Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

StemRegenin-1 Reverses Drug Resistance of MCF-7/ADR Cells via AhR/ABC Transports and AhR/UGTs Pathways

In Press, (this is not the final "Version of Record"). Available online 18 July, 2024
Author(s): Yang Zhang, Yu-Chen Ma, Jue Song, Yong Jin* and Yan-Ni Bao*
Published on: 18 July, 2024

DOI: 10.2174/0115701646317215240712103448

Price: $95

Abstract

Objectives: Drug resistance reduces the antitumor efficacy of chemotherapy. Therefore, it is important to know how to reverse drug resistance. In this work, we investigated drug resistance reversal by StemRegenin-1(SR-1) in MCF-7/ADR cells and the mechanism by which it exerts its drug resistance effect.

Methods: MTT test and protein blot were employed as the two main in vitro cell tests. The cells were treated with SR-1 and ADM to detect the changes in their proteomics, and then the effects of AhR downstream proteins, glucuronidase, and drug-resistant proteins were verified. The accumulation of ADM in the combined cells and its effect on the cell cycle were detected by flow cytometry. In vivo, a BALB/C mice xenograft test was conducted to observe the anti-tumor effect and side effects of the drug combination.

Results: SR-1 combined with ADM inhibited cell proliferation and significantly decreased the expression of CYP1A1, UGT1A6, P-gP (ABCB1), and MRP1 (ABCC1). Furthermore, SR-1 caused apoptosis and cell cycle arrest. In vivo experiments showed that SR-1 significantly enhanced the antitumor effects of ADM and reduced the toxic effects of ADM.

Conclusion: SR-1 inhibited AhR activity, decreased its downstream protein CYP1A1 and the expression of UGT1A6, P-gP, and MRP1 in MCF-7/ADR cells, and reversed drug resistance in MCF-7/ADR cells through AhR/ABC transports and AhR/UGTs pathways.

[1]
Popa, C.N.; Birla, R.D.; Dinu, D.E.; Iosif, C.; Bogaseriu, E.; Mates, I.N. Breast cancer response to neoadjuvant chemotherapy quantified by residual cancer burden (RCB) score. Farmacia, 2022, 70(4), 712-719.
[http://dx.doi.org/10.31925/farmacia.2022.4.17]
[2]
Yigitbasi, T.; Calibasi-Kocal, G.; Buyukuslu, N.; Kemal Atahan, M.; Kupeli, H.; Yigit, S.; Tarcan, E.; Baskin, Y. SELDI-TOF-MS profiling of metastatic phenotype in histopathological subtypes of breast cancer. Curr. Proteomics, 2018, 15(3), 214-220.
[http://dx.doi.org/10.2174/1570164615666180309154038]
[3]
Wever, O.; Boeck, A.; Maynard, D.; Bracke, M.; Hendrix, A. Protein secretome analysis of evolving and responding tumor ecosystems. Curr. Proteomics, 2013, 10(2), 120-135.
[http://dx.doi.org/10.2174/15701646112099990003]
[4]
Sarhangi, N.; Hajjari, S.; Heydari, S.F.; Ganjizadeh, M.; Rouhollah, F.; Hasanzad, M. Breast cancer in the era of precision medicine. Mol. Biol. Rep., 2022, 49(10), 10023-10037.
[http://dx.doi.org/10.1007/s11033-022-07571-2] [PMID: 35733061]
[5]
Wang, H.; Shan, S.; Wang, H.; Wang, X. CircATXN7 contributes to the progression and doxorubicin resistance of breast cancer via modulating miR-149-5p/HOXA11 pathway. Anticancer Drugs, 2022, 33(1), e700-e710.
[http://dx.doi.org/10.1097/CAD.0000000000001243] [PMID: 34845164]
[6]
Serban, D.; Dascalu, A.M.; Tribus, L.C.; Costea, D.O.; Tudor, C.; Sahranavard, T.; Rezaee, R.; Stana, D.; Cristea, B.M.; Tudosie, M.S.; Bobirca, F.; Serban, B.; Motofei, I.; Trotea, T.; Costea, A.C.; Cristian, D.A. Intravitreal anti-vegf therapy for ocular metastasis in breast cancer. Farmacia, 2022, 70(6), 1037-1045.
[http://dx.doi.org/10.31925/farmacia.2022.6.5]
[7]
Xu, Y.; Liao, S.; Wang, L.; Wang, Y.; Wei, W.; Su, K.; Tu, Y.; Zhu, S. Galeterone sensitizes breast cancer to chemotherapy via targeting MNK/eIF4E and β-catenin. Cancer Chemother. Pharmacol., 2021, 87(1), 85-93.
[http://dx.doi.org/10.1007/s00280-020-04195-w] [PMID: 33159561]
[8]
Yazgan, B.; Ozcelik, O.; Ayar, A.; Renda, G.; Yıldırım, T. Cytotoxic and apoptotic effect of iris taochia plant extracts on human breast cancer (MCF-7) cells. Curr. Proteomics, 2022, 19(1), 91-101.
[http://dx.doi.org/10.2174/1570164618666210402152159]
[9]
van der Spek, Y.M.; Kroep, J.R.; Tollenaar, R.A.E.M.; Mesker, W.E. Chemotherapy resistance and stromal targets in breast cancer treatment: A review. Mol. Biol. Rep., 2020, 47(10), 8169-8177.
[http://dx.doi.org/10.1007/s11033-020-05853-1] [PMID: 33006013]
[10]
Akram, M.; Iqbal, M.; Daniyal, M.; Khan, A.U. Awareness and current knowledge of breast cancer. Biol. Res., 2017, 50(1), 33.
[http://dx.doi.org/10.1186/s40659-017-0140-9] [PMID: 28969709]
[11]
Fisusi, F.A.; Akala, E.O. Drug combinations in breast cancer therapy. Pharm. Nanotechnol., 2019, 7(1), 3-23.
[http://dx.doi.org/10.2174/2211738507666190122111224] [PMID: 30666921]
[12]
Mariani, G. New developments in the treatment of metastatic breast cancer: From chemotherapy to biological therapy. Ann. Oncol., 2005, 16(Suppl. 2), ii191-ii194.
[http://dx.doi.org/10.1093/annonc/mdi719] [PMID: 15958455]
[13]
Chen, Q.; Meng, Y.Q.; Xu, X.F.; Gu, J. Blockade of GLUT1 by WZB117 resensitizes breast cancer cells to adriamycin. Anticancer Drugs, 2017, 28(8), 880-887.
[http://dx.doi.org/10.1097/CAD.0000000000000529] [PMID: 28609310]
[14]
Chen, Y.; Jia, Y.; Mao, M.; Gu, Y.; Xu, C.; Yang, J.; Hu, W.; Shen, J.; Hu, D.; Chen, C.; Li, Z.; Chen, L.; Ruan, J.; Shen, P.; Zhou, J.; Wei, Q.; Wang, L. PLAC8 promotes adriamycin resistance via blocking autophagy in breast cancer. J. Cell. Mol. Med., 2021, 25(14), 6948-6962.
[http://dx.doi.org/10.1111/jcmm.16706] [PMID: 34117724]
[15]
Li, Z.; Wang, N.; Yue, T.; Liu, L. Matrine reverses the drug resistance of K562/ADM cells to ADM and VCR via promoting autophagy. Transl. Cancer Res., 2020, 9(2), 786-794.
[http://dx.doi.org/10.21037/tcr.2019.12.11] [PMID: 35117424]
[16]
Akiyama, S.; Chen, Z.S.; Kitazono, M.; Sumizawa, T.; Furukawa, T.; Aikou, T. [Mechanisms for resistance to anticancer agents and the reversal of the resistance]. Hum. Cell, 1999, 12(3), 95-102.
[PMID: 10695015]
[17]
Cerny, M.A.; Spracklin, D.K.; Obach, R.S. Human absorption, distribution, metabolism, and excretion studies: Origins, innovations, and importance. Drug Metab. Dispos., 2023, 51(6), 647-656.
[http://dx.doi.org/10.1124/dmd.122.001006] [PMID: 36973000]
[18]
Beaumont, C.; Young, G.C.; Cavalier, T.; Young, M.A. Human absorption, distribution, metabolism and excretion properties of drug molecules: A plethora of approaches. Br. J. Clin. Pharmacol., 2014, 78(6), 1185-1200.
[http://dx.doi.org/10.1111/bcp.12468] [PMID: 25041729]
[19]
Johnson, W.W. P-glycoprotein-mediated efflux as a major factor in the variance of absorption and distribution of drugs: Modulation of chemotherapy resistance. Methods Find. Exp. Clin. Pharmacol., 2002, 24(8), 501-514.
[http://dx.doi.org/10.1358/mf.2002.24.8.705071] [PMID: 12500430]
[20]
Manciuc, C.; Mihai, I.F.; Filip-Ciubotaru, F.; Lacatusu, G.A. Resistance profile of multidrug-resistant urinary tract infections and their susceptibility to carbapenems. Farmacia, 2020, 68(4), 715-721.
[http://dx.doi.org/10.31925/farmacia.2020.4.18]
[21]
Miranda, F.; Prazeres, H.; Mendes, F.; Martins, D.; Schmitt, F. Resistance to endocrine therapy in HR + and/or HER2 + breast cancer: The most promising predictive biomarkers. Mol. Biol. Rep., 2022, 49(1), 717-733.
[http://dx.doi.org/10.1007/s11033-021-06863-3] [PMID: 34739691]
[22]
Dos Santos, F.A.; Pereira, M.C.; de Oliveira, T.B.; Mendonça Junior, F.J.B.; de Lima, M.C.A.; Pitta, M.G.R.; Pitta, I.R.; de Melo Rêgo, M.J.B.; da Rocha Pitta, M.G. Anticancer properties of thiophene derivatives in breast cancer MCF-7 cells. Anticancer Drugs, 2018, 29(2), 157-166.
[http://dx.doi.org/10.1097/CAD.0000000000000581] [PMID: 29256900]
[23]
Huang, K.M.; Hu, S.; Sparreboom, A. Drug transporters and anthracycline-induced cardiotoxicity. Pharmacogenomics, 2018, 19(11), 883-888.
[http://dx.doi.org/10.2217/pgs-2018-0056] [PMID: 29991332]
[24]
Dean, M.; Moitra, K.; Allikmets, R. The human ATP-binding cassette (ABC) transporter superfamily. Hum. Mutat., 2022, 43(9), 1162-1182.
[http://dx.doi.org/10.1002/humu.24418] [PMID: 35642569]
[25]
Robey, R.W.; Pluchino, K.M.; Hall, M.D.; Fojo, A.T.; Bates, S.E.; Gottesman, M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer, 2018, 18(7), 452-464.
[http://dx.doi.org/10.1038/s41568-018-0005-8] [PMID: 29643473]
[26]
Aminkeng, F.; Ross, C.J.D.; Rassekh, S.R.; Hwang, S.; Rieder, M.J.; Bhavsar, A.P.; Smith, A.; Sanatani, S.; Gelmon, K.A.; Bernstein, D.; Hayden, M.R.; Amstutz, U.; Carleton, B.C. Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity. Br. J. Clin. Pharmacol., 2016, 82(3), 683-695.
[http://dx.doi.org/10.1111/bcp.13008] [PMID: 27197003]
[27]
Bock, K.W. From differential induction of UDP-glucuronosyltransferases in rat liver to characterization of responsible ligand-activated transcription factors, and their multilevel crosstalk in humans. Biochem. Pharmacol., 2011, 82(1), 9-16.
[http://dx.doi.org/10.1016/j.bcp.2011.03.011] [PMID: 21420387]
[28]
Steventon, G. Uridine diphosphate glucuronosyltransferase 1A1. Xenobiotica, 2020, 50(1), 64-76.
[http://dx.doi.org/10.1080/00498254.2019.1617910] [PMID: 31092094]
[29]
Yang, G.; Ge, S.; Singh, R.; Basu, S.; Shatzer, K.; Zen, M.; Liu, J.; Tu, Y.; Zhang, C.; Wei, J.; Shi, J.; Zhu, L.; Liu, Z.; Wang, Y.; Gao, S.; Hu, M. Glucuronidation: Driving factors and their impact on glucuronide disposition. Drug Metab. Rev., 2017, 49(2), 105-138.
[http://dx.doi.org/10.1080/03602532.2017.1293682] [PMID: 28266877]
[30]
Fujiwara, R.; Yokoi, T.; Nakajima, M. Structure and protein–protein interactions of Human UDP-Glucuronosyltransferases. Front. Pharmacol., 2016, 7, 388.
[http://dx.doi.org/10.3389/fphar.2016.00388] [PMID: 27822186]
[31]
Kiang, T.; Ensom, M.; Chang, T. UDP-glucuronosyltransferases and clinical drug-drug interactions. Pharmacol. Ther., 2005, 106(1), 97-132.
[http://dx.doi.org/10.1016/j.pharmthera.2004.10.013] [PMID: 15781124]
[32]
Zhu, L.; Zhao, L.; Wang, H.; Wang, Y.; Pan, D.; Yao, J.; Li, Z.; Wu, G.; Guo, Q. Oroxylin A reverses P-glycoprotein-mediated multidrug resistance of MCF7/ADR cells by G2/M arrest. Toxicol. Lett., 2013, 219(2), 107-115.
[http://dx.doi.org/10.1016/j.toxlet.2013.01.019] [PMID: 23470866]
[33]
Zhou, B.G.; Wei, C.S.; Zhang, S.; Zhang, Z.; Gao, H. Matrine reversed multidrug resistance of breast cancer MCF-7/ADR cells through PI3K/AKT signaling pathway. J. Cell. Biochem., 2018, 119(5), 3885-3891.
[http://dx.doi.org/10.1002/jcb.26502] [PMID: 29130495]
[34]
Wang, Z.; Snyder, M.; Kenison, J.E.; Yang, K.; Lara, B.; Lydell, E.; Bennani, K.; Novikov, O.; Federico, A.; Monti, S.; Sherr, D.H. How the AHR became important in cancer: The role of chronically active AHR in cancer aggression. Int. J. Mol. Sci., 2020, 22(1), 387.
[http://dx.doi.org/10.3390/ijms22010387] [PMID: 33396563]
[35]
Ung, T.T.; Nguyen, T.T.; Li, S.; Han, J.Y.; Jung, Y.D. Nicotine stimulates CYP1A1 expression in human hepatocellular carcinoma cells via AP-1, NF-κB, and AhR. Toxicol. Lett., 2021, 349, 155-164.
[http://dx.doi.org/10.1016/j.toxlet.2021.06.013] [PMID: 34171359]
[36]
Chen, Y.; Wang, Y.; Fu, Y.; Yin, Y.; Xu, K. Modulating AHR function offers exciting therapeutic potential in gut immunity and inflammation. Cell Biosci., 2023, 13(1), 85.
[http://dx.doi.org/10.1186/s13578-023-01046-y] [PMID: 37179416]
[37]
Sorg, O. AhR signalling and dioxin toxicity. Toxicol. Lett., 2014, 230(2), 225-233.
[http://dx.doi.org/10.1016/j.toxlet.2013.10.039] [PMID: 24239782]
[38]
Korzeniewski, N.; Wheeler, S.; Chatterjee, P.; Duensing, A.; Duensing, S. A novel role of the aryl hydrocarbon receptor (AhR) in centrosome amplification - implications for chemoprevention. Mol. Cancer, 2010, 9(1), 153.
[http://dx.doi.org/10.1186/1476-4598-9-153] [PMID: 20565777]
[39]
Casado, S.; Alonso, M.; Herradón, B.; Tarazona, J.V.; Navas, J.M.A. Activation of the aryl hydrocarbon receptor by carbaryl: Computational evidence of the ability of carbaryl to assume a planar conformation. Environ. Toxicol. Chem., 2006, 25(12), 3141-3147.
[http://dx.doi.org/10.1897/06-131R.1] [PMID: 17220082]
[40]
Hsieh, T.H.; Hsu, C.Y.; Yang, P.J.; Chiu, C.C.; Liang, S.S.; Ou-Yang, F.; Kan, J.Y.; Hou, M.F.; Wang, T.N.; Tsai, E.M. DEHP mediates drug resistance by directly targeting AhR in human breast cancer. Biomed. Pharmacother., 2022, 145, 112400.
[http://dx.doi.org/10.1016/j.biopha.2021.112400] [PMID: 34801851]
[41]
Sakakibara, Y.; Katoh, M.; Kondo, Y.; Nadai, M. Effects of β- naphthoflavone on Ugt1a6 and Ugt1a7 expression in rat brain. Biol. Pharm. Bull., 2016, 39(1), 78-83.
[http://dx.doi.org/10.1248/bpb.b15-00578] [PMID: 26725430]
[42]
Mahringer, A.; Bernd, A.; Miller, D.S.; Fricker, G. Aryl hydrocarbon receptor ligands increase ABC transporter activity and protein expression in killifish (Fundulus heteroclitus) renal proximal tubules. Biol. Chem., 2019, 400(10), 1335-1345.
[http://dx.doi.org/10.1515/hsz-2018-0425] [PMID: 30913027]
[43]
Angelos, M.G.; Ruh, P.N.; Webber, B.R.; Blum, R.H.; Ryan, C.D.; Bendzick, L.; Shim, S.; Yingst, A.M.; Tufa, D.M.; Verneris, M.R.; Kaufman, D.S. Aryl hydrocarbon receptor inhibition promotes hematolymphoid development from human pluripotent stem cells. Blood, 2017, 129(26), 3428-3439.
[http://dx.doi.org/10.1182/blood-2016-07-730440] [PMID: 28533309]
[44]
Lim, H.J.; Jang, W.B.; Rethineswaran, V.K.; Choi, J.; Lee, E.J.; Park, S.; Jeong, Y.; Ha, J.S.; Yun, J.; Choi, Y.J.; Hong, Y.J.; Kwon, S.M. StemRegenin-1 attenuates endothelial progenitor cell senescence by regulating the AhR pathway-mediated CYP1A1 and ROS generation. Cells, 2023, 12(15), 2005.
[http://dx.doi.org/10.3390/cells12152005] [PMID: 37566085]
[45]
Briddell, R.A.; Broudy, V.C.; Bruno, E.; Brandt, J.E.; Srour, E.F.; Hoffman, R. Further phenotypic characterization and isolation of human hematopoietic progenitor cells using a monoclonal antibody to the c-kit receptor. Blood, 1992, 79(12), 3159-3167.
[http://dx.doi.org/10.1182/blood.V79.12.3159.bloodjournal79123159] [PMID: 1375842]
[46]
Ashman, L.K.; Bühring, H.J.; Aylett, G.W.; Broudy, V.C.; Müller, C. Epitope mapping and functional studies with three monoclonal antibodies to the C-KIT receptor tyrosine kinase, YB5.B8, 17F11, and SR-1. J. Cell. Physiol., 1994, 158(3), 545-554.
[http://dx.doi.org/10.1002/jcp.1041580321] [PMID: 7510297]
[47]
Wagner, J.E., Jr; Brunstein, C.G.; Boitano, A.E.; DeFor, T.E.; McKenna, D.; Sumstad, D.; Blazar, B.R.; Tolar, J.; Le, C.; Jones, J.; Cooke, M.P.; Bleul, C.C. Phase I/II trial of stemregenin-1 expanded umbilical cord blood hematopoietic stem cells supports testing as a stand-alone graft. Cell Stem Cell, 2016, 18(1), 144-155.
[http://dx.doi.org/10.1016/j.stem.2015.10.004] [PMID: 26669897]
[48]
Kondo, A.; Ohnishi, A.; Nagara, H.; Tateishi, J. Neurotoxicity in primary sensory neurons of adriamycin administered through retrograde axoplasmic transport in rats. Neuropathol. Appl. Neurobiol., 1987, 13(3), 177-192.
[http://dx.doi.org/10.1111/j.1365-2990.1987.tb00182.x] [PMID: 2441307]
[49]
Iwasaki, Y.; Yamamoto, T.; Konno, H.; Iizuka, H.; Kudo, H. Eradication of herpes simplex virus persistence in rat trigeminal ganglia by retrograde axoplasmic transport. J. Virol., 1986, 59(2), 242-248.
[http://dx.doi.org/10.1128/jvi.59.2.242-248.1986] [PMID: 2426462]
[50]
Hossen, S.; Hossain, M.K.; Basher, M.K.; Mia, M.N.H.; Rahman, M.T.; Uddin, M.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J. Adv. Res., 2019, 15, 1-18.
[http://dx.doi.org/10.1016/j.jare.2018.06.005] [PMID: 30581608]
[51]
Hua, J.; Mutch, D.G.; Herzog, T.J. Stable suppression of MDR-1 gene using siRNA expression vector to reverse drug resistance in a human uterine sarcoma cell line. Gynecol. Oncol., 2005, 98(1), 31-38.
[http://dx.doi.org/10.1016/j.ygyno.2005.03.042] [PMID: 15921732]
[52]
Zhang, Y.; Chen, Y.; Lu, L.L.; Xie, X.L.; Huan, R.; Wu, L.F.; Tan, L.N.; Xu, T.; Jin, Y. The role and therapeutic potential of non-coding RNAs in resistance to EGFR-TKIs targeted therapy for non-small cell lung cancer. Curr. Med. Chem., 2024, 2024, 5847.
[PMID: 38375847]
[53]
Chen, Y.; Tang, Y.; Guo, C.; Wang, J.; Boral, D.; Nie, D. Nuclear receptors in the multidrug resistance through the regulation of drug-metabolizing enzymes and drug transporters. Biochem. Pharmacol., 2012, 83(8), 1112-1126.
[http://dx.doi.org/10.1016/j.bcp.2012.01.030] [PMID: 22326308]
[54]
Wu, Q.; Yang, Z.; Nie, Y.; Shi, Y.; Fan, D. Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches. Cancer Lett., 2014, 347(2), 159-166.
[http://dx.doi.org/10.1016/j.canlet.2014.03.013] [PMID: 24657660]
[55]
Ma, R.; Wang, Y.; Yan, L.; Ma, L.; Wang, Z.; Chan, H.C.; Chiu, S.K.; Chen, X.; Zhu, G. Efficient co-delivery of a Pt( IV ) prodrug and a p53 activator to enhance the anticancer activity of cisplatin. Chem. Commun. (Camb.), 2015, 51(37), 7859-7862.
[http://dx.doi.org/10.1039/C4CC09879J] [PMID: 25854514]
[56]
Li, Y.J.; Lei, Y.H.; Yao, N.; Wang, C.R.; Hu, N.; Ye, W.C.; Zhang, D.M.; Chen, Z.S. Autophagy and multidrug resistance in cancer. Chin. J. Cancer, 2017, 36(1), 52.
[http://dx.doi.org/10.1186/s40880-017-0219-2] [PMID: 28646911]
[57]
Tinoush, B.; Shirdel, I.; Wink, M. Phytochemicals: Potential Lead Molecules for MDR Reversal. Front. Pharmacol., 2020, 11, 832.
[http://dx.doi.org/10.3389/fphar.2020.00832] [PMID: 32636741]
[58]
Zhou, L.; Wang, H.; Li, Y. Stimuli-responsive nanomedicines for overcoming cancer multidrug resistance. Theranostics, 2018, 8(4), 1059-1074.
[http://dx.doi.org/10.7150/thno.22679] [PMID: 29463999]
[59]
Xu, T.; Guo, P.; He, Y.; Pi, C.; Wang, Y.; Feng, X.; Hou, Y.; Jiang, Q.; Zhao, L.; Wei, Y. Application of curcumin and its derivatives in tumor multidrug resistance. Phytother. Res., 2020, 34(10), 2438-2458.
[http://dx.doi.org/10.1002/ptr.6694] [PMID: 32255545]
[60]
Murray, I.A.; Patterson, A.D.; Perdew, G.H. Aryl hydrocarbon receptor ligands in cancer: Friend and foe. Nat. Rev. Cancer, 2014, 14(12), 801-814.
[http://dx.doi.org/10.1038/nrc3846] [PMID: 25568920]
[61]
Sládeková, L.; Mani, S.; Dvořák, Z. Ligands and agonists of the aryl hydrocarbon receptor AhR: Facts and myths. Biochem. Pharmacol., 2023, 213, 115626.
[http://dx.doi.org/10.1016/j.bcp.2023.115626] [PMID: 37247746]
[62]
Safe, S.; Jin, U.; Park, H.; Chapkin, R.S.; Jayaraman, A. Aryl Hydrocarbon Receptor (AHR) ligands as selective AHR modulators (SAhRMs). Int. J. Mol. Sci., 2020, 21(18), 6654.
[http://dx.doi.org/10.3390/ijms21186654] [PMID: 32932962]
[63]
Tan, K.P.; Wang, B.; Yang, M.; Boutros, P.C.; MacAulay, J.; Xu, H.; Chuang, A.I.; Kosuge, K.; Yamamoto, M.; Takahashi, S.; Wu, A.M.L.; Ross, D.D.; Harper, P.A.; Ito, S. Aryl hydrocarbon receptor is a transcriptional activator of the human breast cancer resistance protein (BCRP/ABCG2). Mol. Pharmacol., 2010, 78(2), 175-185.
[http://dx.doi.org/10.1124/mol.110.065078] [PMID: 20460431]
[64]
Sondermann, N.C.; Faßbender, S.; Hartung, F.; Hätälä, A.M.; Rolfes, K.M.; Vogel, C.F.A.; Haarmann-Stemmann, T. Functions of the aryl hydrocarbon receptor (AHR) beyond the canonical AHR/ARNT signaling pathway. Biochem. Pharmacol., 2023, 208, 115371.
[http://dx.doi.org/10.1016/j.bcp.2022.115371] [PMID: 36528068]
[65]
Brinchmann, B.C.; Le Ferrec, E.; Bisson, W.H.; Podechard, N.; Huitfeldt, H.S.; Gallais, I.; Sergent, O.; Holme, J.A.; Lagadic-Gossmann, D.; Øvrevik, J. Evidence of selective activation of aryl hydrocarbon receptor nongenomic calcium signaling by pyrene. Biochem. Pharmacol., 2018, 158, 1-12.
[http://dx.doi.org/10.1016/j.bcp.2018.09.023] [PMID: 30248327]
[66]
Xia, H.; Zhu, X.; Zhang, X.; Jiang, H.; Li, B.; Wang, Z.; Li, D.; Jin, Y. Alpha-naphthoflavone attenuates non-alcoholic fatty liver disease in oleic acid-treated HepG2 hepatocytes and in high fat diet-fed mice. Biomed. Pharmacother., 2019, 118, 109287.
[http://dx.doi.org/10.1016/j.biopha.2019.109287] [PMID: 31401392]
[67]
Xavier, C.P.R.; Belisario, D.C.; Rebelo, R.; Assaraf, Y.G.; Giovannetti, E.; Kopecka, J.; Vasconcelos, M.H. The role of extracellular vesicles in the transfer of drug resistance competences to cancer cells. Drug Resist. Updat., 2022, 62, 100833.
[http://dx.doi.org/10.1016/j.drup.2022.100833] [PMID: 35429792]
[68]
Chang, V.Y.; Wang, J.J. Pharmacogenetics of chemotherapy-induced cardiotoxicity. Curr. Oncol. Rep., 2018, 20(7), 52.
[http://dx.doi.org/10.1007/s11912-018-0696-8] [PMID: 29713898]
[69]
Choi, W.G.; Kim, D.K.; Shin, Y.; Park, R.; Cho, Y.Y.; Lee, J.Y.; Kang, H.C.; Lee, H.S. Liquid chromatography–tandem mass spectrometry for the simultaneous determination of doxorubicin and its metabolites doxorubicinol, doxorubicinone, doxorubicinolone, and 7-deoxydoxorubicinone in mouse plasma. Molecules, 2020, 25(5), 1254.
[http://dx.doi.org/10.3390/molecules25051254] [PMID: 32164308]
[70]
He, J.; Fortunati, E.; Liu, D.X.; Li, Y. Pleiotropic roles of ABC transporters in breast cancer. Int. J. Mol. Sci., 2021, 22(6), 3199.
[http://dx.doi.org/10.3390/ijms22063199] [PMID: 33801148]
[71]
Kammala, A.; Benson, M.; Ganguly, E.; Richardson, L.; Menon, R. Functional role and regulation of permeability-glycoprotein (P-gp) in the fetal membrane during drug transportation. Am. J. Reprod. Immunol., 2022, 87(2), e13515.
[http://dx.doi.org/10.1111/aji.13515] [PMID: 34873775]
[72]
Mirzaei, S.; Gholami, M.H.; Hashemi, F.; Zabolian, A.; Farahani, M.V.; Hushmandi, K.; Zarrabi, A.; Goldman, A.; Ashrafizadeh, M.; Orive, G. Advances in understanding the role of P-gp in doxorubicin resistance: Molecular pathways, therapeutic strategies, and prospects. Drug Discov. Today, 2022, 27(2), 436-455.
[http://dx.doi.org/10.1016/j.drudis.2021.09.020] [PMID: 34624510]
[73]
Phumyen, A.; Jantasorn, S.; Jumnainsong, A.; Leelayuwat, C. Doxorubicin-conjugated bacteriophages carrying anti-MHC class I chain-related A for targeted cancer therapy in vitro. OncoTargets Ther., 2014, 7, 2183-2195.
[PMID: 25506223]
[74]
Ciocan-Cartita, C.A.; Jurj, A.; Zanoaga, O.; Cojocneanu, R.; Pop, L.A.; Moldovan, A.; Moldovan, C.; Zimta, A.A.; Raduly, L.; Pop-Bica, C.; Buse, M.; Budisan, L.; Virag, P.; Irimie, A.; Gomes Dias, S.M.; Berindan-Neagoe, I.; Braicu, C. New insights in gene expression alteration as effect of doxorubicin drug resistance in triple negative breast cancer cells. J. Exp. Clin. Cancer Res., 2020, 39(1), 241.
[http://dx.doi.org/10.1186/s13046-020-01736-2] [PMID: 33187552]
[75]
Cao, W.; Li, Y.; Hou, Y.; Yang, M.; Fu, X.; Zhao, B.; Jiang, H.; Fu, X. Enhanced anticancer efficiency of doxorubicin against human glioma by natural borneol through triggering ROS-mediated signal. Biomed. Pharmacother., 2019, 118, 109261.
[http://dx.doi.org/10.1016/j.biopha.2019.109261] [PMID: 31374355]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy