Generic placeholder image

Current Microwave Chemistry

Editor-in-Chief

ISSN (Print): 2213-3356
ISSN (Online): 2213-3364

Mini-Review Article

Green Synthesis of Thiazoles and Thiadiazoles Having Anticancer Activities under Microwave Irradiation

In Press, (this is not the final "Version of Record"). Available online 18 July, 2024
Author(s): Sasadhar Majhi*, Piyali Mitra and Pankaj Kumar Mondal
Published on: 18 July, 2024

DOI: 10.2174/0122133356325646240715074628

Price: $95

Abstract

Sulfur and nitrogen-containing heterocycles have received a great deal of attention due to their unique structures and therapeutic relevance. Thiazoles and thiadiazoles are important five-membered heterocycles containing sulfur and nitrogen atoms that draw the special attention of re-searchers due to their synthetic diversity and potent pharmacological properties. Thiazoles and thi-adiazoles are used in agrochemicals, liquid crystals, sensors, the cosmetic industry, cyanine dyes, etc. Sometimes, organic synthesis, including thiazoles and thiadiazoles syntheses with the help of conventional methods, is laborious work, while synthesis of promising organic molecules using microwave irradiation provides better yields, diminishes the reaction time, and reduces unwanted side products. The major causes of death worldwide are due to cancer. Current research demands the design and preparation of novel compounds, including thiazoles and thiadiazoles, that may help to combat cancer, as chemotherapy or chemo drugs suffer from some demerits, including toxicity, lack of selectivity, resistance, and side effects. Hence, the review focuses on the microwave-assisted synthesis of thiazoles and thiadiazoles as a sustainable technique for the first time, and it also aims to highlight the anticancer activities of thiazoles and thiadiazole derivatives elegantly.

[1]
Gawande, M.B.; Shelke, S.N.; Zboril, R.; Varma, R.S. Microwave-assisted chemistry: Synthetic applications for rapid assembly of nanomaterials and organics. Acc. Chem. Res., 2014, 47(4), 1338-1348.
[http://dx.doi.org/10.1021/ar400309b] [PMID: 24666323]
[2]
Anastas, P.; Warner, J.C. Eds.; Green Chemistry: Theory and Practice; Oxford University Press: Oxford, 1998.
[3]
Bazureau, J.P.; Paquin, L.; Carrié, D.; L’Helgoual’ch, J.M.; Guihéneuf, S.; Coulibaly, K.W.; Burgy, G.; Komaty, S.; Limanton, E. Microwaves in heterocyclic chemistry.Microwaves in Organic Synthesis; Wiley‐VCH Verlag GmbH & Co.: Weinheim, Germany, 2012.
[http://dx.doi.org/10.1002/9783527651313.ch16]
[4]
Majhi, S. The art of total synthesis of bioactive natural products via microwaves. Curr. Org. Chem., 2021, 25(9), 1047-1069.
[http://dx.doi.org/10.2174/1385272825666210303112302]
[5]
Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, J. The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett., 1986, 27(3), 279-282.
[http://dx.doi.org/10.1016/S0040-4039(00)83996-9]
[6]
Kappe, C.O. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed., 2004, 43(46), 6250-6284.
[http://dx.doi.org/10.1002/anie.200400655] [PMID: 15558676]
[7]
Majhi, S.; Mondal, P.K. Microwave-assisted synthesis of heterocycles and their anti-cancer activities. Curr. Microw. Chem., 2023, 10(2), 135-154.
[http://dx.doi.org/10.2174/0122133356264446230925173123]
[8]
Hayden, S.; Damm, M.; Kappe, C.O. On the importance of accurate internal temperature measurements in the microwave dielectric heating of viscous systems and polymer synthesis. Macromol. Chem. Phys., 2013, 214(4), 423-434.
[http://dx.doi.org/10.1002/macp.201200449]
[9]
Vanier, G.S. Microwave-assisted solid-phase peptide synthesis based on the Fmoc protecting group strategy (CEM). Methods Mol. Biol., 2013, 1047, 235-249.
[http://dx.doi.org/10.1007/978-1-62703-544-6_17] [PMID: 23943491]
[10]
Onwudiwe, D.C. Microwave-assisted synthesis of PbS nanostructures. Heliyon, 2019, 5(3), e01413.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01413] [PMID: 30976689]
[11]
Majhi, S.; Jash, S.K. Recent developments of nanocatalysts for Stille coupling reaction. Synth. Commun., 2023, 53, 2061-2087.
[http://dx.doi.org/10.1080/00397911.2023.2269585]
[12]
Majhi, S. Applications of nanoparticles in organic synthesis under ultrasonication. Nanoparticles in Green Organic Synthesis Strategy Towards Sustainability; Elsevier: Amsterdam, 2023.
[13]
Das, D.; Majhi, S. Nanoparticles in multicomponent reactions toward green organic synthesis. Nanoparticles in Green Organic Synthesis Strategy Towards Sustainability; Elsevier: Amsterdam, 2023.
[14]
Saloga, P.E.J.; Kästner, C.; Thünemann, A.F. High-speed but not magic: Microwave-assisted synthesis of ultra-small silver nanoparticles. Langmuir, 2018, 34(1), 147-153.
[http://dx.doi.org/10.1021/acs.langmuir.7b01541] [PMID: 29215896]
[15]
Adhikari, A.; Bhakta, S.; Ghosh, T. Microwave-assisted synthesis of bioactive heterocycles: An overview. Tetrahedron, 2022, 126, 133085.
[http://dx.doi.org/10.1016/j.tet.2022.133085]
[16]
Lew, A.; Krutzik, P.O.; Hart, M.E.; Chamberlin, A.R. Increasing rates of reaction: Microwave-assisted organic synthesis for combinatorial chemistry. J. Comb. Chem., 2002, 4(2), 95-105.
[http://dx.doi.org/10.1021/cc010048o] [PMID: 11886281]
[17]
Sun, J.; Wang, W.; Yue, Q. Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Materials (Basel), 2016, 9(4), 231.
[http://dx.doi.org/10.3390/ma9040231] [PMID: 28773355]
[18]
Kabir, E.; Uzzaman, M. A review on biological and medicinal impact of heterocyclic compounds. Results Chem., 2022, 4, 100606.
[19]
Majhi, S.; Saha, I. Visible light-promoted synthesis of bioactive N, N-heterocycles. Curr. Green Chem., 2022, 9(3), 127-144.
[http://dx.doi.org/10.2174/2213346110666221223141323]
[20]
Majhi, S. Visible light-promoted synthesis of bioactive N, N-heterocycles. Phys. Sci. Rev., 2022, 8(9), 0216.
[http://dx.doi.org/10.1515/psr-2021-0216]
[21]
Brahmachari, G.; Mandal, L.C.; Roy, R.; Jash, S.K.; Mondal, A.; Majhi, S.; Gorai, D. Lupeol, a pharmaceutically potent triterpenoid, from the ripe fruits of Rauvolfia tetraphylla L. (Apocynaceae). J. Indian Chem. Soc., 2011, 88, 303-305.
[22]
Majhi, S. Discovery, development and design of anthocyanins-inspired anticancer agents: A comprehensive review. Anticancer. Agents Med. Chem., 2022, 22(19), 3219-3238.
[http://dx.doi.org/10.2174/1871520621666211015142310] [PMID: 34779372]
[23]
Obaid, R.J.; Naeem, N.; Mughal, E.U.; Al-Rooqi, M.M.; Sadiq, A.; Jassas, R.S.; Moussa, Z.; Ahmed, S.A. Inhibitory potential of nitrogen, oxygen and sulfur containing heterocyclic scaffolds against acetylcholinesterase and butyrylcholinesterase. RSC Advances, 2022, 12(31), 19764-19855.
[http://dx.doi.org/10.1039/D2RA03081K] [PMID: 35919585]
[24]
Akhtar, J.; Khan, A.A.; Ali, Z.; Haider, R.; Shahar Yar, M. Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur. J. Med. Chem., 2017, 125, 143-189.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.023] [PMID: 27662031]
[25]
Chhabria, M.T.; Patel, S.; Modi, P.; Brahmkshatriya, P.S. Thiazole: A review on chemistry, synthesis and therapeutic importance of its derivatives. Curr. Top. Med. Chem., 2016, 16(26), 2841-2862.
[http://dx.doi.org/10.2174/1568026616666160506130731] [PMID: 27150376]
[26]
Helal, M.H.M.; Salem, M.A.; El-Gaby, M.S.A.; Aljahdali, M. Synthesis and biological evaluation of some novel thiazole compounds as potential anti-inflammatory agents. Eur. J. Med. Chem., 2013, 65, 517-526.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.005] [PMID: 23787438]
[27]
Frija, L.M.T.; Pombeiro, A.J.L.; Kopylovich, M.N. Coordination chemistry of thiazoles, isothiazoles and thiadiazoles. Coord. Chem. Rev., 2016, 308, 32-55.
[http://dx.doi.org/10.1016/j.ccr.2015.10.003]
[28]
Mishra, R.; Sharma, P.K.; Verma, P.K.; Tomer, I.; Mathur, G.; Dhakad, P.K. Biological potential of thiazole derivatives of synthetic origin. J. Heterocycl. Chem., 2017, 54(4), 2103-2116.
[http://dx.doi.org/10.1002/jhet.2827]
[29]
Narasimhamurthy, K.H.; Sajith, A.M.; Joy, M.N.; Rangappa, K.S. An overview of recent developments in the synthesis of substituted thiazoles. ChemistrySelect, 2020, 5(19), 5629-5656.
[http://dx.doi.org/10.1002/slct.202001133]
[30]
Tahghighi, A.; Babalouei, F. Thiadiazoles: The appropriate pharmacological scaffolds with leishmanicidal and antimalarial activities: A review. Iran. J. Basic Med. Sci., 2017, 20(6), 613-622.
[PMID: 28868117]
[31]
Jain, A.K.; Sharma, S.; Vaidya, A.; Ravichandran, V.; Agrawal, R.K. 1,3,4-thiadiazole and its derivatives: A review on recent progress in biological activities. Chem. Biol. Drug Des., 2013, 81(5), 557-576.
[http://dx.doi.org/10.1111/cbdd.12125] [PMID: 23452185]
[32]
Zaraei, S.O.; Sbenati, R.M.; Alach, N.N.; Anbar, H.S.; El-Gamal, R.; Tarazi, H.; Shehata, M.K.; Abdel-Maksoud, M.S.; Oh, C.H.; El-Gamal, M.I. Discovery of first-in-class imidazothiazole-based potent and selective ErbB4 (HER4) kinase inhibitors. Eur. J. Med. Chem., 2021, 224, 113674.
[http://dx.doi.org/10.1016/j.ejmech.2021.113674] [PMID: 34237622]
[33]
Petchiappan, A.; Chatterji, D. Antibiotic resistance: Current perspectives. ACS Omega, 2017, 2(10), 7400-7409.
[http://dx.doi.org/10.1021/acsomega.7b01368] [PMID: 30023551]
[34]
Majhi, S.; Sivakumar, M. Semisynthesis of Bioactive Compounds and their Biological Activities; Elsevier: Amsterdam, 2023.
[35]
Majhi, S.; Mandal, B. Modern Sustainable Techniques in Total Synthesis of Bioactive Natural Products; World Scientific: Singapore, 2023.
[http://dx.doi.org/10.1142/13210]
[36]
Majhi, S.; Gorai, D.; Jash, S.K.; Singh, R.K.; Sarkar, A. Chemical and pharmacological aspects of Limnophila rugosa: An update. Int. J. Nat. Prod. Res., 2013, 3, 120-124.
[37]
Dey, A.K.; Majhi, S. Samarium(III) triflate in organic synthesis: A mild and efficient catalyst. ChemistrySelect, 2023, 8(18), e202300156.
[http://dx.doi.org/10.1002/slct.202300156]
[38]
Majhi, S. Applications of flow chemistry in total synthesis of natural products. Curr. Org. Chem., 2023, 27(12), 1072-1089.
[http://dx.doi.org/10.2174/1385272827666230809094232]
[39]
Gaggero, N.; Pandini, S. Advances in chemoselective intermolecular cross-benzoin-type condensation reactions. Org. Biomol. Chem., 2017, 15(33), 6867-6887.
[http://dx.doi.org/10.1039/C7OB01662J] [PMID: 28809427]
[40]
Batran, R.Z.; Ahmed, E.Y.; Awad, H.M.; Ali, K.A.; Abdel Latif, N.A. EGFR and PI3K/m-TOR inhibitors: Design, microwave assisted synthesis and anticancer activity of thiazole–coumarin hybrids. RSC Advances, 2023, 13(42), 29070-29085.
[http://dx.doi.org/10.1039/D3RA03483F] [PMID: 37800132]
[41]
Fábián, B.; Kudar, V.; Csámpai, A.; Nagy, T.Z.; Sohár, P. Synthesis, IR-, NMR-, DFT and X-ray study of ferrocenyl heterocycles from thiosemicarbazones. Part 21: Study on ferrocenes. J. Organomet. Chem., 2007, 692(25), 5621-5632.
[http://dx.doi.org/10.1016/j.jorganchem.2007.09.017]
[42]
Alsharekh, M.M.; Althagafi, I.I.; Shaaban, M.R.; Farghaly, T.A. Microwave-assisted and thermal synthesis of nanosized thiazolyl-phenothiazine derivatives and their biological activities. Res. Chem. Intermed., 2019, 45(2), 127-154.
[http://dx.doi.org/10.1007/s11164-018-3594-7]
[43]
Prajapati, N.P.; Patel, K.D.; Vekariya, R.H.; Patel, H.D.; Rajani, D.P. Thiazole fused thiosemicarbazones: Microwave-assisted synthesis, biological evaluation and molecular docking study. J. Mol. Struct., 2019, 1179, 401-410.
[http://dx.doi.org/10.1016/j.molstruc.2018.11.025]
[44]
Kim, S.; Salim, A.; Swanson, S.; Douglas Kinghorn, A. Potential of cyclopenta[b]benzofurans from Aglaia species in cancer chemotherapy. Anticancer. Agents Med. Chem., 2006, 6(4), 319-345.
[http://dx.doi.org/10.2174/187152006777698123] [PMID: 16842234]
[45]
Baba, N.H.K.; Ashok, D.; Rao, B.A.; Madderla, S.; Murthy, N.Y.S. Microwave-assisted synthesis and biological evaluation of thiazole-substituted dibenzofurans. Hetrocycl. Comun., 2018, 24(3), 171-176.
[46]
Umer, S.M.; Solangi, M.; Khan, K.M.; Saleem, R.S.Z. Indole-containing natural products 2019–2022: Isolations, reappraisals, syntheses, and biological activities. Molecules, 2022, 27(21), 7586.
[http://dx.doi.org/10.3390/molecules27217586] [PMID: 36364413]
[47]
Vaddula, B.R.; Tantak, M.P.; Sadana, R.; Gonzalez, M.A.; Kumar, D. One-pot synthesis and in-vitro anticancer evaluation of 5-(2′-indolyl)thiazoles. Sci. Rep., 2016, 6(1), 23401.
[http://dx.doi.org/10.1038/srep23401] [PMID: 27021742]
[48]
Khalil, K.; Riyadh, S.; Alkayal, N.; Bashal, A.; Alharbi, K.; Alharbi, W. Chitosan-strontium oxide nanocomposite: Preparation, characterization, and catalytic potency in thiadiazoles synthesis. Polymers (Basel), 2022, 14(14), 2827.
[http://dx.doi.org/10.3390/polym14142827] [PMID: 35890603]
[49]
Dhepe, S.; Kumar, S.; Vinayakumar, R.; Ramareddy, S.A.; Karki, S.S. Microwave-assisted synthesis and antimicrobial activity of some imidazo[2,1-b][1,3,4]thiadiazole derivatives. Med. Chem. Res., 2012, 21(8), 1550-1556.
[http://dx.doi.org/10.1007/s00044-011-9671-8]
[50]
Atta-Allah, S.R. AboulMagd, A.M.; Farag, P.S. Design, microwave assisted synthesis, and molecular modeling study of some new 1,3,4-thiadiazole derivatives as potent anticancer agents and potential VEGFR-2 inhibitors. Bioorg. Chem., 2021, 112, 104923.
[http://dx.doi.org/10.1016/j.bioorg.2021.104923] [PMID: 33932767]
[51]
Aggarwal, R.; Hooda, M.; Kumar, P.; Sumran, G. Vision on synthetic and medicinal facets of 1,2,4-Triazolo[3,4-b][1,3,4]thiadiazine scaffold. Top. Curr. Chem. (Cham), 2022, 380(2), 10.
[http://dx.doi.org/10.1007/s41061-022-00365-x] [PMID: 35122161]
[52]
Sumangala, V.; Poojary, B.; Chidananda, N.; Arulmoli, T.; Shenoy, S. Facile synthesis, cytotoxic and antimicrobial activity studies of a new group of 6-aryl-3-[4-(methylsulfonyl)benzyl]-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazines. Eur. J. Med. Chem., 2012, 54, 59-64.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.024] [PMID: 22633832]
[53]
El-Sayed, H.A.; Assy, M.G.; Mohamed, A.S. An efficient synthesis and antimicrobial activity of N-bridged triazolo[3,4-b]thiadiazine and triazolo[3,4-b]thiadiazole derivatives under microwave irradiation. Synth. Commun., 2020, 50, 997-1007.
[http://dx.doi.org/10.1080/00397911.2020.1726397]
[54]
Rodrigues, M.O.; Eberlin, M.N.; Neto, B.A.D. How and why to investigate multicomponent reactions mechanisms? A critical review. Chem. Rec., 2021, 21(10), 2762-2781.
[http://dx.doi.org/10.1002/tcr.202000165] [PMID: 33538117]
[55]
Nazari, Z.E.; Iranshahi, M. Biologically active sesquiterpene coumarins from Ferula species. Phytother. Res., 2011, 25(3), 315-323.
[http://dx.doi.org/10.1002/ptr.3311] [PMID: 21031633]
[56]
Srikrishna, D.; Godugu, C.; Dubey, P.K. A review on pharmacological properties of coumarins. Mini Rev. Med. Chem., 2018, 18(2), 113-141.
[PMID: 27488585]
[57]
Mamidala, S.; Peddi, S.R.; Aravilli, R.K.; Jilloju, P.C.; Manga, V.; Vedula, R.R. Microwave irradiated one pot, three component synthesis of a new series of hybrid coumarin based thiazoles: Antibacterial evaluation and molecular docking studies. J. Mol. Struct., 2021, 1225, 129114.
[http://dx.doi.org/10.1016/j.molstruc.2020.129114]
[58]
Rathish, I.G.; Javed, K.; Bano, S.; Ahmad, S.; Alam, M.S.; Pillai, K.K. Synthesis and blood glucose lowering effect of novel pyridazinone substituted benzenesulfonylurea derivatives. Eur. J. Med. Chem., 2009, 44(6), 2673-2678.
[http://dx.doi.org/10.1016/j.ejmech.2008.12.013] [PMID: 19171410]
[59]
Abu-Melha, S.; Gomha, S.; Abouzied, A.; Edrees, M.; Abo Dena, A.; Muhammad, Z. Microwave-assisted one pot three-component synthesis of novel bioactive thiazolyl-pyridazinediones as potential antimicrobial agents against antibiotic-resistant bacteria. Molecules, 2021, 26(14), 4260.
[http://dx.doi.org/10.3390/molecules26144260] [PMID: 34299535]
[60]
Kakati, D.; Sarma, R.K.; Saikia, R.; Barua, N.C.; Sarma, J.C. Rapid microwave assisted synthesis and antimicrobial bioevaluation of novel steroidal chalcones. Steroids, 2013, 78(3), 321-326.
[http://dx.doi.org/10.1016/j.steroids.2012.12.003] [PMID: 23287649]
[61]
Majhi, S. Diterpenoids: Natural distribution, semisynthesis at room temperature and pharmacological aspects‐A late. ChemistrySelect, 2020, 5(40), 12450-12464.
[http://dx.doi.org/10.1002/slct.202002836]
[62]
Asif, M.; Ali, A.; Zafar, A.; Farhan, M.; Khanam, H.; Hadi, S.M. Shamsuzzaman, Microwave-assisted one pot synthesis, characterization, biological evaluation and molecular docking studies of steroidal thiazoles. J. Photochem. Photobiol. B, 2017, 166, 104-115.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.11.010] [PMID: 27888739]
[63]
Wiesner, J.; Ortmann, R.; Jomaa, H.; Schlitzer, M. New antimalarial drugs. Angew. Chem. Int. Ed., 2003, 42(43), 5274-5293.
[http://dx.doi.org/10.1002/anie.200200569] [PMID: 14613157]
[64]
Stein, G.E. The 4-quinolone antibiotics: Past, present, and future. Pharmacotherapy, 1988, 8(6), 301-314.
[http://dx.doi.org/10.1002/j.1875-9114.1988.tb04088.x] [PMID: 2851772]
[65]
Aldred, K.J.; Kerns, R.J.; Osheroff, N. Mechanism of quinolone action and resistance. Biochemistry, 2014, 53(10), 1565-1574.
[http://dx.doi.org/10.1021/bi5000564] [PMID: 24576155]
[66]
Patel, N.B.; Parmar, R.B.; Soni, H.I. Lewis acid promoted, one-pot synthesis of fluoroquinolone clubbed 1,3,4-thiadiazole motifs under microwave irradiation: Their biological activities. Curr. Microw. Chem., 2020, 7(1), 60-66.
[http://dx.doi.org/10.2174/2213335606666191016111642]
[67]
Wadhwa, P.; Kaur, T.; Sharma, A. The first catalyst and solvent-free synthesis of 2-arylimidazo[2,1-b][1,3,4]thiadiazoles: A comparative assessment of greenness. RSC Advances, 2015, 5(55), 44353-44360.
[http://dx.doi.org/10.1039/C5RA06747B]
[68]
Dessì, A.; Calamante, M.; Mordini, A.; Zani, L.; Taddei, M.; Reginato, G. Microwave-activated synthesis of thiazolo[5,4-d]thiazoles by a condensation/oxidation sequence. RSC Advances, 2014, 4(3), 1322-1328.
[http://dx.doi.org/10.1039/C3RA45015E]
[69]
Ivasechko, I.; Lozynskyi, A.; Senkiv, J.; Roszczenko, P.; Kozak, Y.; Finiuk, N.; Klyuchivska, O.; Kashchak, N.; Manko, N.; Maslyak, Z.; Lesyk, D.; Karkhut, A.; Polovkovych, S.; Czarnomysy, R.; Szewczyk, O.; Kozytskiy, A.; Karpenko, O.; Khyluk, D.; Gzella, A.; Bielawski, K.; Bielawska, A.; Dzubak, P.; Gurska, S.; Hajduch, M.; Stoika, R.; Lesyk, R. Molecular design, synthesis and anticancer activity of new thiopyrano[2,3-d]thiazoles based on 5-hydroxy-1,4-naphthoquinone (juglone). Eur. J. Med. Chem., 2023, 252, 115304.
[http://dx.doi.org/10.1016/j.ejmech.2023.115304] [PMID: 37001390]
[70]
Sharma, D.; Singh, M.; Joshi, J.; Garg, M.; Chaudhary, V.; Blankenberg, D.; Chandna, S.; Kumar, V.; Rani, R. Design and synthesis of thiazole scaffold-based small molecules as anticancer agents targeting the human lactate dehydrogenase a enzyme. ACS Omega, 2023, 8(20), 17552-17562.
[http://dx.doi.org/10.1021/acsomega.2c07569] [PMID: 37251149]
[71]
Mamidala, S.; Mudigunda, V.S.; Peddi, S.R.; Bokara, K.K.; Manga, V.; Vedula, R.R. Design and synthesis of new thiazoles by microwave-assisted method: Evaluation as an anti-breast cancer agents and molecular docking studies. Synth. Commun., 2020, 50(16), 2488-2501.
[http://dx.doi.org/10.1080/00397911.2020.1781184]
[72]
El-Naggar, M.; Sallam, H.A.; Shaban, S.S.; Abdel-Wahab, S.S.; E. Amr, A.E.; Azab, M.E.; Nossier, E.S.; Al-Omar, M.A. Design, synthesis, and molecular docking study of novel heterocycles incorporating 1,3,4-thiadiazole moiety as potential antimicrobial and anticancer agents. Molecules, 2019, 24(6), 1066.
[http://dx.doi.org/10.3390/molecules24061066] [PMID: 30889918]
[73]
Altıntop, M.; Ciftci, H.; Radwan, M.; Sever, B.; Kaplancıklı, Z.; Ali, T.; Koga, R.; Fujita, M.; Otsuka, M.; Özdemir, A. Design, synthesis, and biological evaluation of novel 1,3,4-thiadiazole derivatives as potential antitumor agents against chronic myelogenous leukemia, striking effect of nitrothiazole moiety. Molecules, 2017, 23(1), 59-76.
[http://dx.doi.org/10.3390/molecules23010059] [PMID: 29280989]
[74]
Chowrasia, D.; Karthikeyan, C.; Choure, L. Sahabjada; Gupta, M.; Arshad, M.; Trivedi, P. Synthesis, characterization and anti cancer activity of some fluorinated 3,6-diaryl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazoles. Arab. J. Chem., 2017, 10, S2424-S2428.
[http://dx.doi.org/10.1016/j.arabjc.2013.08.026]
[75]
Jakovljević, K.; Matić, I.Z.; Stanojković, T.; Krivokuća, A.; Marković, V.; Joksović, M.D.; Mihailović, N.; Nićiforović, M.; Joksović, L. Synthesis, antioxidant and antiproliferative activities of 1,3,4-thiadiazoles derived from phenolic acids. Bioorg. Med. Chem. Lett., 2017, 27(16), 3709-3715.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.003] [PMID: 28709826]
[76]
Metwally, N.H.; Badawy, M.A.; Okpy, D.S. Synthesis and anticancer activity of some new thiopyrano[2,3-d]thiazoles incorporating pyrazole moiety. Chem. Pharm. Bull. (Tokyo), 2015, 63(7), 495-503.
[http://dx.doi.org/10.1248/cpb.c14-00885] [PMID: 26133066]
[77]
Bangade, V.M.; Mali, P.R.; Meshram, H.M. Synthesis of potent anticancer substituted 5-benzimidazol-2-amino thiazoles controlled by bifunctional hydrogen bonding under microwave irradiations. J. Org. Chem., 2021, 86(9), 6056-6065.
[http://dx.doi.org/10.1021/acs.joc.0c02542] [PMID: 33872008]
[78]
Kassem, A.F.; Althomali, R.H.; Anwar, M.M.; El-Sofany, W.I. Thiazole moiety: A promising scaffold for anticancer drug discovery. J. Mol. Struct., 2024, 1303, 137510.
[http://dx.doi.org/10.1016/j.molstruc.2024.137510]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy