Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Design, Synthesis, Cytotoxicity Profiling, Molecular Docking and ADMET Studies of Novel Functionalized Coumarin-Pyrazole-Thiazole Hybrids: Cyclization of Chromonyl Thiazolyl Pyrazolyl Thiosemicarbazone with α-Halocarbonyl Reagents

In Press, (this is not the final "Version of Record"). Available online 18 July, 2024
Author(s): Tarik E. Ali*, Ayat K. Alsolimani, Mohammed A. Assiri, Ali A. Shati, Mohammad Y. Alfaifi and Serag E. I. Elbehairi
Published on: 18 July, 2024

DOI: 10.2174/0113852728316450240702075812

Price: $95

Abstract

A simple synthetic method was performed to design a novel series of polycyclic systems consisting of a coumarin-pyrazole-thiazole skeleton linked with a completed thiazole ring via hydrazone linkage. The methodology depended on the cyclization of the active precursor 2-[(3-(2-oxo-2H-chromen-3-yl)-1-(4- phenylthiazol-2-yl)-1H-pyrazol-4-yl)methy-lene]hydrazine-1-carbothioamide (2) by its reaction with a series of α-halocarbonyl reagents under Hantzsch reaction conditions. The spectral and analytical data confirmed the structures of all the synthesized compounds. The target compounds were screened for their in vitro anticancer activity. The cytotoxic effects of obtained compound were screened against cancer cell lines (MCF-7, HepG2, and HCT116) using the standard SRB method. Furthermore, products 4, 5, and 7b were the most active against all cancer cell lines, compared with Doxorubicin. These bioactive products effectively suppress the growth of cancer cells by activating the cell death program through late apoptosis. In addition, products 4 and 5 arrested the cell cycle at the S and G2 phases, while product 7b has the ability to arrest the cell cycle at the G2 phase against all three cancer cells. The molecular docking of the products 4, 5, and 7b showed good binding affinities with Cyclin-dependent kinase 8 (CDK-8), while the ADMET prediction supported that these bioactive products can be promising anticancer agents.

[1]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[2]
Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N.; Chen, W. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin. Med. J. , 2022, 135(5), 584-590.
[http://dx.doi.org/10.1097/CM9.0000000000002108] [PMID: 35143424]
[3]
Hosseininezhad, S.; Ramazani, A. Thiazole ring- the antimicrobial, anti-inflammatory, and anticancer active scaffold. Arab. J. Chem., 2023, 16(11), 105234.
[http://dx.doi.org/10.1016/j.arabjc.2023.105234]
[4]
Taghour, M.S.; Elkady, H.; Eldehna, W.M.; El-Deeb, N.M.; Kenawy, A.M.; Elkaeed, E.B.; Alsfouk, A.A.; Alesawy, M.S.; Metwaly, A.M.; Eissa, I.H. Design and synthesis of thiazolidine-2,4-diones hybrids with 1,2-dihydroquinolones and 2-oxindoles as potential VEGFR-2 inhibitors: in vitro anticancer evaluation and in-silico studies. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 1903-1917.
[http://dx.doi.org/10.1080/14756366.2022.2085693] [PMID: 35801403]
[5]
Mamidala, S.; Aravilli, R.K.; Ramesh, G.; Khajavali, S.; Chedupaka, R.; Manga, V.; Vedula, R.R. A facile one-pot, three-component synthesis of a new series of thiazolyl pyrazole carbaldehydes: in vitro anticancer evaluation, in silico ADME/T, and molecular docking studies. J. Mol. Struct., 2021, 1236, 130356.
[http://dx.doi.org/10.1016/j.molstruc.2021.130356]
[6]
Gondru, R.; Peddi, S.R.; Manga, V.; Khanapur, M.; Gali, R.; Sirassu, N.; Bavantula, R. One-pot synthesis, biological evaluation and molecular docking studies of fused thiazolo[2,3-b]pyrimidinone-pyrazolylcoumarin hybrids. Mol. Divers., 2018, 22(4), 943-956.
[http://dx.doi.org/10.1007/s11030-018-9845-0] [PMID: 29968120]
[7]
Thacker, P.S.; Sridhar Goud, N.; Argulwar, O.S.; Soman, J.; Angeli, A.; Alvala, M.; Arifuddin, M.; Supuran, C.T. Synthesis and biological evaluation of some coumarin hybrids as selective carbonic anhydrase IX and XII inhibitors. Bioorg. Chem., 2020, 104, 104272.
[http://dx.doi.org/10.1016/j.bioorg.2020.104272] [PMID: 32961467]
[8]
Gondru, R.; Sirisha, K.; Raj, S.; Gunda, S.K.; Kumar, C.G.; Pasupuleti, M.; Bavantula, R. Design, synthesis, in vitro evaluation and docking studies of pyrazole‐thiazole hybrids as antimicrobial and antibiofilm agents. ChemistrySelect, 2018, 3(28), 8270-8276.
[http://dx.doi.org/10.1002/slct.201801391]
[9]
Gondru, R.; Banothu, J.; Thatipamula, R.K.; Hussain SK, A.; Bavantula, R. 3-(1-Phenyl-4-((2-(4-arylthiazol-2-yl)hydrazono)methyl)-1H-pyrazol-3-yl)-2H-chromen-2-ones: one-pot three component condensation, in vitro antimicrobial, antioxidant and molecular docking studies. RSC Advances, 2015, 5(42), 33562-33569.
[http://dx.doi.org/10.1039/C5RA04196A]
[10]
Zaki, R.M.; Elossaily, Y.A.; El-Dean, A.M. Synthesis and antimicrobial activity of novel benzo[f]coumarin compounds. Bioorg. Khim., 2012, 38(6), 721-728.
[PMID: 23547475]
[11]
Ram, V.J.; Sethi, A.; Nath, M.; Pratap, R. The Chemistry of Heterocycles. In: The chemistry of heterocycles: nomenclature and chemistry of three to five membered heterocycles; Elsevier, 2019, pp. 1-17.
[12]
Mishra, B.B.; Kumar, D.; Singh, A.S.; Tripathi, R.P.; Tiwari, V.K. Ionic liquids-prompted synthesis of biologically relevant five-and six-membered heterocyclic skeletons: an update. Green synthetic approaches for biologically relevant heterocycles; Elsevier, 2015, pp. 437-493.
[http://dx.doi.org/10.1016/B978-0-12-800070-0.00017-7]
[13]
Gümüş, M.; Yakan, M.; Koca, İ. Recent advances of thiazole hybrids in biological applications. Future Med. Chem., 2019, 11(15), 1979-1998.
[http://dx.doi.org/10.4155/fmc-2018-0196] [PMID: 31517529]
[14]
Djukic, M.; Fesatidou, M.; Xenikakis, I.; Geronikaki, A.; Angelova, V.T.; Savic, V.; Pasic, M.; Krilovic, B.; Djukic, D.; Gobeljic, B.; Pavlica, M.; Djuric, A.; Stanojevic, I.; Vojvodic, D.; Saso, L. in vitro antioxidant activity of thiazolidinone derivatives of 1,3-thiazole and 1,3,4-thiadiazole. Chem. Biol. Interact., 2018, 286, 119-131.
[http://dx.doi.org/10.1016/j.cbi.2018.03.013] [PMID: 29574026]
[15]
Sharma, R.N.; Xavier, F.P.; Vasu, K.K.; Chaturvedi, S.C.; Pancholi, S.S. Synthesis of 4-benzyl-1,3-thiazole derivatives as potential anti-inflammatory agents: An analogue-based drug design approach. J. Enzyme Inhib. Med. Chem., 2009, 24(3), 890-897.
[http://dx.doi.org/10.1080/14756360802519558] [PMID: 19469712]
[16]
Lino, C.I.; Gonçalves de Souza, I.; Borelli, B.M.; Silvério Matos, T.T.; Santos Teixeira, I.N.; Ramos, J.P.; Maria de Souza Fagundes, E.; de Oliveira Fernandes, P.; Maltarollo, V.G.; Johann, S.; de Oliveira, R.B. Synthesis, molecular modeling studies and evaluation of antifungal activity of a novel series of thiazole derivatives. Eur. J. Med. Chem., 2018, 151, 248-260.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.083] [PMID: 29626797]
[17]
Xu, Z.; Ba, M.; Zhou, H.; Cao, Y.; Tang, C.; Yang, Y.; He, R.; Liang, Y.; Zhang, X.; Li, Z.; Zhu, L.; Guo, Y.; Guo, C. 2,4,5-Trisubstituted thiazole derivatives: A novel and potent class of non-nucleoside inhibitors of wild type and mutant HIV-1 reverse transcriptase. Eur. J. Med. Chem., 2014, 85, 27-42.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.072] [PMID: 25072874]
[18]
Ali, S.H.; Sayed, A.R. Review of the synthesis and biological activity of thiazoles. Synth. Commun., 2021, 51(5), 670-700.
[http://dx.doi.org/10.1080/00397911.2020.1854787]
[19]
Bramley, S.E.; Dupplin, V.; Goberdhan, D.G.C.; Meakins, G.D. The Hantzsch thiazole synthesis under acidic conditions: change of regioselectivity. J. Chem. Soc., Perkin Trans. 1, 1987, 1, 639-643.
[http://dx.doi.org/10.1039/p19870000639]
[20]
Shi, H.B.; Zhang, S.J.; Lin, Y.F.; Hu, W.X.; Cai, C.M. Study on condensation of N ‐aryl thioureas with 3‐bromo‐acetylacetone: Synthesis of aminothiazoles and iminodihydrothiazoles, and their in vitro antiproliferative activity on human cervical cancer cells. J. Heterocycl. Chem., 2011, 48(5), 1061-1066.
[http://dx.doi.org/10.1002/jhet.602]
[21]
Rostom, S.A.F.; Faidallah, H.M.; Radwan, M.F.; Badr, M.H. Bifunctional ethyl 2-amino-4-methylthiazole-5-carboxylate derivatives: Synthesis and in vitro biological evaluation as antimicrobial and anticancer agents. Eur. J. Med. Chem., 2014, 76, 170-181.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.027] [PMID: 24583356]
[22]
Moussa, Z.; Paz, A.P.; Judeh, Z.M.A.; Alzamly, A.; Saadeh, H.A.; Asghar, B.H.; Alsaedi, S.; Masoud, B.; Almeqbaali, S.; Estwani, S.; Aljaberi, A.; Al-Rooqi, M.M.; Ahmed, S.A. First X-ray crystal structure characterization, computational studies, and improved synthetic route to the bioactive 5-arylimino-1,3,4-thiadiazole derivatives. Int. J. Mol. Sci., 2023, 24(4), 3759.
[http://dx.doi.org/10.3390/ijms24043759] [PMID: 36835167]
[23]
Ramadan, S.K.; Sallam, H.A. Synthesis, spectral characterization, cytotoxic, and antimicrobial activities of some novel heterocycles utilizing 1,3‐diphenylpyrazole‐4‐carboxaldehyde thiosemicarbazone. J. Heterocycl. Chem., 2018, 55(8), 1942-1954.
[http://dx.doi.org/10.1002/jhet.3232]
[24]
M’Lean, J.; Wilson, F.J. The reaction between thiosemicarbazones and maleic anhydride. J. Chem. Soc., 1939, 1048-1050.
[http://dx.doi.org/10.1039/jr9390001048]
[25]
de Aquino, T.M.; Liesen, A.P.; da Silva, R.E.A.; Lima, V.T.; Carvalho, C.S.; de Faria, A.R.; de Araújo, J.M.; de Lima, J.G.; Alves, A.J.; de Melo, E.J.T.; Góes, A.J.S. Synthesis, anti-Toxoplasma gondii and antimicrobial activities of benzaldehyde 4-phenyl-3-thiosemicarbazones and 2-[(phenylmethylene) hydrazono]-4-oxo-3-phenyl-5-thiazolidineacetic acids. Bioorg. Med. Chem., 2008, 16(1), 446-456.
[http://dx.doi.org/10.1016/j.bmc.2007.09.025] [PMID: 17905587]
[26]
Sujatha, K.; Vedula, R.R. Polyethylene glycol (PEG-400) promoted one-pot, five-component synthesis of (E)-ethyl2-(2-((E)-2-(1-(4-methyl-2-(phenyl-amino)thiazol-5yl)ethylidene)hydrazinyl)-4-oxothiazol-5(4H)-ylidene)acetates. Mol. Divers., 2020, 24(2), 413-421.
[http://dx.doi.org/10.1007/s11030-019-09962-3] [PMID: 31123896]
[27]
Ali, T.E.; Assiri, M.A.; Alqahtani, M.N.; Shati, A.A.; Alfaifi, M.Y.; Elbehairi, S.E.I.; Elbehairi, S.E.I. Recyclization of morpholinochromonylidene-thiazolidinone using nucleophiles: Facile synthesis, cytotoxic evaluation, apoptosis, cell cycle and molecular docking studies of a novel series of azole, azine, azepine and pyran derivatives. RSC Advances, 2023, 13(27), 18658-18675.
[http://dx.doi.org/10.1039/D3RA02777E] [PMID: 37346943]
[28]
Mahmoud, A.M.; Al-Abd, A.M.; Lightfoot, D.A.; El-Shemy, H.A. Anti-cancer characteristics of mevinolin against three different solid tumor cell lines was not solely p53-dependent. J. Enzyme Inhib. Med. Chem., 2012, 27(5), 673-679.
[http://dx.doi.org/10.3109/14756366.2011.607446] [PMID: 21883038]
[29]
Bashmail, H.A.; Alamoudi, A.A.; Noorwali, A.; Hegazy, G.A. AJabnoor, G.; Choudhry, H.; Al-Abd, A.M. Thymoquinone synergizes gemcitabine anti-breast cancer activity via modulating its apoptotic and autophagic activities. Sci. Rep., 2018, 8(1), 11674-11685.
[http://dx.doi.org/10.1038/s41598-018-30046-z] [PMID: 30076320]
[30]
Nunez, R. DNA measurement and cell cycle analysis by flow cytometry. Curr. Issues Mol. Biol., 2001, 3(3), 67-70.
[PMID: 11488413]
[31]
Philip, S.; Kumarasiri, M.; Teo, T.; Yu, M.; Wang, S. Cyclin-dependent kinase 8: A new hope in targeted cancer therapy? J. Med. Chem., 2018, 61(12), 5073-5092.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00901] [PMID: 29266937]
[32]
Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 1998, 19(14), 1639-1662.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B]
[33]
DeLano, W.L. An Open-Source Molecular Graphics Tool., Available from: https://legacy.ccp4.ac.uk/newsletters/newsletter40/11_pymol.pdf
[34]
[35]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[36]
Othman, I.M.M.; Alamshany, Z.M.; Tashkandi, N.Y.; Gad-Elkareem, M.A.M.; Abd El-Karim, S.S.; Nossier, E.S. Synthesis and biological evaluation of new derivatives of thieno-thiazole and dihydrothiazolo-thiazole scaffolds integrated with a pyrazoline nucleus as anticancer and multi-targeting kinase inhibitors. RSC Adv., 2021, 12(1), 561-577.
[http://dx.doi.org/10.1039/D1RA08055E] [PMID: 35424523]
[37]
Guerraoui, A.; Goudjil, M.; Direm, A.; Guerraoui, A.; Şengün, İ.Y.; Parlak, C.; Djedouani, A.; Chelazzi, L.; Monti, F.; Lunedei, E.; Boumaza, A. A rhodanine derivative as a potential antibacterial and anticancer agent: Crystal structure, spectral characterization, DFT calculations, Hirshfeld surface analysis, in silico molecular docking and ADMET studies. J. Mol. Struct., 2023, 1280, 135025.
[http://dx.doi.org/10.1016/j.molstruc.2023.135025]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy