Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Research Article

Assessment of Early Vascular Aging Ambulatory Score (EVAAs): A Large Population-based External Validation Study

In Press, (this is not the final "Version of Record"). Available online 15 July, 2024
Author(s): Christina Antza, Victoria Potoupni, Evangelos Akrivos, Stella Stabouli and Vasilios Kotsis*
Published on: 15 July, 2024

DOI: 10.2174/0115701611299635240708045352

Price: $95

Abstract

Background: Pulse Wave Velocity (PWV) remains the gold-standard method to assess Early Vascular Aging (EVA) defined by arterial stiffness. However, its high cost, time-consuming process, and need for qualified medical staff shows the importance of identifying alternative methods for the EVA evaluation.

Objective: In order to simplify the process of assessing patients' EVA, we recently developed the Early Vascular Aging Ambulatory score (EVAAs), a simple tool to predict the risk of EVA. The aim of the present study was the external validation of EVAAs in an independent population.

Methods: Eight hundred seventy-nine (46.3% men) patients who were referred to our Hypertension ESH Excellence Center were included in this study. The mean age was 46.43 ± 22.87 years. EVA was evaluated in two different ways. The first assessment included c-f PWV values, whereas the second one included EVAAs without the direct measurement of carotid-femoral PWV.

Results: The null hypothesis was that the prediction of EVA based on EVAAs does not present any statistically significant difference compared to the prediction based on the calculation from c-f PWV. Mean squared error (MSE) was used for the assessment of the null hypothesis, which was found to be 0.40. The results revealed that the EVAAs show the probability of EVA with 0.98 sensitivity and 0.75 specificity. The EVAAs present 95% positive predictive value and 92% negative predictive value.

Conclusion: Our study revealed that EVAAs could be as reliable as the carotid-femoral PWV to identify patients with EVA. Hence, we hope that EVAAs will be a useful tool in clinical practice.

[1]
Jani B, Rajkumar C. Ageing and vascular ageing. Postgrad Med J 2006; 82(968): 357-62.
[http://dx.doi.org/10.1136/pgmj.2005.036053] [PMID: 16754702]
[2]
Cavalcante JL, Lima JAC, Redheuil A, Al-Mallah MH. Aortic Stiffness. J Am Coll Cardiol 2011; 57(14): 1511-22.
[http://dx.doi.org/10.1016/j.jacc.2010.12.017] [PMID: 21453829]
[3]
Mancia G, Kreutz R, Brunström M, et al. 2023 ESH Guidelines for the management of arterial hypertension the task force for the management of arterial hypertension of the European society of hypertension. J Hypertens 2023; 41(12): 1874-2071.
[http://dx.doi.org/10.1097/HJH.0000000000003480] [PMID: 37345492]
[4]
Antza C, Doundoulakis I, Akrivos E, et al. Early vascular aging risk assessment from ambulatory blood pressure monitoring: The early vascular aging ambulatory score. Am J Hypertens 2018; 31(11): 1197-204.
[http://dx.doi.org/10.1093/ajh/hpy115] [PMID: 30239585]
[5]
Li Y, Wang JG, Dolan E, et al. Ambulatory arterial stiffness index derived from 24-hour ambulatory blood pressure monitoring. Hypertension 2006; 47(3): 359-64.
[http://dx.doi.org/10.1161/01.HYP.0000200695.34024.4c] [PMID: 16432048]
[6]
Xaplanteris P, Vlachopoulos C, Protogerou AD, et al. A clinical score for prediction of elevated aortic stiffness. J Hypertens 2019; 37(2): 339-46.
[http://dx.doi.org/10.1097/HJH.0000000000001904] [PMID: 30645208]
[7]
Vallée A, Safar ME, Blacher J. Application of a decision tree to establish factors associated with a nomogram of aortic stiffness. J Clin Hypertens 2019; 21(10): 1484-92.
[http://dx.doi.org/10.1111/jch.13662] [PMID: 31479194]
[8]
Mancia G, Fagard R, Narkiewicz K, et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension. Eur Heart J 2013; 34(28): 2159-219.
[http://dx.doi.org/10.1093/eurheartj/eht151] [PMID: 23771844]
[9]
Hallan S, Åsberg A, Lindberg M, Johnsen H. Validation of the modification of diet in renal disease formula for estimating GFR with special emphasis on calibration of the serum creatinine assay. Am J Kidney Dis 2004; 44(1): 84-93.
[http://dx.doi.org/10.1053/j.ajkd.2004.03.027] [PMID: 15211442]
[10]
Standards of medical care in diabetes-2012. Diabetes Care 2012; 35(Suppl 1): S11-63.
[11]
Williams B, Mancia G, Spiering W, et al. 2018 practice guidelines for the management of arterial hypertension of the european society of hypertension and the european society of cardiology: ESH/ESC task force for the management of arterial hypertension. J Hypertens 2018; 36(12): 2284-309.
[http://dx.doi.org/10.1097/HJH.0000000000001961] [PMID: 30379783]
[12]
Baumgart P, Kamp J. Accuracy of the spacelabs medical 90217 ambulatory blood pressure monitor. Blood Press Monit 1998; 3(5): 303-7.
[PMID: 10212370]
[13]
BP S.. Validated blood pressure monitors. 2023. Available from: https://www.validatebp.org/
[14]
Zhong Q, Hu MJ, Cui YJ, et al. Carotid-femoral pulse wave velocity in the prediction of cardiovascular events and mortality: An updated systematic review and meta-analysis. Angiology 2017; 69(7): 617-29.
[15]
Laurent S, Cockcroft J, Van Bortel L, et al. Expert consensus document on arterial stiffness: Methodological issues and clinical applications. Eur Heart J 2006; 27(21): 2588-605.
[http://dx.doi.org/10.1093/eurheartj/ehl254] [PMID: 17000623]
[16]
van Bortel LM, Laurent S, Boutouyrie P, et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens 2012; 30(3): 445-8.
[http://dx.doi.org/10.1097/HJH.0b013e32834fa8b0] [PMID: 22278144]
[17]
van Bortel LM, Duprez D, Starmans-Kool MJ, et al. Clinical applications of arterial stiffness, Task Force III: recommendations for user procedures. Am J Hypertens 2002; 15(5): 445-52.
[http://dx.doi.org/10.1016/S0895-7061(01)02326-3] [PMID: 12022247]
[18]
Reference Values for Arterial Stiffness’ Collaboration. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values’. Eur Heart J 2010; 31(19): 2338-50.
[http://dx.doi.org/10.1093/eurheartj/ehq165] [PMID: 20530030]
[19]
Vickers AJ, Van Calster B, Steyerberg EW. Net benefit approaches to the evaluation of prediction models, molecular markers, and diagnostic tests. BMJ 2016; 352: i6.
[http://dx.doi.org/10.1136/bmj.i6] [PMID: 26810254]
[20]
Zhang Z, Rousson V, Lee WC, et al. Decision curve analysis: A technical note. Ann Transl Med 2018; 6(15): 308.
[http://dx.doi.org/10.21037/atm.2018.07.02] [PMID: 30211196]
[21]
Hozo I, Tsalatsanis A, Djulbegovic B. Expected utility versus expected regret theory versions of decision curve analysis do generate different results when treatment effects are taken into account. J Eval Clin Pract 2018; 24(1): 65-71.
[http://dx.doi.org/10.1111/jep.12676] [PMID: 27981695]
[22]
Hamczyk MR, Nevado RM, Barettino A, Fuster V, Andrés V. Biological versus chronological aging. J Am Coll Cardiol 2020; 75(8): 919-30.
[http://dx.doi.org/10.1016/j.jacc.2019.11.062] [PMID: 32130928]
[23]
Sabbatinelli J, Ramini D, Giuliani A, Recchioni R, Spazzafumo L, Olivieri F. Connecting vascular aging and frailty in Alzheimer’s disease. Mech Ageing Dev 2021; 195: 111444.
[http://dx.doi.org/10.1016/j.mad.2021.111444] [PMID: 33539904]
[24]
Bruno RM, Nilsson PM, Engström G, et al. Early and supernormal vascular aging. Hypertension 2020; 76(5): 1616-24.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.120.14971] [PMID: 32895017]
[25]
Nilsson P. Early vascular aging (EVA): Consequences and prevention. Vasc Health Risk Manag 2008; 4(3): 547-52.
[http://dx.doi.org/10.2147/VHRM.S1094] [PMID: 18827905]
[26]
Nilsson PM, Lurbe E, Laurent S. The early life origins of vascular ageing and cardiovascular risk: The EVA syndrome. J Hypertens 2008; 26(6): 1049-57.
[http://dx.doi.org/10.1097/HJH.0b013e3282f82c3e] [PMID: 18475139]
[27]
Blacher J, Guerin AP, Pannier B, Marchais SJ, Safar ME, London GM. Impact of aortic stiffness on survival in end-stage renal disease. Circulation 1999; 99(18): 2434-9.
[http://dx.doi.org/10.1161/01.CIR.99.18.2434] [PMID: 10318666]
[28]
Ben-Shlomo Y, Spears M, Boustred C, et al. Aortic pulse wave velocity improves cardiovascular event prediction: An individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol 2014; 63(7): 636-46.
[http://dx.doi.org/10.1016/j.jacc.2013.09.063] [PMID: 24239664]
[29]
Townsend RR, Wilkinson IB, Schiffrin EL, et al. Recommendations for improving and standardizing vascular research on arterial stiffness. Hypertension 2015; 66(3): 698-722.
[http://dx.doi.org/10.1161/HYP.0000000000000033] [PMID: 26160955]
[30]
Humphrey JD, Harrison DG, Figueroa CA, Lacolley P, Laurent S. Central artery stiffness in hypertension and aging. Circ Res 2016; 118(3): 379-81.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.307722] [PMID: 26846637]
[31]
Koivistoinen T, Lyytikäinen LP, Aatola H, et al. Pulse wave velocity predicts the progression of blood pressure and development of hypertension in young adults. Hypertension 2018; 71(3): 451-6.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.10368] [PMID: 29311251]
[32]
Mitchell GF, Hwang SJ, Vasan RS, et al. Arterial stiffness and cardiovascular events: The Framingham Heart Study. Circulation 2010; 121(4): 505-11.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.886655] [PMID: 20083680]
[33]
Dolan E, Thijs L, Li Y, et al. Ambulatory arterial stiffness index as a predictor of cardiovascular mortality in the Dublin Outcome Study. Hypertension 2006; 47(3): 365-70.
[http://dx.doi.org/10.1161/01.HYP.0000200699.74641.c5] [PMID: 16432047]
[34]
Li Y, Dolan E, Wang JG, et al. Ambulatory arterial stiffness index: Determinants and outcome. Blood Press Monit 2006; 11(2): 107-10.
[http://dx.doi.org/10.1097/01.mbp.0000189791.90488.a1] [PMID: 16534414]
[35]
Kollias A, Stergiou GS, Dolan E, O’Brien E. Ambulatory arterial stiffness index: A systematic review and meta-analysis. Atherosclerosis 2012; 224(2): 291-301.
[http://dx.doi.org/10.1016/j.atherosclerosis.2012.03.039] [PMID: 22632918]
[36]
Simonetti GD, von Vigier RO, Wühl E, Mohaupt MG. Ambulatory arterial stiffness index is increased in hypertensive childhood disease. Pediatr Res 2008; 64(3): 303-7.
[http://dx.doi.org/10.1203/PDR.0b013e31817d9bc5] [PMID: 18458657]
[37]
Schillaci G, Pucci G. The dynamic relationship between systolic and diastolic blood pressure: Yet another marker of vascular aging? Hypertens Res 2010; 33(7): 659-61.
[http://dx.doi.org/10.1038/hr.2010.95] [PMID: 20520611]
[38]
Kikuya M, Staessen JA, Ohkubo T, et al. Ambulatory arterial stiffness index and 24-hour ambulatory pulse pressure as predictors of mortality in Ohasama, Japan. Stroke 2007; 38(4): 1161-6.
[http://dx.doi.org/10.1161/01.STR.0000259604.67283.69] [PMID: 17322089]
[39]
Muxfeldt ES, Cardoso CRL, Dias VB, Nascimento ACM, Salles GF. Prognostic impact of the ambulatory arterial stiffness index in resistant hypertension. J Hypertens 2010; 28(7): 1547-53.
[http://dx.doi.org/10.1097/HJH.0b013e328339f9e5] [PMID: 20467326]
[40]
Hansen TW, Staessen JA, Torp-Pedersen C, et al. Ambulatory arterial stiffness index predicts stroke in a general population. J Hypertens 2006; 24(11): 2247-53.
[http://dx.doi.org/10.1097/01.hjh.0000249703.57478.78] [PMID: 17053547]
[41]
Aznaouridis K, Vlachopoulos C, Protogerou A, Stefanadis C. Ambulatory systolic-diastolic pressure regression index as a predictor of clinical events: A meta-analysis of longitudinal studies. Stroke 2012; 43(3): 733-9.
[http://dx.doi.org/10.1161/STROKEAHA.111.636688] [PMID: 22282885]
[42]
Liu W, Zhou J, Chen J, et al. Ambulatory arterial stiffness index and its role in assessing arterial stiffness in dialysis patients. J Hypertens 2017; 35(6): 1297-301.
[http://dx.doi.org/10.1097/HJH.0000000000001309] [PMID: 28441698]
[43]
Di Raimondo D, Casuccio A, Di Liberti R, et al. Ambdex (AASI) is unable to estimate arterial stiffness of hypertensive subjects: role of nocturnal dipping of blood pressure. Curr Hypertens Rev 2017; 13(2): 121-31.
[PMID: 28637401]
[44]
Kips JG, Vermeersch SJ, Reymond P, et al. Ambulatory arterial stiffness index does not accurately assess arterial stiffness. J Hypertens 2012; 30(3): 574-80.
[http://dx.doi.org/10.1097/HJH.0b013e32834fca18] [PMID: 22241142]
[45]
Schillaci G, Parati G, Pirro M, et al. Ambulatory arterial stiffness index is not a specific marker of reduced arterial compliance. Hypertension 2007; 49(5): 986-91.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.106.082248] [PMID: 17372039]
[46]
Jerrard-Dunne P, Mahmud A, Feely J. Ambulatory arterial stiffness index, pulse wave velocity and augmentation index interchangeable or mutually exclusive measures? J Hypertens 2008; 26(3): 529-34.
[http://dx.doi.org/10.1097/HJH.0b013e3282f35265] [PMID: 18300865]
[47]
Rigonatto RRF, Vitorino PVO, Oliveira AC, et al. SAGE score in normotensive and pre-hypertensive patients: A proof of concept. Arq Bras Cardiol 2023; 120(2): e20200291.
[http://dx.doi.org/10.36660/abc.20220291] [PMID: 36856235]
[48]
Oliveira AC, Barroso WKS, de Oliveira Vitorino PV, et al. A SAGE score cutoff that predicts high-pulse wave velocity as measured by oscillometric devices in Brazilian hypertensive patients. Hypertens Res 2022; 45(2): 315-23.
[http://dx.doi.org/10.1038/s41440-021-00793-0] [PMID: 34754085]
[49]
Stavropoulos K, Imprialos KP, Faselis C, Karagiannis A, Papademetriou V. Determinants of pulse wave velocity index and potential implementations. J Clin Hypertens 2019; 21(10): 1493-5.
[http://dx.doi.org/10.1111/jch.13661] [PMID: 31479178]
[50]
Vallée A. Arterial stiffness and biological parameters: A decision tree machine learning application in hypertensive participants. PLoS One 2023; 18(7): e0288298.
[http://dx.doi.org/10.1371/journal.pone.0288298] [PMID: 37418473]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy