Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

The GA-Hecate Peptide inhibits the ZIKV Replicative Cycle in Different Steps and can Inhibit the Flavivirus NS2B-NS3 Protease after Cell Infection

In Press, (this is not the final "Version of Record"). Available online 19 July, 2024
Author(s): Paulo Ricardo da Silva Sanches, João Caldana Elias de Campos Faria, Cíntia Bittar, Hugo Alexandre Siqueira Guberovich Olivieri, Nathalya Cristina de Moraes Roso Mesquita, Gabriela Dias Noske, Andre Schutzer de Godoy, Glaucius Oliva, Paula Rahal and Eduardo Maffud Cilli*
Published on: 19 July, 2024

DOI: 10.2174/0109298665308871240703090408

Abstract

Background: Peptide drugs are advantageous because they are subject to rational design and exhibit highly diverse structures and broad biological activities. The NS2B-NS3 protein is a particularly promising flavivirus therapeutic target, with extensive research on the development of inhibitors as therapeutic candidates, and was used as a model in this work to determine the mechanism by which GA-Hecate inhibits ZIKV replication.

Objective: The present study aimed to evaluate the potential of GA-Hecate, a new antiviral developed by our group, against the Brazilian Zika virus and to evaluate the mechanism of action of this compound on the flavivirus NS2B-NS3 protein.

Methods: Solid-phase peptide Synthesis, High-Performance Liquid Chromatography, and Mass Spectrometry were used to obtain, purify, and characterize the synthesized compound. Real-time and enzymatic assays were used to determine the antiviral potential of GA-Hecate against ZIKV.

Results: The RT-qPCR results showed that GA-Hecate decreased the number of ZIKV RNA copies in the virucidal, pre-treatment, and post-entry assays, with 5- to 6-fold fewer RNA copies at the higher nontoxic concentration in Vero cells (HNTC: 10 μM) than in the control cells. Enzymatic and kinetic assays indicated that GA-Hecate acts as a competitive ZIKV NS2B-NS3 protease inhibitor with an IC50 of 32 nM and has activity against the yellow fever virus protease.

Conclusion: The results highlight the antiviral potential of the GA-Hecate bioconjugate and open the door for the development of new antivirals.

[1]
Meertens, L.; Carnec, X.; Lecoin, M.P.; Guivel-benhassine, F.; Lew, E.; Lemke, G.; Schwartz, O.; Amara, A. The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry. Cell Host Microbe, 2013, 12(4), 544-557.
[2]
Petersen, E.; Wilson, M.E.; Touch, S.; McCloskey, B.; Mwaba, P.; Bates, M.; Dar, O.; Mattes, F.; Kidd, M.; Ippolito, G.; Azhar, E.I.; Zumla, A. Rapid spread of zika virus in the americas : Implications for public health preparedness for mass gatherings at the 2016 brazil olympic games. Int. J. Infect. Dis., 2016, 44, 11-15.
[http://dx.doi.org/10.1016/j.ijid.2016.02.001] [PMID: 26854199]
[3]
Simonin, Y.; Loustalot, F.; Desmetz, C.; Foulongne, V.; Constant, O.; Fournier-Wirth, C.; Leon, F.; Molès, J.P.; Goubaud, A.; Lemaitre, J.M.; Maquart, M.; Leparc-Goffart, I.; Briant, L.; Nagot, N.; Van de Perre, P.; Salinas, S. Zika virus strains potentially display different infectious profiles in human neural cells. EBioMedicine, 2016, 12, 161-169.
[http://dx.doi.org/10.1016/j.ebiom.2016.09.020] [PMID: 27688094]
[4]
Pielnaa, P.; Al-Saadawe, M.; Saro, A.; Dama, M.F.; Zhou, M.; Huang, Y.; Huang, J.; Xia, Z. Zika virus-spread, epidemiology, genome, transmission cycle, clinical manifestation, associated challenges, vaccine and antiviral drug development. Virology, 2020, 543, 34-42.
[http://dx.doi.org/10.1016/j.virol.2020.01.015] [PMID: 32056845]
[5]
Beaver, J.T.; Lelutiu, N.; Habib, R.; Skountzou, I. Evolution of two major Zika virus lineages: Implications for pathology, immune response, and vaccine development. Front. Immunol., 2018, 9, 1640.
[http://dx.doi.org/10.3389/fimmu.2018.01640] [PMID: 30072993]
[6]
Barrett, A.D.T. Current status of Zika vaccine development: Zika vaccines advance into clinical evaluation /692/308/153 /631/326/590/1883 perspective. NPJ Vaccines, 2018, 3, 1-4.
[http://dx.doi.org/10.1038/s41541-018-0061-9] [PMID: 29900012]
[7]
Morrison, C. DNA vaccines against Zika virus speed into clinical trials. Nat. Rev. Drug Discov., 2016, 15(8), 521-522.
[http://dx.doi.org/10.1038/nrd.2016.159] [PMID: 27469223]
[8]
Noorbakhsh, F.; Abdolmohammadi, K.; Fatahi, Y.; Dalili, H.; Rasoolinejad, M.; Rezaei, F.; Salehi-Vaziri, M.; Zahra Shafiei-Jandaghi, N.; Shamsi Gooshki, E.; Zaim, M.; Nicknam, M.H. Zika virus infection, basic and clinical aspects: A review article. Iran. J. Public Health, 2019, 48(1), 20-31.
[http://dx.doi.org/10.18502/ijph.v48i1.779] [PMID: 30847308]
[9]
Pierson, T.C.; Diamond, M.S. The emergence of Zika virus and its new clinical syndromes. Nature, 2018, 560(7720), 573-581.
[http://dx.doi.org/10.1038/s41586-018-0446-y] [PMID: 30158602]
[10]
Pierson, T.C.; Diamond, M.S. The continued threat of emerging flaviviruses. Nat. Microbiol., 2020, 5(6), 796-812.
[http://dx.doi.org/10.1038/s41564-020-0714-0] [PMID: 32367055]
[11]
Voss, S.; Nitsche, C. Inhibitors of the Zika virus protease NS2B-NS3. Bioorg. Med. Chem. Lett., 2020, 30(5), 126965.
[http://dx.doi.org/10.1016/j.bmcl.2020.126965] [PMID: 31980339]
[12]
Wu, H.; Bock, S.; Snitko, M.; Berger, T.; Weidner, T.; Holloway, S.; Kanitz, M.; Diederich, W.E.; Steuber, H.; Walter, C.; Hofmann, D.; Weißbrich, B.; Spannaus, R.; Acosta, E.G.; Bartenschlager, R.; Engels, B.; Schirmeister, T.; Bodem, J. Novel dengue virus NS2B/NS3 protease inhibitors. Antimicrob. Agents Chemother., 2015, 59(2), 1100-1109.
[http://dx.doi.org/10.1128/AAC.03543-14] [PMID: 25487800]
[13]
Chen, X.; Yang, K.; Wu, C.; Chen, C.; Hu, C.; Buzovetsky, O.; Wang, Z.; Ji, X.; Xiong, Y.; Yang, H. Mechanisms of activation and inhibition of Zika virus NS2B-NS3 protease. Cell Res., 2016, 26(11), 1260-1263.
[http://dx.doi.org/10.1038/cr.2016.116] [PMID: 27752039]
[14]
Phoo, W.W.; Li, Y.; Zhang, Z.; Lee, M.Y.; Loh, Y.R.; Tan, Y.B.; Ng, E.Y.; Lescar, J.; Kang, C.; Luo, D. Structure of the NS2B-NS3 protease from Zika virus after self-cleavage. Nat. Commun., 2016, 7(1), 13410.
[http://dx.doi.org/10.1038/ncomms13410] [PMID: 27845325]
[15]
Nunes, D.A.F.; Santos, F.R.S.; da Fonseca, S.T.D.; de Lima, W.G.; Nizer, W.S.C.; Ferreira, J.M.S.; de Magalhães, J.C. NS2B-NS3 protease inhibitors as promising compounds in the development of antivirals against Zika virus: A systematic review. J. Med. Virol., 2022, 94(2), 442-453.
[http://dx.doi.org/10.1002/jmv.27386]
[16]
Shiryaev, S.A.; Farhy, C.; Pinto, A.; Huang, C.T.; Simonetti, N.; Ngono, A.E.; Dewing, A.; Shresta, S.; Pinkerton, A.B.; Cieplak, P.; Strongin, A.Y.; Terskikh, A.V. Characterization of the Zika virus two-component NS2B-NS3 protease and structure-assisted identification of allosteric small-molecule antagonists. Antiviral Res., 2017, 143, 218-229.
[http://dx.doi.org/10.1016/j.antiviral.2017.04.015] [PMID: 28461069]
[17]
Shin, H.J.; Kim, M.H.; Lee, J.Y.; Hwang, I.; Yoon, G.Y.; Kim, H.S.; Kwon, Y.C.; Ahn, D.G.; Kim, K.D.; Kim, B.T.; Kim, S.J.; Kim, C. Structure-based virtual screening: Identification of a novel NS2B-NS3 protease inhibitor with potent antiviral activity against zika and dengue viruses. Microorganisms, 2021, 9(3), 545.
[http://dx.doi.org/10.3390/microorganisms9030545] [PMID: 33800763]
[18]
Wahaab, A.; Mustafa, B.E.; Hameed, M.; Stevenson, N.J.; Anwar, M.N.; Liu, K.; Wei, J.; Qiu, Y.; Ma, Z. Potential role of flavivirus ns2b-ns3 proteases in viral pathogenesis and anti-flavivirus drug discovery employing animal cells and models: A review. Viruses, 2021, 14(1), 44.
[http://dx.doi.org/10.3390/v14010044] [PMID: 35062249]
[19]
Wang, L.; Wang, N.; Zhang, W.; Cheng, X.; Yan, Z.; Shao, G.; Wang, X.; Wang, R.; Fu, C. Therapeutic peptides: current applications and future directions. Signal Transduct. Target. Ther., 2022, 7(1), 48.
[http://dx.doi.org/10.1038/s41392-022-00904-4] [PMID: 35165272]
[20]
Wang, G. Natural antimicrobial peptides as promising anti-HIV candidates. Curr. Top. Pept. Protein Res., 2012, 13, 93-110.
[PMID: 26834391]
[21]
Batista, M.N.; Sanches, P.R.S.; Carneiro, B.M.; Braga, A.C.S.; Campos, G.R.F.; Cilli, E.M.; Rahal, P. GA-Hecate antiviral properties on HCV whole cycle represent a new antiviral class and open the door for the development of broad spectrum antivirals. Sci. Rep., 2018, 8(1), 14329.
[http://dx.doi.org/10.1038/s41598-018-32176-w] [PMID: 30254334]
[22]
Galdiero, S.; Falanga, A.; Tarallo, R.; Russo, L.; Galdiero, E.; Cantisani, M.; Morelli, G.; Galdiero, M. Peptide inhibitors against herpes simplex virus infections. J. Pept. Sci., 2013, 19(3), 148-158.
[http://dx.doi.org/10.1002/psc.2489] [PMID: 23389903]
[23]
Vilas Boas, L.C.P.; Campos, M.L.; Berlanda, R.L.A.; de Carvalho Neves, N.; Franco, O.L. Antiviral peptides as promising therapeutic drugs. Cell. Mol. Life Sci., 2019, 76(18), 3525-3542.
[http://dx.doi.org/10.1007/s00018-019-03138-w] [PMID: 31101936]
[24]
Colombo, T.E.; Terzian, A.C.B.; Júnior, J.P.A.; Parreira, R.; Cabrera, E.M.S.; Santos, I.N.P.; Reis, A.F.N.; Costa, F.R.; Cruz, L.E.A.A.; Rombola, P.L.; Nogueira, M.L. Zika detection: comparison of methodologies. Braz. J. Microbiol., 2018, 49(1), 144-147.
[http://dx.doi.org/10.1016/j.bjm.2017.04.011] [PMID: 28927874]
[25]
Noske, G.D.; Gawriljuk, V.O.; Fernandes, R.S.; Furtado, N.D.; Bonaldo, M.C.; Oliva, G.; Godoy, A.S. Structural characterization and polymorphism analysis of the NS2B-NS3 protease from the 2017 Brazilian circulating strain of Yellow Fever virus. Biochim. Biophys. Acta Gen. Subj., 2020, 1864(4), 129521.
[http://dx.doi.org/10.1016/j.bbagen.2020.129521]
[26]
Mottin, M.; Caesar, L.K.; Brodsky, D.; Mesquita, N.C.M.R.; de Oliveira, K.Z.; Noske, G.D.; Sousa, B.K.P.; Ramos, P.R.P.S.; Jarmer, H.; Loh, B.; Zorn, K.M.; Foil, D.H.; Torres, P.M.; Guido, R.V.C.; Oliva, G.; Scholle, F.; Ekins, S.; Cech, N.B.; Andrade, C.H.; Laster, S.M. Chalcones from Angelica keiskei (ashitaba) inhibit key Zika virus replication proteins. Bioorg. Chem., 2022, 120, 105649.
[http://dx.doi.org/10.1016/j.bioorg.2022.105649] [PMID: 35124513]
[27]
Aslanidis, C.; de Jong, P.J. Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res., 1990, 18(20), 6069-6074.
[http://dx.doi.org/10.1093/nar/18.20.6069] [PMID: 2235490]
[28]
Li, Y.; Zhang, Z.; Phoo, W.W.; Loh, Y.R.; Li, R.; Yang, H.Y.; Jansson, A.E.; Hill, J.; Keller, T.H.; Nacro, K.; Luo, D.; Kang, C. Structural insights into the inhibition of zika virus NS2B-NS3 protease by a small-molecule inhibitor. Structure, 2018, 26(4), 555-564.e3.
[http://dx.doi.org/10.1016/j.str.2018.02.005] [PMID: 29526431]
[29]
Noble, C.G.; Seh, C.C.; Chao, A.T.; Shi, P.Y. Ligand-bound structures of the dengue virus protease reveal the active conformation. J. Virol., 2012, 86(1), 438-446.
[http://dx.doi.org/10.1128/JVI.06225-11] [PMID: 22031935]
[30]
Xu, S.; Ci, Y.; Wang, L.; Yang, Y.; Zhang, L.; Xu, C.; Qin, C.; Shi, L. Zika virus NS3 is a canonical RNA helicase stimulated by NS5 RNA polymerase. Nucleic Acids Res., 2019, 47(16), 8693-8707.
[http://dx.doi.org/10.1093/nar/gkz650] [PMID: 31361901]
[31]
Sanches, P.R.S.; Carneiro, B.M.; Batista, M.N.; Braga, A.C.S.; Lorenzón, E.N.; Rahal, P.; Cilli, E.M. A conjugate of the lytic peptide Hecate and gallic acid: Structure, activity against cervical cancer, and toxicity. Amino Acids, 2015, 47(7), 1433-1443.
[http://dx.doi.org/10.1007/s00726-015-1980-7] [PMID: 25868656]
[32]
Ayusso, G.M.; da Silva Sanches, P.R.; Carvalho, T.; Santos, I.A.; Martins, D.O.S.; Lima, M.L.D.; da Conceição, P.J.P.; Bittar, C.; Merits, A.; Cilli, E.M.; Jardim, A.C.G.; Rahal, P.; Calmon, M.F. The synthetic peptide ga-hecate and its analogs inhibit multiple steps of the chikungunya virus infection cycle in vitro. Pharmaceuticals, 2023, 16(10), 1389.
[http://dx.doi.org/10.3390/ph16101389] [PMID: 37895860]
[33]
Ng, W.C.; Soto-Acosta, R.; Bradrick, S.S.; Garcia-Blanco, M.A.; Ooi, E.E. The 5ʹ and 3ʹ untranslated regions of the flaviviral genome. Viruses, 2017, 9, 1-14.
[http://dx.doi.org/10.3390/v9060137] [PMID: 28587300]
[34]
Domingo, E.; Sheldon, J.; Perales, C. Viral quasispecies evolution. Microbiol. Mol. Biol. Rev., 2012, 76(2), 159-216.
[http://dx.doi.org/10.1128/MMBR.05023-11] [PMID: 22688811]
[35]
Mandary, M.B.; Masomian, M.; Poh, C.L. Impact of RNA virus evolution on quasispecies formation and virulence. Int. J. Mol. Sci., 2019, 20(18), 4657.
[http://dx.doi.org/10.3390/ijms20184657] [PMID: 31546962]
[36]
Agrelli, A.; de Moura, R.R.; Crovella, S.; Brandão, L.A.C. ZIKA virus entry mechanisms in human cells. Infect. Genet. Evol., 2019, 69, 22-29.
[http://dx.doi.org/10.1016/j.meegid.2019.01.018] [PMID: 30658214]
[37]
Hasan, S.S.; Sevvana, M.; Kuhn, R.J.; Rossmann, M.G. Structural biology of Zika virus and other flaviviruses. Nat. Struct. Mol. Biol., 2018, 25(1), 13-20.
[http://dx.doi.org/10.1038/s41594-017-0010-8] [PMID: 29323278]
[38]
Lei, J.; Hansen, G.; Nitsche, C.; Klein, C.D.; Zhang, L.; Hilgenfeld, R. Crystal structure of Zika virus NS2B-NS3 protease in complex with a boronate inhibitor. Science, 2016, 353(6298), 503-505.
[http://dx.doi.org/10.1126/science.aag2419] [PMID: 27386922]
[39]
Huber, S.; Braun, N.J.; Schmacke, L.C.; Quek, J.P.; Murra, R.; Bender, D.; Hildt, E.; Luo, D.; Heine, A.; Steinmetzer, T. Structure-based optimization and characterization of macrocyclic zika virus NS2B-NS3 protease inhibitors. J. Med. Chem., 2021.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01860] [PMID: 35475620]
[40]
Leung, D.; Schroder, K.; White, H.; Fang, N.X.; Stoermer, M.J.; Abbenante, G.; Martin, J.L.; Young, P.R.; Fairlie, D.P. Activity of recombinant dengue 2 virus NS3 protease in the presence of a truncated NS2B co-factor, small peptide substrates, and inhibitors. J. Biol. Chem., 2001, 276(49), 45762-45771.
[http://dx.doi.org/10.1074/jbc.M107360200] [PMID: 11581268]
[41]
Gruba, N.; Rodriguez Martinez, J.I.; Grzywa, R.; Wysocka, M.; Skoreński, M.; Burmistrz, M.; Łęcka, M.; Lesner, A.; Sieńczyk, M.; Pyrć, K. Substrate profiling of Zika virus NS2B-NS3 protease. FEBS Lett., 2016, 590(20), 3459-3468.
[http://dx.doi.org/10.1002/1873-3468.12443] [PMID: 27714789]
[42]
Khumthong, R.; Angsuthanasombat, C.; Panyim, S.; Katzenmeier, G. In vitro determination of dengue virus type 2 NS2B-NS3 protease activity with fluorescent peptide substrates. J. Biochem. Mol. Biol., 2002, 35(2), 206-212.
[43]
Kondo, M.Y.; Oliveira, L.C.G.; Okamoto, D.N.; de Araujo, M.R.T.; Duarte dos Santos, C.N.; Juliano, M.A.; Juliano, L.; Gouvea, I.E. Yellow fever virus NS2B/NS3 protease: Hydrolytic properties and substrate specificity. Biochem. Biophys. Res. Commun., 2011, 407(4), 640-644.
[http://dx.doi.org/10.1016/j.bbrc.2011.03.054] [PMID: 21419753]
[44]
Luo, D.; Vasudevan, S.G.; Lescar, J. The flavivirus NS2B-NS3 protease-helicase as a target for antiviral drug development. Antiviral Res., 2015, 118, 148-158.
[http://dx.doi.org/10.1016/j.antiviral.2015.03.014]
[45]
Du Pont, K.E.; Geiss, B.J. Conserved motifs in the flavivirus NS3 RNA helicase enzyme. Wiley Interdiscip Rev. RNA, 2022, 13(2), e1688.
[http://dx.doi.org/10.1002/wrna.1688]
[46]
Heaton, N.S.; Perera, R.; Berger, K.L.; Khadka, S.; LaCount, D.J.; Kuhn, R.J.; Randall, G. Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis. Proc. Natl. Acad. Sci., 2010, 107(40), 17345-17350.
[http://dx.doi.org/10.1073/pnas.1010811107] [PMID: 20855599]

© 2024 Bentham Science Publishers | Privacy Policy