] [PMID: 38762918]
[43]
Hendrikx, J.J.M.A.; Lagas, J.S.; Wagenaar, E.; Rosing, H.; Schellens, J.H.M.; Beijnen, J.H.; Schinkel, A.H. Oral co-administration of elacridar and ritonavir enhances plasma levels of oral paclitaxel and docetaxel without affecting relative brain accumulation. Br. J. Cancer, 2014, 110(11), 2669-2676.
[http://dx.doi.org/10.1038/bjc.2014.222] [PMID: 24781280]
[http://dx.doi.org/10.1038/bjc.2014.222] [PMID: 24781280]
[44]
Monsarrat, B.; Chatelut, E.; Royer, I.; Alvinerie, P.; Dubois, J.; Dezeuse, A.; Roche, H.; Cros, S.; Wright, M.; Canal, P. Modification of paclitaxel metabolism in a cancer patient by induction of cytochrome P450 3A4. Drug Metab. Dispos., 1998, 26(3), 229-233.
[PMID: 9492385]
[PMID: 9492385]
[45]
Walle, T.; Walle, U.K.; Kumar, G.N.; Bhalla, K.N. Taxol metabolism and disposition in cancer patients. Drug Metab. Dispos., 1995, 23(4), 506-512.
[PMID: 7600920]
[PMID: 7600920]
[46]
Zhao, Y.; Chen, Y.; Li, R.; Zheng, T.; Huang, M.; Gao, Y.; Li, Z.; Wu, H. An ultra‐performance liquid chromatography–quadrupole time‐of‐flight tandem mass spectrometry method based on a four‐step analysis strategy to investigate metabolites of Qi‐Yu‐San‐Long decoction in rat plasma. Rapid Commun. Mass Spectrom., 2023, 37(1), e9419.
[http://dx.doi.org/10.1002/rcm.9419] [PMID: 36260057]
[http://dx.doi.org/10.1002/rcm.9419] [PMID: 36260057]
[47]
Wang, L.; Shao, L.; Huang, S.; Liu, Z.; Zhang, W.; Hu, K.; Huang, W.H. Metabolic characteristics of ginsenosides from Panax ginseng in rat feces mediated by gut microbiota. J. Pharm. Biomed. Anal., 2024, 237, 115786.
[http://dx.doi.org/10.1016/j.jpba.2023.115786] [PMID: 37837893]
[http://dx.doi.org/10.1016/j.jpba.2023.115786] [PMID: 37837893]
[48]
Sun, E.; Li, X.; Xu, F.; Li, M.; Ding, K.; Wang, L.; Wei, Y.; Jia, X. Characterization of metabolites of sagittatoside B in rats using UPLC-QTOF-MS spectrometry. Nat. Prod. Res., 2023, 1, 1-10.
[http://dx.doi.org/10.1080/14786419.2023.2172006] [PMID: 36724800]
[http://dx.doi.org/10.1080/14786419.2023.2172006] [PMID: 36724800]
[49]
Mortier, K.A.; Zhang, G.F.; Van Peteghem, C.H.; Lambert, W.E. Adduct formation in quantitative bioanalysis: Effect of ionization conditions on paclitaxel. J. Am. Soc. Mass Spectrom., 2004, 15(4), 585-592.
[http://dx.doi.org/10.1016/j.jasms.2003.12.013] [PMID: 15047063]
[http://dx.doi.org/10.1016/j.jasms.2003.12.013] [PMID: 15047063]
[50]
Tong, X.; Zhou, J.; Tan, Y. Determination of paclitaxel in rat plasma by LC-MS-MS. J. Chromatogr. Sci., 2006, 44(5), 266-271.
[http://dx.doi.org/10.1093/chromsci/44.5.266] [PMID: 16774712]
[http://dx.doi.org/10.1093/chromsci/44.5.266] [PMID: 16774712]
[51]
Bhattacharya, S.; Sarkar, P.; Khanam, J.; Pal, T.K. Simultaneous determination of paclitaxel and lansoprazole in rat plasma by LC–MS/MS method and its application to a preclinical pharmacokinetic study of investigational PTX-LAN-PLGA nanoformulation. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1124, 331-339.
[http://dx.doi.org/10.1016/j.jchromb.2019.06.031] [PMID: 31276955]
[http://dx.doi.org/10.1016/j.jchromb.2019.06.031] [PMID: 31276955]
[52]
Fan, Y.X.C.X.; Ma, Z.Y.; Gao, Z.W.; Zhong, D.F. Determination of paclitaxel and hydroxylated metabolites in rat plasma with lithium adduct ion by LC-MS/MS. J. Chin. Mass. Spectr. Soc., 2013, 34(3), 137-144.
[http://dx.doi.org/10.7538/zpxb.2013.34.03.0137]
[http://dx.doi.org/10.7538/zpxb.2013.34.03.0137]
[53]
Li, D.; Cao, Z.; Liao, X.; Yang, P.; Liu, L. The development of a quantitative and qualitative method based on UHPLC-QTOF MS/MS for evaluation paclitaxel–tetrandrine interaction and its application to a pharmacokinetic study. Talanta, 2016, 160, 256-267.
[http://dx.doi.org/10.1016/j.talanta.2016.07.022] [PMID: 27591612]
[http://dx.doi.org/10.1016/j.talanta.2016.07.022] [PMID: 27591612]
[54]
Westin, S.; Sonneveld, E.; van der Leede, B.M.; van der Saag, P.T.; Gustafsson, J.Å.; Mode, A. CYP2C7 expression in rat liver and hepatocytes: Regulation by retinoids. Mol. Cell. Endocrinol., 1997, 129(2), 169-179.
[http://dx.doi.org/10.1016/S0303-7207(97)04055-0] [PMID: 9202400]
[http://dx.doi.org/10.1016/S0303-7207(97)04055-0] [PMID: 9202400]
[55]
Sun, D.; Jiang, H.; Wu, H.; Yang, Y.; Kaley, G.; Huang, A. A novel vascular EET synthase: Role of CYP2C7. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2011, 301(6), R1723-R1730.
[http://dx.doi.org/10.1152/ajpregu.00382.2011] [PMID: 21940400]
[http://dx.doi.org/10.1152/ajpregu.00382.2011] [PMID: 21940400]
[56]
Oinonen, T.; Ronis, M.; Wigell, T.; Tohmo, K.; Badger, T.; Lindros, K.O. Growth hormone-regulated periportal expression of CYP2C7 in rat liver. Biochem. Pharmacol., 2000, 59(5), 583-589.
[http://dx.doi.org/10.1016/S0006-2952(99)00344-5] [PMID: 10660124]
[http://dx.doi.org/10.1016/S0006-2952(99)00344-5] [PMID: 10660124]
[57]
Han, Y.L.; Li, D.; Yang, Q.J.; Zhou, Z.Y.; Liu, L.Y.; Li, B.; Lu, J.; Guo, C. In vitro inhibitory effects of scutellarin on six human/rat cytochrome P450 enzymes and P-glycoprotein. Molecules, 2014, 19(5), 5748-5760.
[http://dx.doi.org/10.3390/molecules19055748] [PMID: 24802986]
[http://dx.doi.org/10.3390/molecules19055748] [PMID: 24802986]
[58]
Zhu, S.; Sun, C.; Cai, Z.; Li, Y.; Liu, W.; Luan, Y.; Wang, C. Effective therapy of advanced breast cancer through synergistic anticancer by paclitaxel and P-glycoprotein inhibitor. Mater. Today Bio, 2024, 26, 101029.
[http://dx.doi.org/10.1016/j.mtbio.2024.101029] [PMID: 38545262]
[http://dx.doi.org/10.1016/j.mtbio.2024.101029] [PMID: 38545262]
[59]
Habashy, K.J.; Dmello, C.; Chen, L.; Arrieta, V.A.; Kim, K.S.; Gould, A.; Youngblood, M.W.; Bouchoux, G.; Burdett, K.B.; Zhang, H.; Canney, M.; Stupp, R.; Sonabend, A.M. Paclitaxel and carboplatin in combination with low-intensity pulsed ultrasound for glioblastoma. Clin. Cancer Res., 2024, 30(8), 1619-1629.
[http://dx.doi.org/10.1158/1078-0432.CCR-23-2367] [PMID: 38295144]
[http://dx.doi.org/10.1158/1078-0432.CCR-23-2367] [PMID: 38295144]
[60]
Okuma, Y.; Nomura, S.; Sakakibara-Konishi, J.; Tsukita, Y.; Murakami, S.; Hosomi, Y.; Tambo, Y.; Kogure, Y.; Yoshioka, H.; Tamiya, M.; Ninomiya, K.; Iwama, E. Artemis: A multicenter, open-label, single-arm, phase ii study to evaluate the efficacy and safety of first-line carboplatin/paclitaxel/lenvatinib/pembrolizumab combination for previously untreated advanced or recurrent thymic carcinomas. Clin. Lung Cancer, 2024, 25(4), 389-394.
[http://dx.doi.org/10.1016/j.cllc.2024.02.002] [PMID: 38413246]
[http://dx.doi.org/10.1016/j.cllc.2024.02.002] [PMID: 38413246]
[61]
Zhao, S.; Su, L.; Huang, F.; Zhuo, C.; Ye, Z.; Li, H.; Yin, Y.; Gao, P.; Zhu, Y.; Lin, R. Phase I trial of apatinib and paclitaxel+oxaliplatin+5‐FU/levoleucovorin for treatment‐naïve advanced gastric cancer. Cancer Sci., 2024, 115(5), 1611-1621.
[http://dx.doi.org/10.1111/cas.16110] [PMID: 38354746]
[http://dx.doi.org/10.1111/cas.16110] [PMID: 38354746]
[62]
Monsarrat, B.; Mariel, E.; Cros, S.; Garès, M.; Guénard, D.; Guéritte-Voegelein, F.; Wright, M. Taxol metabolism. Isolation and identification of three major metabolites of taxol in rat bile. Drug Metab. Dispos., 1990, 18(6), 895-901.
[PMID: 1981534]
[PMID: 1981534]
[63]
Monsarrat, B.; Alvinerie, P.; Wright, M.; Dubois, J.; Guéritte-Voegelein, F.; Guénard, D.; Donehower, R.C.; Rowinsky, E.K. Hepatic metabolism and biliary excretion of Taxol in rats and humans. J. Natl. Cancer Inst. Monogr., 1993, (15), 39-46.
[PMID: 7912528]
[PMID: 7912528]
[64]
Lee, A.K.; Ahn, C.Y.; Kim, E.J.; Kwon, J.W.; Kim, S.G.; Chung, S.J.; Shim, C.K.; Lee, M.G. Effects of cysteine on the pharmacokinetics of itraconazole in rats with protein‐calorie malnutrition. Biopharm. Drug Dispos., 2003, 24(2), 63-70.
[http://dx.doi.org/10.1002/bdd.337] [PMID: 12619051]
[http://dx.doi.org/10.1002/bdd.337] [PMID: 12619051]
[65]
Huss, J.M.; Wang, S.I.; Kasper, C.B. Differential glucocorticoid responses of CYP3A23 and CYP3A2 are mediated by selective binding of orphan nuclear receptors. Arch. Biochem. Biophys., 1999, 372(2), 321-332.
[http://dx.doi.org/10.1006/abbi.1999.1496] [PMID: 10600171]
[http://dx.doi.org/10.1006/abbi.1999.1496] [PMID: 10600171]
[66]
Kuang, Z.M.; Huang, Z.J.; Li, Y.; Yang, G.P.; Liu, M.L.; Yuan, H. Revealing the contribution of Cytochrome P450 to salt-sensitive hypertension using DNA microarray. Eur. Rev. Med. Pharmacol. Sci., 2013, 17(23), 3148-3156.
[PMID: 24338455]
[PMID: 24338455]
[67]
Sparreboom, A.; Huizing, M.T.; Boesen, J.J.B.; Nooijen, W.J.; van Tellingen, O.; Beijnen, J.H. Isolation, purification, and biological activity of mono- and dihydroxylated paclitaxel metabolites from human feces. Cancer Chemother. Pharmacol., 1995, 36(4), 299-304.
[http://dx.doi.org/10.1007/BF00689047] [PMID: 7628049]
[http://dx.doi.org/10.1007/BF00689047] [PMID: 7628049]
[68]
Sonnichsen, D.S.; Liu, Q.; Schuetz, E.G.; Schuetz, J.D.; Pappo, A.; Relling, M.V. Variability in human cytochrome P450 paclitaxel metabolism. J. Pharmacol. Exp. Ther., 1995, 275(2), 566-575.
[PMID: 7473140]
[PMID: 7473140]