Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

PHD-BAH Domain in ASH1L Could Recognize H3K4 Methylation and Regulate the Malignant Behavior of Cholangio Carcinoma

In Press, (this is not the final "Version of Record"). Available online 18 July, 2024
Author(s): Xiang-Yu Zhang* and Yue Li
Published on: 18 July, 2024

DOI: 10.2174/0118715206312004240712072532

Price: $95

Abstract

Background: Histone methyltransferase absent, small, or homeotic discs1-like (ASH1L) is composed of su(var)3-9, enhancer of zeste, trithorax (SET) domain, pleckstrin homology domain (PHD) domain, middle (MID) domain, and bromo adjacent homology (BAH) domain. The SET domain of ASH1L is known to mediate mediate H3K36 dimethylation (H3K36me2) modification. However, the specific functions of the PHD-BAH domain remain largely unexplored. This study aimed to explore the biological function of the PHD-BAH domain in ASH1L.

Methods: We employed a range of techniques, including a prokaryotic fusion protein expression purification system, pull-down assay, Isothermal Titration Calorimetry (ITC), polymerase chain reaction (PCR), and sitedirected mutagenesis, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR-Cas9) gene editing, cell culture experiment, western blot, cell proliferation assay, and cell apoptosis test.

Results: The PHD-BAH domain in ASH1L preferentially binds to the H3K4me2 peptide over H3K4 monomethylation (H3K4me1) and H3K4 trimethylation (H3K4me3) peptide. Notably, the W2603A mutation within the PHD-BAH domain could disrupt the interaction with H3K4me2 in vitro. Compared with wild-type Cholangiocarcinoma (CHOL) cells, deletion of the PHD-BAH domain in ASH1L led to increased CHOL cell apoptosis and reduced cell proliferation (P < 0.001). Additionally, the W2603A mutation affected the regulation of the proteasome 20S subunit beta (PSMB) family gene set.

Conclusion: W2603A mutation was crucial for the interaction between the PHD-BAH domain and the H3K4me2 peptide. ASH1L regulated CHOL cell survival and proliferation through its PHD-BAH domain by modulating the expression of the PSMB family gene set.

[1]
Dai, X.; Ren, T.; Zhang, Y.; Nan, N. Methylation multiplicity and its clinical values in cancer. Expert Rev. Mol. Med., 2021, 23, e2.
[http://dx.doi.org/10.1017/erm.2021.4] [PMID: 33787478]
[2]
Yang, B.; Wang, J.Q.; Tan, Y.; Yuan, R.; Chen, Z.S.; Zou, C. RNA methylation and cancer treatment. Pharmacol. Res., 2021, 174, 105937.
[http://dx.doi.org/10.1016/j.phrs.2021.105937] [PMID: 34648969]
[3]
Wagner, E.J.; Carpenter, P.B. Understanding the language of Lys36 methylation at histone H3. Nat. Rev. Mol. Cell Biol., 2012, 13(2), 115-126.
[http://dx.doi.org/10.1038/nrm3274] [PMID: 22266761]
[4]
Zhang, C.; Xu, L.; Zheng, X.; Liu, S.; Che, F. Role of Ash1l in Tourette syndrome and other neurodevelopmental disorders. Dev. Neurobiol., 2021, 81(2), 79-91.
[http://dx.doi.org/10.1002/dneu.22795] [PMID: 33258273]
[5]
Ma, Q.; Song, C.; Yin, B.; Shi, Y.; Ye, L. The role of Trithorax family regulating osteogenic and Chondrogenic differentiation in mesenchymal stem cells. Cell Prolif., 2022, 55(5), e13233.
[http://dx.doi.org/10.1111/cpr.13233] [PMID: 35481717]
[6]
Yancoskie, M.N.; Maritz, C.; van Eijk, P.; Reed, S.H.; Naegeli, H. To incise or not and where: SET-domain methyltransferases know. Trends Biochem. Sci., 2023, 48(4), 321-330.
[http://dx.doi.org/10.1016/j.tibs.2022.10.003] [PMID: 36357311]
[7]
Vettese-Dadey, M.; Grant, P.A.; Hebbes, T.R. Crane- Robinson, C.; Allis, C.D.; Workman, J.L. Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO J., 1996, 15(10), 2508-2518.
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb00608.x] [PMID: 8665858]
[8]
Tachibana, M.; Sugimoto, K.; Fukushima, T.; Shinkai, Y. Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J. Biol. Chem., 2001, 276(27), 25309-25317.
[http://dx.doi.org/10.1074/jbc.M101914200] [PMID: 11316813]
[9]
Lam, U.T.F.; Tan, B.K.Y.; Poh, J.J.X.; Chen, E.S. Structural and functional specificity of H3K36 methylation. Epigenetics Chromatin, 2022, 15(1), 17.
[http://dx.doi.org/10.1186/s13072-022-00446-7] [PMID: 35581654]
[10]
Collins, B.E.; Greer, C.B.; Coleman, B.C.; Sweatt, J.D. Histone H3 lysine K4 methylation and its role in learning and memory. Epigenetics Chromatin, 2019, 12(1), 7.
[http://dx.doi.org/10.1186/s13072-018-0251-8] [PMID: 30616667]
[11]
Xiao, C.; Fan, T.; Zheng, Y.; Tian, H.; Deng, Z.; Liu, J.; Li, C.; He, J. H3K4 trimethylation regulates cancer immunity: A promising therapeutic target in combination with immunotherapy. J. Immunother. Cancer, 2023, 11(8), e005693.
[http://dx.doi.org/10.1136/jitc-2022-005693] [PMID: 37553181]
[12]
Hou, P.; Huang, C.; Liu, C.P.; Yang, N.; Yu, T.; Yin, Y.; Zhu, B.; Xu, R.M. Structural insights into stimulation of Ash1L’s H3K36 methyltransferase activity through Mrg15 binding. Structure, 2019, 27(5), 837-845.e3.
[http://dx.doi.org/10.1016/j.str.2019.01.015] [PMID: 30827843]
[13]
Yu, M.; Jia, Y.; Ma, Z.; Ji, D.; Wang, C.; Liang, Y.; Zhang, Q.; Yi, H.; Zeng, L. Structural insight into ASH1L PHD finger recognizing methylated histone H3K4 and promoting cell growth in prostate cancer. Front. Oncol., 2022, 12, 906807.
[http://dx.doi.org/10.3389/fonc.2022.906807] [PMID: 36033518]
[14]
Lee, Y.; Yoon, E.; Cho, S.; Schmähling, S.; Müller, J.; Song, J.J. Structural basis of MRG15-mediated activation of the ASH1L histone methyltransferase by releasing an autoinhibitory loop. Structure, 2019, 27(5), 846-852.e3.
[http://dx.doi.org/10.1016/j.str.2019.01.016] [PMID: 30827841]
[15]
Qian, S.; Lv, X.; Scheid, R.N.; Lu, L.; Yang, Z.; Chen, W.; Liu, R.; Boersma, M.D.; Denu, J.M.; Zhong, X.; Du, J. Dual recognition of H3K4me3 and H3K27me3 by a plant histone reader SHL. Nat. Commun., 2018, 9(1), 2425.
[http://dx.doi.org/10.1038/s41467-018-04836-y] [PMID: 29930355]
[16]
Yang, N.; Xu, R.M. Structure and function of the BAH domain in chromatin biology. Crit. Rev. Biochem. Mol. Biol., 2013, 48(3), 211-221.
[http://dx.doi.org/10.3109/10409238.2012.742035] [PMID: 23181513]
[17]
Xu, B.; Qin, T.; Yu, J.; Giordano, T.J.; Sartor, M.A.; Koenig, R.J. Novel role of ASH1L histone methyltransferase in anaplastic thyroid carcinoma. J. Biol. Chem., 2020, 295(26), 8834-8845.
[http://dx.doi.org/10.1074/jbc.RA120.013530] [PMID: 32398261]
[18]
Rogawski, D.S.; Deng, J.; Li, H.; Miao, H.; Borkin, D.; Purohit, T.; Song, J.; Chase, J.; Li, S.; Ndoj, J.; Klossowski, S.; Kim, E.; Mao, F.; Zhou, B.; Ropa, J.; Krotoska, M.Z.; Jin, Z.; Ernst, P.; Feng, X.; Huang, G.; Nishioka, K.; Kelly, S.; He, M.; Wen, B.; Sun, D.; Muntean, A.; Dou, Y.; Maillard, I.; Cierpicki, T.; Grembecka, J. Discovery of first-in-class inhibitors of ASH1L histone methyltransferase with anti-leukemic activity. Nat. Commun., 2021, 12(1), 2792.
[http://dx.doi.org/10.1038/s41467-021-23152-6] [PMID: 33990599]
[19]
Shalem, O.; Sanjana, N.E.; Hartenian, E.; Shi, X.; Scott, D.A.; Mikkelsen, T.S.; Heckl, D.; Ebert, B.L.; Root, D.E.; Doench, J.G.; Zhang, F. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science, 2014, 343(6166), 84-87.
[http://dx.doi.org/10.1126/science.1247005] [PMID: 24336571]
[20]
Sanjana, N.E.; Shalem, O.; Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods, 2014, 11(8), 783-784.
[http://dx.doi.org/10.1038/nmeth.3047] [PMID: 25075903]
[21]
Li, C.; Tang, Z.; Zhang, W.; Ye, Z.; Liu, F. GEPIA2021: integrating multiple deconvolution-based analysis into GEPIA. Nucleic Acids Res., 2021, 49(W1), W242-W246.
[http://dx.doi.org/10.1093/nar/gkab418] [PMID: 34050758]
[22]
Vasaikar, S.V.; Straub, P.; Wang, J.; Zhang, B. LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res., 2018, 46(D1), D956-D963.
[http://dx.doi.org/10.1093/nar/gkx1090] [PMID: 29136207]
[23]
Zhang, Y.; Sun, Z.; Jia, J.; Du, T.; Zhang, N.; Tang, Y.; Fang, Y.; Fang, D. Overview of histone modification. Adv. Exp. Med. Biol., 2021, 1283, 1-16.
[http://dx.doi.org/10.1007/978-981-15-8104-5_1] [PMID: 33155134]
[24]
Xiao, C.; Fan, T.; Tian, H.; Zheng, Y.; Zhou, Z.; Li, S.; Li, C.; He, J. H3K36 trimethylation-mediated biological functions in cancer. Clin. Epigenetics, 2021, 13(1), 199.
[http://dx.doi.org/10.1186/s13148-021-01187-2] [PMID: 34715919]
[25]
Hughes, A.L.; Kelley, J.R.; Klose, R.J. Understanding the interplay between CpG island-associated gene promoters and H3K4 methylation. Biochim. Biophys. Acta. Gene Regul. Mech., 2020, 1863(8), 194567.
[http://dx.doi.org/10.1016/j.bbagrm.2020.194567] [PMID: 32360393]
[26]
Serrano-Quílez, J.; Roig-Soucase, S.; Rodríguez-Navarro, S. Sharing marks: H3K4 methylation and H2B ubiquitination as features of meiotic recombination and transcription. Int. J. Mol. Sci., 2020, 21(12), 4510.
[http://dx.doi.org/10.3390/ijms21124510] [PMID: 32630409]
[27]
Al-Harthi, S.; Li, H.; Winkler, A.; Szczepski, K.; Deng, J.; Grembecka, J.; Cierpicki, T.; Jaremko, Ł. MRG15 activates histone methyltransferase activity of ASH1L by recruiting it to the nucleosomes. Structure, 2023, 31(10), 1200-1207.e5.
[http://dx.doi.org/10.1016/j.str.2023.07.001] [PMID: 37527654]
[28]
Schmähling, S.; Meiler, A.; Lee, Y.; Mohammed, A.; Finkl, K.; Tauscher, K.; Israel, L.; Wirth, M.; Philippou-Massier, J.; Blum, H.; Habermann, B.; Imhof, A.; Song, J.J.; Müller, J. Regulation and function of H3K36 di-methylation by the trithorax-group protein complex AMC. Development, 2018, 145(7), dev163808.
[http://dx.doi.org/10.1242/dev.163808] [PMID: 29540501]
[29]
Dorafshan, E.; Kahn, T.G.; Glotov, A.; Savitsky, M.; Schwartz, Y.B. Genetic dissection reveals the role of ash1 domains in counteracting polycomb repression. G3 (Bethesda), 2019, 9(11), 3801-3812.
[http://dx.doi.org/10.1534/g3.119.400579] [PMID: 31540973]
[30]
Dorafshan, E.; Kahn, T.G.; Glotov, A.; Savitsky, M.; Walther, M.; Reuter, G.; Schwartz, Y.B. Ash1 counteracts Polycomb repression independent of histone H3 lysine 36 methylation. EMBO Rep., 2019, 20(4), e46762.
[http://dx.doi.org/10.15252/embr.201846762] [PMID: 30833342]
[31]
Lee, F.S. Substrates of PHD. Cell Metab., 2019, 30(4), 626-627.
[http://dx.doi.org/10.1016/j.cmet.2019.08.008] [PMID: 31577931]
[32]
Chambers, A.L.; Pearl, L.H.; Oliver, A.W.; Downs, J.A. The BAH domain of Rsc2 is a histone H3 binding domain. Nucleic Acids Res., 2013, 41(19), 9168-9182.
[http://dx.doi.org/10.1093/nar/gkt662] [PMID: 23907388]
[33]
Miao, F.; Natarajan, R. Mapping global histone methylation patterns in the coding regions of human genes. Mol. Cell. Biol., 2005, 25(11), 4650-4661.
[http://dx.doi.org/10.1128/MCB.25.11.4650-4661.2005] [PMID: 15899867]
[34]
Richart, L.; Margueron, R. Drugging histone methyltransferases in cancer. Curr. Opin. Chem. Biol., 2020, 56, 51-62.
[http://dx.doi.org/10.1016/j.cbpa.2019.11.009] [PMID: 31981999]
[35]
Fuziwara, C.S.; de Mello, D.C.; Kimura, E.T. Gene editing with CRISPR/Cas methodology and thyroid cancer: Where are we? Cancers (Basel), 2022, 14(3), 844.
[http://dx.doi.org/10.3390/cancers14030844] [PMID: 35159110]
[36]
Taylor-Papadimitriou, J.; Burchell, J.M. Histone methylases and demethylases regulating antagonistic methyl marks: Changes occurring in cancer. Cells, 2022, 11(7), 1113.
[http://dx.doi.org/10.3390/cells11071113] [PMID: 35406676]
[37]
Demelash, A.; Rudrabhatla, P.; Pant, H.C.; Wang, X.; Amin, N.D.; McWhite, C.D.; Naizhen, X.; Linnoila, R.I. Achaete-scute homologue-1 (ASH1) stimulates migration of lung cancer cells through Cdk5/p35 pathway. Mol. Biol. Cell, 2012, 23(15), 2856-2866.
[http://dx.doi.org/10.1091/mbc.e10-12-1010] [PMID: 22696682]
[38]
Xie, M.; Zhang, L.; Han, L.; Huang, L.; Huang, Y.; Yang, M.; Zhang, N. The ASH1L-AS1-ASH1L axis controls NME1-mediated activation of the RAS signaling in gastric cancer. Oncogene, 2023, 42(46), 3435-3445.
[http://dx.doi.org/10.1038/s41388-023-02855-8] [PMID: 37805663]
[39]
Nakaoka, T.; Saito, Y.; Saito, H. Aberrant DNA methylation as a biomarker and a therapeutic target of cholangiocarcinoma. Int. J. Mol. Sci., 2017, 18(6), 1111.
[http://dx.doi.org/10.3390/ijms18061111] [PMID: 28545228]
[40]
Lv, Y.; Hu, Q.; Shi, M.; Wang, W.; Zheng, Y.; Yang, Z.; Peng, L.; Bi, D.; Zhang, A.; Hu, Y. The role of PSMB5 in sodium arsenite–induced oxidative stress in L-02 cells. Cell Stress Chaperones, 2020, 25(3), 533-540.
[http://dx.doi.org/10.1007/s12192-020-01104-1] [PMID: 32301004]
[41]
Kwon, C.H.; Park, H.J.; Choi, Y.R.; Kim, A.; Kim, H.W.; Choi, J.H.; Hwang, C.S.; Lee, S.J.; Choi, C.I.; Jeon, T.Y.; Kim, D.H.; Kim, G.H.; Park, D.Y. PSMB8 and PBK as potential gastric cancer subtype-specific biomarkers associated with prognosis. Oncotarget, 2016, 7(16), 21454-21468.
[http://dx.doi.org/10.18632/oncotarget.7411] [PMID: 26894977]
[42]
Bruzzoni-Giovanelli, H.; González, J.R.; Sigaux, F.; Villoutreix, B.O.; Cayuela, J.M.; Guilhot, J.; Preudhomme, C.; Guilhot, F.; Poyet, J.L.; Rousselot, P. Genetic polymorphisms associated with increased risk of developing chronic myelogenous leukemia. Oncotarget, 2015, 6(34), 36269-36277.
[http://dx.doi.org/10.18632/oncotarget.5915] [PMID: 26474455]
[43]
Liu, J.; Mi, J.; Liu, S.; Chen, H.; Jiang, L. PSMB5 overexpression is correlated with tumor proliferation and poor prognosis in hepatocellular carcinoma. FEBS Open Bio, 2022, 12(11), 2025-2041.
[http://dx.doi.org/10.1002/2211-5463.13479] [PMID: 36062301]
[44]
Guo, J.Y.; Jing, Z.; Li, X.; Liu, L. Bioinformatic Analysis Identifying PSMB 1/2/3/4/6/8/9/10 as Prognostic Indicators in Clear Cell Renal Cell Carcinoma. Int. J. Med. Sci., 2022, 19(5), 796-812.
[http://dx.doi.org/10.7150/ijms.71152] [PMID: 35693739]
[45]
Liew, P.L.; Huang, R.L.; Weng, Y.C.; Fang, C.L.; Hui-Ming Huang, T.; Lai, H.C. Distinct methylation profile of mucinous ovarian carcinoma reveals susceptibility to proteasome inhibitors. Int. J. Cancer, 2018, 143(2), 355-367.
[http://dx.doi.org/10.1002/ijc.31324] [PMID: 29451304]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy