Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Heteroaromatization of Coumarin Part III: One-Pot Synthesis, Antitumor Activity, DFT Studies, and Molecular Docking of Coumarin Derivatives

In Press, (this is not the final "Version of Record"). Available online 18 July, 2024
Author(s): Abdullah A. Alamri, Rita M.A. Borik, Ashraf H.F. Abd El-Wahab*, Al-Anood M. Al-Dies, Hany M. Mohamed and Diaa A. Ibrahim
Published on: 18 July, 2024

DOI: 10.2174/0113852728320798240711052115

Price: $95

Abstract

A one-pot three/two-component reaction of 3-acetyl-coumarin (1), 4/3-anisaldehyde (2a,b) and malononitrile or 3-acetylcoumarin (1) and 2-(4/3-methoxybenzylidene)malononitrile (5a,b) in glacial acetic acid/ammonium acetate under reflux afforded 2-amino-4-(4/3-methoxyphenyl)-6-(2-oxo-2H-chromen-3- yl)nicotinonitrile (4a,b). Spectral data helped establish the structures of the compounds. Subsequently, an antiproliferative evaluation against a selected line of tumorous cells (HepG-2, MDA-MB-231 and A549) was performed in-vitro for the novel 2-amino-4-(4/3-methoxyphenyl)-6-(2-oxo-2H-chromen-3-yl)nicotinonitrile (4a,b). Compound 4a exhibited good efficiency against the MDA-MB-231 and A549 cell lines compared with the reference drug (Vinblastine). Furthermore, the chemical reactivity of both compounds was discussed using DFT. Lastly, a molecular docking analysis was addressed and conducted for these desired molecules.

[1]
Musa, M.; Cooperwood, J.; Khan, M.O. A review of coumarin derivatives in pharmacotherapy of breast cancer. Curr. Med. Chem., 2008, 15(26), 2664-2679.
[http://dx.doi.org/10.2174/092986708786242877] [PMID: 18991629]
[2]
Witaicenis, A.; Seito, L.N.; da Silveira Chagas, A.; de Almeida, L.D., Jr; Luchini, A.C.; Rodrigues-Orsi, P.; Cestari, S.H.; Di Stasi, L.C. Antioxidant and intestinal anti-inflammatory effects of plant-derived coumarin derivatives. Phytomedicine, 2014, 21(3), 240-246.
[http://dx.doi.org/10.1016/j.phymed.2013.09.001] [PMID: 24176844]
[3]
Nasr, T.; Bondock, S.; Youns, M. Anticancer activity of new coumarin substituted hydrazide-hydrazone derivatives. Eur. J. Med. Chem., 2014, 76, 539-548.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.026] [PMID: 24607878]
[4]
Bronikowska, J.; Szliszka, E.; Jaworska, D.; Czuba, Z.P.; Krol, W. The coumarin psoralidin enhances anticancer effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Molecules, 2012, 17(6), 6449-6464.
[http://dx.doi.org/10.3390/molecules17066449] [PMID: 22643355]
[5]
Abd-El-Aziz, A.S.; Mohamed, H.M.; Mohammed, S.; Zahid, S.; Ata, A.; Bedair, A.H.; El-Agrody, A.M.; Harvey, P.D. Synthesis of novel coumarin and benzocoumarin derivatives and their biological and photophysical studies. J. Heterocycl. Chem., 2007, 44(6), 1287-1301.
[http://dx.doi.org/10.1002/jhet.5570440610]
[6]
Murat Bilgin, H.; Atmaca, M.; Deniz Obay, B.; Özekinci, S.; Taşdemir, E.; Ketani, A. Protective effects of coumarin and coumarin derivatives against carbon tetrachloride-induced acute hepatotoxicity in rats. Exp. Toxicol. Pathol., 2011, 63(4), 325-330.
[http://dx.doi.org/10.1016/j.etp.2010.02.006] [PMID: 20207117]
[7]
Sashidhara, K.V.; Palnati, G.R.; Sonkar, R.; Avula, S.R.; Awasthi, C.; Bhatia, G. Coumarin chalcone fibrates: A new structural class of lipid lowering agents. Eur. J. Med. Chem., 2013, 64, 422-431.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.026] [PMID: 23665798]
[8]
Abd-El-Aziz, A.S.; Shipman, P.O.; Neeland, E.G.; Corkery, T.C.; Mohammed, S.; Harvey, P.D.; Mohamed, H.M.; Bedair, A.H.; El-Agrody, A.M.; Aguiar, P.M.; Kroeker, S. Benzo[f] and BENZO[h]coumarin‐containing poly(methyl methacrylate)s and poly(methyl methacrylate)s with pendant coumarin‐containing azo dyes. Macromol. Chem. Phys., 2008, 209(1), 84-103.
[http://dx.doi.org/10.1002/macp.200700476]
[9]
Venugopala, K.N.; Rashmi, V.; Odhav, B. Review on natural coumarin lead compounds for their pharmacological activity. Biomed. Res. Int., , 2013, 1-14. 963248
[http://dx.doi.org/10.1155/2013/963248]
[10]
Basile, A.; Sorbo, S.; Spadaro, V.; Bruno, M.; Maggio, A.; Faraone, N.; Rosselli, S. Antimicrobial and antioxidant activities of coumarins from the roots of Ferulago campestris (Apiaceae). Molecules, 2009, 14(3), 939-952.
[http://dx.doi.org/10.3390/molecules14030939] [PMID: 19255552]
[11]
Hueso-Falcón, I.; Amesty, Á.; Anaissi-Afonso, L.; Lorenzo-Castrillejo, I.; Machín, F.; Estévez-Braun, A. Synthesis and biological evaluation of naphthoquinone-coumarin conjugates as topoisomerase II inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(3), 484-489.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.040] [PMID: 28040393]
[12]
El-Agrody, A.M.; Fouda, A.M.; Assiri, M.A.; Mora, A.; Ali, T.E.; Alam, M.M.; Alfaifi, M.Y. In vitro anticancer activity of pyrano[3, 2-c]chromene derivatives with both cell cycle arrest and apoptosis induction. Med. Chem. Res., 2020, 29(4), 617-629.
[http://dx.doi.org/10.1007/s00044-019-02494-3]
[13]
Mohamed, H.M. EL-Wahab, A.H.F.A.; EL-Agrody, A.M.; Bedair, A.H.; Eid, F.A.; Khafagy, M.M.; Abd-EL-Rehem, K.A. Synthesis and characterization of new diiodocoumarin derivatives with promising antimicrobial activities. Beilstein J. Org. Chem., 2011, 7, 1688-1696.
[http://dx.doi.org/10.3762/bjoc.7.199] [PMID: 22238548]
[14]
Zhe, F; Linjie, Z; Sijin, H; Shiyi, W; Na, L; Xiaojing, S; Zian, W; Ruilong, S; Fang, W; Wenhui, W.; G; Ruihua, G Synthesis of coumarin derivatives: a new class of coumarin-based G protein-coupled receptor activators and inhibitors; polymers (Basel), 2021, 14(10), 1-13.
[http://dx.doi.org/10.3390/polym14102021]
[15]
Bhattacharyya, S.S.; Paul, S.; Mandal, S.K.; Banerjee, A.; Boujedaini, N.; Khuda-Bukhsh, A.R.; Belon, P.; Khuda-Bukhsh, A.R.A. A synthetic coumarin (4-Methyl-7 hydroxy coumarin) has anti-cancer potentials against DMBA-induced skin cancer in mice. Eur. J. Pharmacol., 2009, 614(1-3), 128-136.
[http://dx.doi.org/10.1016/j.ejphar.2009.04.015] [PMID: 19393233]
[16]
Gupta, J.K.; Sharma, P.K.; Dudhe, R.; Chaudhary, A.; Verma, P.K. Synthesis, analgesic and ulcerogenic activity of novel pyrimidine derivative of coumarin moiety. Anal. Univ. Bucuresti-Chim., 2010, 19, 9-21.
[17]
Weigt, S.; Huebler, N.; Strecker, R.; Braunbeck, T.; Broschard, T.H. Developmental effects of coumarin and the anticoagulant coumarin derivative warfarin on zebrafish (Danio rerio) embryos. Reprod. Toxicol., 2012, 33(2), 133-141.
[http://dx.doi.org/10.1016/j.reprotox.2011.07.001] [PMID: 21798343]
[18]
Abdelhafez, O.M.; Amin, K.M.; Batran, R.Z.; Maher, T.J.; Nada, S.A.; Sethumadhavan, S. Synthesis, anticoagulant and PIVKA-II induced by new 4-hydroxycoumarin derivatives. Bioorg. Med. Chem., 2010, 18(10), 3371-3378.
[http://dx.doi.org/10.1016/j.bmc.2010.04.009] [PMID: 20435480]
[19]
Suzuki, A.Z.; Watanabe, T.; Kawamoto, M.; Nishiyama, K.; Yamashita, H.; Ishii, M.; Iwamura, M.; Furuta, T. Coumarin-4-ylmethoxycarbonyls as phototriggers for alcohols and phenols. Org. Lett., 2003, 5(25), 4867-4870.
[http://dx.doi.org/10.1021/ol0359362] [PMID: 14653694]
[20]
Sunthitikawinsakul, A.; Kongkathip, N.; Kongkathip, B.; Phonnakhu, S.; Daly, J.W.; Spande, T.F.; Nimit, Y.; Rochanaruangrai, S. Coumarins and carbazoles from Clausena excavata exhibited antimycobacterial and antifungal activities. Planta Med., 2003, 69(2), 155-157.
[http://dx.doi.org/10.1055/s-2003-37716] [PMID: 12624822]
[21]
Keizo, S.; Hiromichi, O.; Shigeru, A. Selective inhibition of platelet lipoxygenase by esculetin. Biochim. Biophys. Acta Lipids Metab., 1982, 713(1), 68-72.
[http://dx.doi.org/10.1016/0005-2760(82)90167-9] [PMID: 6814494]
[22]
Yun, E.S.; Park, S.S.; Shin, H.C.; Choi, Y.H.; Kim, W.J.; Moon, S.K. p38 MAPK activation is required for esculetin-induced inhibition of vascular smooth muscle cells proliferation. Toxicol. In Vitro, 2011, 25(7), 1335-1342.
[http://dx.doi.org/10.1016/j.tiv.2011.05.001] [PMID: 21600278]
[23]
Zhang, L; Jiang, G; Yao, F; He, Y; Liang, G; Zhang, Y; Hu, B; Wu, Y; Li, Y; Liu, H Growth inhibition and apoptosis induced by osthole, a natural coumarin, in hepatocellular carcinoma. PLoS One, 2012, 7(5), e37865-e10.
[24]
Yang, D.; Gu, T.; Wang, T.; Tang, Q.; Ma, C. Effects of osthole on migration and invasion in breast cancer cells. Biosci. Biotechnol. Biochem., 2010, 74(7), 1430-1434.
[http://dx.doi.org/10.1271/bbb.100110] [PMID: 20622464]
[25]
Dong, Y.; Shi, Q.; Liu, Y.N.; Wang, X.; Bastow, K.F.; Lee, K.H. Antitumor agents. 266. Design, synthesis, and biological evaluation of novel 2-(furan-2-yl)naphthalen-1-ol derivatives as potent and selective antibreast cancer agents. J. Med. Chem., 2009, 52(11), 3586-3590.
[http://dx.doi.org/10.1021/jm9001567] [PMID: 19425534]
[26]
Jamier, V.; Marut, W.; Valente, S.; Chereau, C.; Chouzenoux, S.; Nicco, C.; Lemarechal, H.; Weill, B.; Kirsch, G.; Jacob, C.; Batteux, F. Chalcone-Coumarin derivatives as potential anti-cancer drugs: An in vitro and in vivo investigation. Anticancer. Agents Med. Chem., 2014, 14(7), 963-974.
[http://dx.doi.org/10.2174/1871520613666131224124445] [PMID: 24372527]
[27]
Belluti, F.; Fontana, G.; Bo, L.D.; Carenini, N.; Giommarelli, C.; Zunino, F. Design, synthesis and anticancer activities of stilbene-coumarin hybrid compounds: Identification of novel proapoptotic agents. Bioorg. Med. Chem., 2010, 18(10), 3543-3550.
[http://dx.doi.org/10.1016/j.bmc.2010.03.069] [PMID: 20409723]
[28]
El-Agrody, A.M.; Al-Dies, A.A.M.; Fouda, A.M. Microwave assisted synthesis of 2-amino-6-methoxy-4H-benzo[h]chromene derivatives. Eur. J. Chem., 2014, 5(1), 133-137.
[http://dx.doi.org/10.5155/eurjchem.5.1.133-137.923]
[29]
El Gaafary, M.; Syrovets, T.; Mohamed, H.M.; Elhenawy, A.; El-Agrody, A.M.; Amr, A.E-G.; Ghabbour, H.A.; Almehizia, A.A. Synthesis, cytotoxic activity, crystal structure, DFT studies and molecular docking of 3-amino-1-(2,5-dichlorophenyl)-8-methoxy-1H-benzo-[f]chromene-2-carbonitrile. Crystals (Basel), 2021, 11, 184-206.
[http://dx.doi.org/10.3390/cryst11020184]
[30]
Fouda, A.M.; Assiri, M.A.; Mora, A.; Ali, T.E.; Afifi, T.H.; El-Agrody, A.M. Microwave synthesis of novel halogenated β-enaminonitriles linked 9-bromo-1H-benzo[f]chromene moieties: Induces cell cycle arrest and apoptosis in human cancer cells via dual inhibition of topoisomerase I and II. Bioorg. Chem., 2019, 93, 103289.
[http://dx.doi.org/10.1016/j.bioorg.2019.103289] [PMID: 31586716]
[31]
El-Wahab, A.H.F.A.; Mohamed, H.M.; El-Agrody, A.M.; El-Nassag, M.A.; Bedair, A.H. Synthesis and biological screening of 4-benzyl-2H-phthalazine derivatives. Pharmaceuticals (Basel), 2011, 4(8), 1158-1170.
[http://dx.doi.org/10.3390/ph4081158]
[32]
Abd El-Wahab, A.H.F. Synthesis, reactions and evaluation of the antimicrobial activity of some 4-(p-Halophenyl)-4H-naphthopyran, pyranopyrimidine and pyranotriazolopyrimidine derivatives. Pharmaceuticals, 2012, 5(7), 745-757.
[http://dx.doi.org/10.3390/ph5070745] [PMID: 24281710]
[33]
Radini, I.A.; Abd El-Wahab, A.H.F. Heteroaromatization with 4-phenyldiazenyl-1-naphthol. Part I: Synthesis of some new naphthopyrans and naphthopyranopyrimidines. Eur. J. Chem., 2016, 7(2), 230-237.
[http://dx.doi.org/10.5155/eurjchem.7.2.230-237.1432]
[34]
Abd El-Wahab, A.H.F.; Mohamed, H.M. Synthesis and DFT study of 7-bromophenylnaphthopyran moieties. Asian J. Chem., 2023, 35(8), 1819-1826.
[http://dx.doi.org/10.14233/ajchem.2023.28032]
[35]
Mohamed, H.M.; Abd El-Wahab, A.H.F. Heteroaromatization with 4-Phenyldiazenyl-1-naphthol. Part IV: Synthesis of some new heterocyclic compounds with potential biological activity. Curr. Org. Synth., 2019, 16(6), 931-938.
[http://dx.doi.org/10.2174/1570179416666190719101727] [PMID: 31984914]
[36]
Abd El-Wahab, A.H.F.; Mosa, H.M.K.; Ali, H.H.A.; Mohammad, Y.M.A. Synthesis, antimicrobial, and antitumor activity of some new chromene compounds. Indian J. Heterocycl. Chem., 2020, 30, 369-379.
[37]
Abdelwahab, A.H.F.; Fekry, S.A.H. Anti-cancerous properties of the synthesized substituted chromene compounds and their pharmacological activities. Lett. Drug Des. Discov., 2023, 20(8), 1098-1106.
[http://dx.doi.org/10.2174/1570180819666220811102040]
[38]
Radini, I.A.; Hamed, H.M.; Kharir, M.A.Y.; Elwahab, A.H.F.A. Heteroaromatization with 4-phenyldiazenyl-1-naphthol. Part II: Synthesis of some new benzochromens, benzochromenopyrimidines, benzochromenotriazolopyrimidines, benzochromenopyrimidotriazepine and antimicrobial activities. Eur. J. Chem., 2017, 8(3), 240-247.
[http://dx.doi.org/10.5155/eurjchem.8.3.240-247.1599]
[39]
Rita, M.A.B.; Nasser, J.H.A.; Yousef, E.M.; Ashraf, H.F.A.; Hany, M.M.; Diaa, A.I.; Ahmed, D.H. Design, synthesis, reactions, molecular docking, antitumor activities of novel naphthopyran, naphthopyranopyrimidines, and naphthoyranotriazolopyrimidine derivatives. Curr. Org. Chem., 2023, 27(19), 1717-1727.
[http://dx.doi.org/10.2174/0113852728264994231018063921]
[40]
Rita, M.A.B.; Ashraf, H.F.A. Heteroaromatization of Coumarin Part I: Design, synthesis, reactions, antitumor activities of novel pyridine and naphthyridine derivatives. Curr. Org. Synth., 2024, 21(4), 571-581.
[http://dx.doi.org/10.2174/0115701794265924230920061222] [PMID: 38174438]
[41]
Paull, K.D.; Shoemaker, R.H.; Boyd, M.R.; Parsons, J.L.; Risbood, P.A.; Barbera, W.A.; Sharma, M.N.; Baker, D.C.; Hand, E.; Scudiero, D.A.; Monks, A.; Alley, M.C.; Grote, M. The synthesis of XTT: A new tetrazolium reagent that is bioreducible to a water‐soluble formazan. J. Heterocycl. Chem., 1988, 25(3), 911-914.
[http://dx.doi.org/10.1002/jhet.5570250340]
[42]
Scudiero, D.A.; Shoemaker, R.H.; Paull, K.D.; Monks, A.; Tierney, S.; Nofziger, T.H.; Currens, M.J.; Seniff, D.; Boyd, M.R. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res., 1988, 48(17), 4827-4833.
[PMID: 3409223]
[43]
Fukui, K. Role of frontier orbitals in chemical reactions. Science, 1982, 218(4574), 747-754.
[http://dx.doi.org/10.1126/science.218.4574.747] [PMID: 17771019]
[44]
Hofmann, P. Arvi Rauk: Orbital interaction theory of organic chemistry. Ber. Bunsenges. Phys. Chem, 1995, 99, 997-999.
[http://dx.doi.org/10.1002/bbpc.199500017]
[45]
Wildman, S.A.; Crippen, G.M. Prediction of physicochemical parameters by atomic contributions. J. Chem. Inf. Comput. Sci., 1999, 39(5), 868-873.
[http://dx.doi.org/10.1021/ci990307l]
[46]
Ayers, P.W.; Parr, R.G. Variational principles for describing chemical reactions: The Fukui function and chemical hardness revisited. J. Am. Chem. Soc., 2000, 122(9), 2010-2018.
[http://dx.doi.org/10.1021/ja9924039]
[47]
Lamaka, S.V.; Zheludkevich, M.L.; Yasakau, K.A.; Serra, R.; Poznyak, S.K.; Ferreira, M.G.S. Nanoporous titania interlayer as reservoir of corrosion inhibitors for coatings with self-healing ability. Prog. Org. Coat., 2007, 58(2-3), 127-135.
[http://dx.doi.org/10.1016/j.porgcoat.2006.08.029]
[48]
Komorowski, L.; Lipiński, J.; Szarek, P.; Ordon, P. Polarization justified Fukui functions: The theory and applications for molecules. J. Chem. Phys., 2011, 135(1), 014109.
[http://dx.doi.org/10.1063/1.3603449] [PMID: 21744890]
[49]
Mendoza-Huizar, L.H.; Rios-Reyes, C.H.; Álvarez-Romero, G.A.; Palomar-Pardavé, M.E.; Ramírez-Silva, M.T. Electrophilic and nucleophilic chemical reactivity of neutral and anionic forms of 4-cpa, 24d-cpa, 34-cpa and 245t-cpa through conceptual dft reactivity descriptors. J. Chil. Chem. Soc., 2017, 62(1), 3411-3416.
[http://dx.doi.org/10.4067/S0717-97072017000100022]
[50]
Bochevarov, A.D.; Harder, E.; Hughes, T.F.; Greenwood, J.R.; Braden, D.A.; Philipp, D.M.; Rinaldo, D.; Halls, M.D.; Zhang, J.; Friesner, R.A. Jaguar: A high‐performance quantum chemistry software program with strengths in life and materials sciences. Int. J. Quantum Chem., 2013, 113(18), 2110-2142.
[http://dx.doi.org/10.1002/qua.24481]
[51]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749.
[http://dx.doi.org/10.1021/jm0306430] [PMID: 15027865]
[52]
Parr, R.G.; Szentpály, L.; Liu, S. Electrophilicity index. J. Am. Chem. Soc., 1999, 121(9), 1922-1924.
[http://dx.doi.org/10.1021/ja983494x]
[53]
Parr, R.G.; Donnelly, R.A.; Levy, M.; Palke, W.E. Electronegativity: The density functional viewpoint. J. Chem. Phys., 1978, 68(8), 3801-3807.
[http://dx.doi.org/10.1063/1.436185]
[54]
Tidjani Rahmouni, N.; Bensiradj, N.H.; Megatli, S.A.; Djebbar, S.; Benali Baitich, O. New mixed amino acids complexes of iron(III) and zinc(II) with isonitrosoacetophenone: Synthesis, spectral characterization, DFT study and anticancer activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 213, 235-248.
[http://dx.doi.org/10.1016/j.saa.2019.01.042] [PMID: 30695742]
[55]
Pérez-Tenorio, G.; Stål, O. Activation of AKT/PKB in breast cancer predicts a worse outcome among endocrine treated patients. Br. J. Cancer, 2002, 86(4), 540-545.
[http://dx.doi.org/10.1038/sj.bjc.6600126]
[56]
Shah, K.N.; Mehta, K.R.; Peterson, D.; Evangelista, M.; Livesey, J.C.; Faridi, J.S. AKT-induced tamoxifen resistance is overturned by RRM2 inhibition. Mol. Cancer Res., 2014, 12(3), 394-407.
[http://dx.doi.org/10.1158/1541-7786.MCR-13-0219] [PMID: 24362250]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy