Note! Please note that this article is currently in the "Article in Press" stage and is not the final "Version of record". While it has been accepted, copy-edited, and formatted, however, it is still undergoing proofreading and corrections by the authors. Therefore, the text may still change before the final publication. Although "Articles in Press" may not have all bibliographic details available, the DOI and the year of online publication can still be used to cite them. The article title, DOI, publication year, and author(s) should all be included in the citation format. Once the final "Version of record" becomes available the "Article in Press" will be replaced by that.
Abstract
Objective: A detectable innovative fluorimetric method was used to determine OMC in human plasma matrices, pharmaceutical tablets, and vials with high recovery rates and without biological interference.
Method: The fluorimetric technique was used based on the interaction between 4-chloro7-nitrobenzofurazan (NBD-Cl) with a (2-ry amine group) in OMC with pH 8.0, which generates a fluorescent compound measured at 530 nm (exci 470 nm) following a 10-minute heating step at 80 oC. The plasma and milk samples were treated with ammonium sulfate as a salting-out procedure. Results: Omadacycline (OMC) was successfully determined in pharmaceutical, plasma, and milk samples with a linear range from 60.0 to 700.0 ng mL-1, with the lower limit of detection (LOD 5.18 ng mL-1) and limit of quantitation (LOQ 15.72 ng mL-1). Conclusion: This simple, reliable, and detectable fluorimetric method was successfully developed to determine omadacycline in pharmaceutical tablets, plasma samples, and milk with high recovery rates.[1]
Honeyman, L.; Ismail, M.; Nelson, M.L.; Bhatia, B.; Bowser, T.E.; Chen, J.; Mechiche, R.; Ohemeng, K.; Verma, A.K.; Cannon, E.P.; Macone, A.; Tanaka, S.K.; Levy, S. Structure-activity relationship of the aminomethylcyclines and the discovery of omadacycline. Antimicrob. Agents Chemother., 2015, 59(11), 7044-7053.
[http://dx.doi.org/10.1128/AAC.01536-15] [PMID: 26349824]
[http://dx.doi.org/10.1128/AAC.01536-15] [PMID: 26349824]
[2]
Pfaller, M.A.; Huband, M.D.; Rhomberg, P.R.; Flamm, R.K. Surveillance of Omadacycline Activity against Clinical Isolates from a Global Collection (North America, Europe, Latin America, Asia-Western Pacific), 2010-2011. Antimicrob. Agents Chemother., 2017, 61(5), e00018-17.
[http://dx.doi.org/10.1128/AAC.00018-17] [PMID: 28223386]
[http://dx.doi.org/10.1128/AAC.00018-17] [PMID: 28223386]
[3]
Villano, S.; Steenbergen, J.; Loh, E. Omadacycline: Development of a novel aminomethylcycline antibiotic for treating drug-resistant bacterial infections. Future Microbiol., 2016, 11(11), 1421-1434.
[http://dx.doi.org/10.2217/fmb-2016-0100] [PMID: 27539442]
[http://dx.doi.org/10.2217/fmb-2016-0100] [PMID: 27539442]
[4]
B, S.P.; S, J.K. Method development and validation for determining stability of omadacycline in biological matrices by liquid chromatography–mass spectrometry. Int. J. Pharm. Qual. Assur., 2019, 10(4), 640-645.
[http://dx.doi.org/10.25258/ijpqa.10.4.14]
[http://dx.doi.org/10.25258/ijpqa.10.4.14]
[5]
Salman, B.I.; Hassan, A.I.; Batakoushy, H.A.; Saraya, R.E.; Abdel-Aal, M.A.A.; Al-Harrasi, A.; Ibrahim, A.E.; Hassan, Y.F. Design, characterization, and bioanalytical applications of green terbium- and nitrogen-doped carbon quantum dots as a fluorescent nanoprobe for omadacycline analysis. Appl. Spectrosc., 2024, 78(3), 329-339.
[http://dx.doi.org/10.1177/00037028231219508] [PMID: 38166449]
[http://dx.doi.org/10.1177/00037028231219508] [PMID: 38166449]
[6]
Koppuravuri, N.P.; Lakshmi, A.V. Development and validation of a sensitive high-performance liquid chromatography-mass spectrometry method for quantification of omadacycline in plasma. Drug Invention Today, 2020, 14(2), 14-19.
[7]
Hu, C.; Wang, W.; Jo, J.; Garey, K.W. Development and validation of LC-MS/MS for quantifying omadacycline from stool for gut microbiome studies. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2024, 1236, 124057.
[http://dx.doi.org/10.1016/j.jchromb.2024.124057] [PMID: 38447241]
[http://dx.doi.org/10.1016/j.jchromb.2024.124057] [PMID: 38447241]
[8]
Suhang, G.; Ren, Z.; Xudong, F.; Ruoying, Z.; Xinjun, C.; Jie, J. Development, validation, and clinical application of a UPLC-MS/MS method for omadacycline determination in human serum. J. Pharmacol. Toxicol. Methods, 2024, 127, 107503.
[http://dx.doi.org/10.1016/j.vascn.2024.107503] [PMID: 38574874]
[http://dx.doi.org/10.1016/j.vascn.2024.107503] [PMID: 38574874]
[9]
Hammad, M.A.; Omar, M.A.; Salman, B.I. Utility of Hantzsch reaction for development of highly sensitive spectrofluorimetric method for determination of alfuzosin and terazosin in bulk, dosage forms and human plasma. Luminescence, 2017, 32(6), 1066-1071.
[http://dx.doi.org/10.1002/bio.3292] [PMID: 28303653]
[http://dx.doi.org/10.1002/bio.3292] [PMID: 28303653]
[10]
Omar, M.A.; Hammad, M.A.; Salman, B.I. Micellar enhanced spectrofluorimetric approach for nanogram detection of certain α1-blocker drugs: Application in pharmaceutical preparations and human plasma. Luminescence, 2018, 33(7), 1226-1234.
[http://dx.doi.org/10.1002/bio.3539] [PMID: 30094938]
[http://dx.doi.org/10.1002/bio.3539] [PMID: 30094938]
[11]
Marzouq, M.A.; Salman, B.I.; Hussein, S.A.; Ali, M.F.B. Hantzsch reaction approach for determination of teicoplanin and vancomycin in real human plasma: Application to pharmaceutical preparations and to synthetic mixture with rifampicin for drug-resistant strain of Staphylococcus aureus. Microchem. J., 2019, 147, 25-29.
[http://dx.doi.org/10.1016/j.microc.2019.03.002]
[http://dx.doi.org/10.1016/j.microc.2019.03.002]
[12]
Salman, B.I.; Hassan, Y.F.; Eltoukhi, W.E.; Saraya, R.E. Quantification of tyramine in different types of food using novel green synthesis officus carica quantum dots as fluorescent probe. Luminescence, 2022, 37(8), 1259-1266.
[http://dx.doi.org/10.1002/bio.4291] [PMID: 35586926]
[http://dx.doi.org/10.1002/bio.4291] [PMID: 35586926]
[13]
Salman, B.I.; Ibrahim, A.E.; El Deeb, S.; Saraya, R.E. Fabrication of novel quantum dots for the estimation of COVID-19 antiviral drug using green chemistry: Application to real human plasma. RSC Advances, 2022, 12(26), 16624-16631.
[http://dx.doi.org/10.1039/D2RA02241A] [PMID: 35754906]
[http://dx.doi.org/10.1039/D2RA02241A] [PMID: 35754906]
[14]
Mohamed, F.A.; Ali, M.F.B.; Rageh, A.H.; Mostafa, A.M. A highly sensitive HPTLC method for estimation of oxcarbazepine in two binary mixtures with two metabolically related antiepileptic drugs: Application to pharmaceutical and biological samples. Microchem. J., 2019, 146, 414-422.
[http://dx.doi.org/10.1016/j.microc.2019.01.031]
[http://dx.doi.org/10.1016/j.microc.2019.01.031]
[15]
Salman, B.I.; Ali, M.F.B.; Marzouq, M.A.; Hussein, S.A. Utility of the fluorogenic characters of benzofurazan for analysis of tigecycline using spectrometric technique; application to pharmacokinetic study, urine and pharmaceutical formulations. Luminescence, 2019, 34(2), 175-182.
[http://dx.doi.org/10.1002/bio.3590] [PMID: 30637925]
[http://dx.doi.org/10.1002/bio.3590] [PMID: 30637925]
[16]
Salman, B.I.; Hussein, S.A.; Ali, M.F.B.; Marzouq, M.A. Innovative ultra-sensitive spectrofluorimetric method for nanogram detection of doripenem monohydrate in human plasma, urine and pharmaceutical formulation. Microchem. J., 2019, 145, 959-965.
[http://dx.doi.org/10.1016/j.microc.2018.12.018]
[http://dx.doi.org/10.1016/j.microc.2018.12.018]
[17]
Salman, B.I.; Saraya, R.E. Bio-analytically fluorimetric method for estimation of ertapenem in real human plasma and commercial samples; application to pharmacokinetics study. Luminescence, 2022, 37(5), 796-802.
[http://dx.doi.org/10.1002/bio.4223] [PMID: 35274447]
[http://dx.doi.org/10.1002/bio.4223] [PMID: 35274447]
[18]
Saraya, R.E.; Hassan, Y.F.; Eltukhi, W.E.; Salman, B.I. Ultra-sensitive fluorimetric method for the first estimation of vonoprazan in real human plasma and content uniformity test. J. Fluoresc., 2022, 32(5), 1725-1732.
[http://dx.doi.org/10.1007/s10895-022-02979-2] [PMID: 35670919]
[http://dx.doi.org/10.1007/s10895-022-02979-2] [PMID: 35670919]
[19]
Omar, M.A.; Hammad, M.A.; Salman, B.I.; Derayea, S.M. Highly sensitive spectrofluorimetric method for determination of doxazosin through derivatization with fluorescamine; Application to content uniformity testing. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 157, 55-60.
[http://dx.doi.org/10.1016/j.saa.2015.12.012] [PMID: 26716887]
[http://dx.doi.org/10.1016/j.saa.2015.12.012] [PMID: 26716887]
[20]
Salman, B.I.; Hassan, A.I.; Hassan, Y.F.; Saraya, R.E. Ultra-sensitive and selective fluorescence approach for estimation of elagolix in real human plasma and content uniformity using boron-doped carbon quantum dots. BMC Chem., 2022, 16(1), 58.
[http://dx.doi.org/10.1186/s13065-022-00849-3] [PMID: 35922841]
[http://dx.doi.org/10.1186/s13065-022-00849-3] [PMID: 35922841]
[21]
Ali, H.R.H.; Hassan, A.I.; Hassan, Y.F.; El-Wekil, M.M. Mannitol capped magnetic dispersive micro-solid-phase extraction of polar drugs sparfloxacin and orbifloxacin from milk and water samples followed by selective fluorescence sensing using boron-doped carbon quantum dots. J. Environ. Chem. Eng., 2021, 9(2), 105078.
[http://dx.doi.org/10.1016/j.jece.2021.105078]
[http://dx.doi.org/10.1016/j.jece.2021.105078]
[22]
Aktas, E.S.; Ersoy, L.; Sagırlı, O. A new spectrofluorimetric method for the determination of lisinopril in tablets. Farmaco, 2003, 58(2), 165-168.
[http://dx.doi.org/10.1016/S0014-827X(02)00013-7] [PMID: 12581783]
[http://dx.doi.org/10.1016/S0014-827X(02)00013-7] [PMID: 12581783]
[23]
Darwish, I.A.; Amer, S.M.; Abdine, H.H.; Al-Rayes, L.I. Spectrofluorimetric determination of fluvoxamine in dosage forms and plasma via derivatization with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole. J. Fluoresc., 2009, 19(3), 463-471.
[http://dx.doi.org/10.1007/s10895-008-0433-z] [PMID: 18949539]
[http://dx.doi.org/10.1007/s10895-008-0433-z] [PMID: 18949539]
[24]
Miyano, H.; Toyo’oka, T.; Imai, K. Further studies on the reaction of amines and proteins with 4-fluoro-7-nitrobenzo-2-oxa-1,3-diazole. Anal. Chim. Acta, 1985, 170, 81-87.
[http://dx.doi.org/10.1016/S0003-2670(00)81728-6]
[http://dx.doi.org/10.1016/S0003-2670(00)81728-6]
[25]
Hussein, S.A.; Salman, B.I.; Ali, M.F.B.; Marzouq, M.A. Development of sensitive benzofurazan-based spectrometric methods for analysis of spectinomycin in vials and human biological samples. Luminescence, 2019, 34(8), 895-902.
[http://dx.doi.org/10.1002/bio.3688] [PMID: 31379072]
[http://dx.doi.org/10.1002/bio.3688] [PMID: 31379072]
[26]
Branch, S.K. Guidelines from the International Conference on Harmonisation (ICH). J. Pharm. Biomed. Anal., 2005, 38(5), 798-805.
[http://dx.doi.org/10.1016/j.jpba.2005.02.037] [PMID: 16076542]
[http://dx.doi.org/10.1016/j.jpba.2005.02.037] [PMID: 16076542]
[27]
Zimmer, D. New US FDA draft guidance on bioanalytical method validation versus current FDA and EMA guidelines: Chromatographic methods and ISR. Bioanalysis, 2014, 6(1), 13-19.
[http://dx.doi.org/10.4155/bio.13.298] [PMID: 24256335]
[http://dx.doi.org/10.4155/bio.13.298] [PMID: 24256335]
[28]
United States Pharmacopeial Convention, (905) Uniformity of Dosage Units, Stage 6 Harmonization. 2011. Available from: https://www.usp.org/sites/default/files/usp/document/harmonization/gen-method/q0304_stage_6_monograph_25_feb_2011.pdf