Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Applicability of Salting-Out Liquid-Liquid Extraction for New Fluorimetric Quantification of Omadacycline in Pharmaceutical Formulations and Biological Samples

In Press, (this is not the final "Version of Record"). Available online 12 July, 2024
Author(s): Eman Alzahrani, Mohamed A. Abdel-Lateef* and Baher I. Salman*
Published on: 12 July, 2024

DOI: 10.2174/0115734129322131240708103234

Price: $95

Abstract

Objective: A detectable innovative fluorimetric method was used to determine OMC in human plasma matrices, pharmaceutical tablets, and vials with high recovery rates and without biological interference.

Method: The fluorimetric technique was used based on the interaction between 4-chloro7-nitrobenzofurazan (NBD-Cl) with a (2-ry amine group) in OMC with pH 8.0, which generates a fluorescent compound measured at 530 nm (exci 470 nm) following a 10-minute heating step at 80 oC. The plasma and milk samples were treated with ammonium sulfate as a salting-out procedure.

Results: Omadacycline (OMC) was successfully determined in pharmaceutical, plasma, and milk samples with a linear range from 60.0 to 700.0 ng mL-1, with the lower limit of detection (LOD 5.18 ng mL-1) and limit of quantitation (LOQ 15.72 ng mL-1).

Conclusion: This simple, reliable, and detectable fluorimetric method was successfully developed to determine omadacycline in pharmaceutical tablets, plasma samples, and milk with high recovery rates.

[1]
Honeyman, L.; Ismail, M.; Nelson, M.L.; Bhatia, B.; Bowser, T.E.; Chen, J.; Mechiche, R.; Ohemeng, K.; Verma, A.K.; Cannon, E.P.; Macone, A.; Tanaka, S.K.; Levy, S. Structure-activity relationship of the aminomethylcyclines and the discovery of omadacycline. Antimicrob. Agents Chemother., 2015, 59(11), 7044-7053.
[http://dx.doi.org/10.1128/AAC.01536-15] [PMID: 26349824]
[2]
Pfaller, M.A.; Huband, M.D.; Rhomberg, P.R.; Flamm, R.K. Surveillance of Omadacycline Activity against Clinical Isolates from a Global Collection (North America, Europe, Latin America, Asia-Western Pacific), 2010-2011. Antimicrob. Agents Chemother., 2017, 61(5), e00018-17.
[http://dx.doi.org/10.1128/AAC.00018-17] [PMID: 28223386]
[3]
Villano, S.; Steenbergen, J.; Loh, E. Omadacycline: Development of a novel aminomethylcycline antibiotic for treating drug-resistant bacterial infections. Future Microbiol., 2016, 11(11), 1421-1434.
[http://dx.doi.org/10.2217/fmb-2016-0100] [PMID: 27539442]
[4]
B, S.P.; S, J.K. Method development and validation for determining stability of omadacycline in biological matrices by liquid chromatography–mass spectrometry. Int. J. Pharm. Qual. Assur., 2019, 10(4), 640-645.
[http://dx.doi.org/10.25258/ijpqa.10.4.14]
[5]
Salman, B.I.; Hassan, A.I.; Batakoushy, H.A.; Saraya, R.E.; Abdel-Aal, M.A.A.; Al-Harrasi, A.; Ibrahim, A.E.; Hassan, Y.F. Design, characterization, and bioanalytical applications of green terbium- and nitrogen-doped carbon quantum dots as a fluorescent nanoprobe for omadacycline analysis. Appl. Spectrosc., 2024, 78(3), 329-339.
[http://dx.doi.org/10.1177/00037028231219508] [PMID: 38166449]
[6]
Koppuravuri, N.P.; Lakshmi, A.V. Development and validation of a sensitive high-performance liquid chromatography-mass spectrometry method for quantification of omadacycline in plasma. Drug Invention Today, 2020, 14(2), 14-19.
[7]
Hu, C.; Wang, W.; Jo, J.; Garey, K.W. Development and validation of LC-MS/MS for quantifying omadacycline from stool for gut microbiome studies. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2024, 1236, 124057.
[http://dx.doi.org/10.1016/j.jchromb.2024.124057] [PMID: 38447241]
[8]
Suhang, G.; Ren, Z.; Xudong, F.; Ruoying, Z.; Xinjun, C.; Jie, J. Development, validation, and clinical application of a UPLC-MS/MS method for omadacycline determination in human serum. J. Pharmacol. Toxicol. Methods, 2024, 127, 107503.
[http://dx.doi.org/10.1016/j.vascn.2024.107503] [PMID: 38574874]
[9]
Hammad, M.A.; Omar, M.A.; Salman, B.I. Utility of Hantzsch reaction for development of highly sensitive spectrofluorimetric method for determination of alfuzosin and terazosin in bulk, dosage forms and human plasma. Luminescence, 2017, 32(6), 1066-1071.
[http://dx.doi.org/10.1002/bio.3292] [PMID: 28303653]
[10]
Omar, M.A.; Hammad, M.A.; Salman, B.I. Micellar enhanced spectrofluorimetric approach for nanogram detection of certain α1-blocker drugs: Application in pharmaceutical preparations and human plasma. Luminescence, 2018, 33(7), 1226-1234.
[http://dx.doi.org/10.1002/bio.3539] [PMID: 30094938]
[11]
Marzouq, M.A.; Salman, B.I.; Hussein, S.A.; Ali, M.F.B. Hantzsch reaction approach for determination of teicoplanin and vancomycin in real human plasma: Application to pharmaceutical preparations and to synthetic mixture with rifampicin for drug-resistant strain of Staphylococcus aureus. Microchem. J., 2019, 147, 25-29.
[http://dx.doi.org/10.1016/j.microc.2019.03.002]
[12]
Salman, B.I.; Hassan, Y.F.; Eltoukhi, W.E.; Saraya, R.E. Quantification of tyramine in different types of food using novel green synthesis officus carica quantum dots as fluorescent probe. Luminescence, 2022, 37(8), 1259-1266.
[http://dx.doi.org/10.1002/bio.4291] [PMID: 35586926]
[13]
Salman, B.I.; Ibrahim, A.E.; El Deeb, S.; Saraya, R.E. Fabrication of novel quantum dots for the estimation of COVID-19 antiviral drug using green chemistry: Application to real human plasma. RSC Advances, 2022, 12(26), 16624-16631.
[http://dx.doi.org/10.1039/D2RA02241A] [PMID: 35754906]
[14]
Mohamed, F.A.; Ali, M.F.B.; Rageh, A.H.; Mostafa, A.M. A highly sensitive HPTLC method for estimation of oxcarbazepine in two binary mixtures with two metabolically related antiepileptic drugs: Application to pharmaceutical and biological samples. Microchem. J., 2019, 146, 414-422.
[http://dx.doi.org/10.1016/j.microc.2019.01.031]
[15]
Salman, B.I.; Ali, M.F.B.; Marzouq, M.A.; Hussein, S.A. Utility of the fluorogenic characters of benzofurazan for analysis of tigecycline using spectrometric technique; application to pharmacokinetic study, urine and pharmaceutical formulations. Luminescence, 2019, 34(2), 175-182.
[http://dx.doi.org/10.1002/bio.3590] [PMID: 30637925]
[16]
Salman, B.I.; Hussein, S.A.; Ali, M.F.B.; Marzouq, M.A. Innovative ultra-sensitive spectrofluorimetric method for nanogram detection of doripenem monohydrate in human plasma, urine and pharmaceutical formulation. Microchem. J., 2019, 145, 959-965.
[http://dx.doi.org/10.1016/j.microc.2018.12.018]
[17]
Salman, B.I.; Saraya, R.E. Bio-analytically fluorimetric method for estimation of ertapenem in real human plasma and commercial samples; application to pharmacokinetics study. Luminescence, 2022, 37(5), 796-802.
[http://dx.doi.org/10.1002/bio.4223] [PMID: 35274447]
[18]
Saraya, R.E.; Hassan, Y.F.; Eltukhi, W.E.; Salman, B.I. Ultra-sensitive fluorimetric method for the first estimation of vonoprazan in real human plasma and content uniformity test. J. Fluoresc., 2022, 32(5), 1725-1732.
[http://dx.doi.org/10.1007/s10895-022-02979-2] [PMID: 35670919]
[19]
Omar, M.A.; Hammad, M.A.; Salman, B.I.; Derayea, S.M. Highly sensitive spectrofluorimetric method for determination of doxazosin through derivatization with fluorescamine; Application to content uniformity testing. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 157, 55-60.
[http://dx.doi.org/10.1016/j.saa.2015.12.012] [PMID: 26716887]
[20]
Salman, B.I.; Hassan, A.I.; Hassan, Y.F.; Saraya, R.E. Ultra-sensitive and selective fluorescence approach for estimation of elagolix in real human plasma and content uniformity using boron-doped carbon quantum dots. BMC Chem., 2022, 16(1), 58.
[http://dx.doi.org/10.1186/s13065-022-00849-3] [PMID: 35922841]
[21]
Ali, H.R.H.; Hassan, A.I.; Hassan, Y.F.; El-Wekil, M.M. Mannitol capped magnetic dispersive micro-solid-phase extraction of polar drugs sparfloxacin and orbifloxacin from milk and water samples followed by selective fluorescence sensing using boron-doped carbon quantum dots. J. Environ. Chem. Eng., 2021, 9(2), 105078.
[http://dx.doi.org/10.1016/j.jece.2021.105078]
[22]
Aktas, E.S.; Ersoy, L.; Sagırlı, O. A new spectrofluorimetric method for the determination of lisinopril in tablets. Farmaco, 2003, 58(2), 165-168.
[http://dx.doi.org/10.1016/S0014-827X(02)00013-7] [PMID: 12581783]
[23]
Darwish, I.A.; Amer, S.M.; Abdine, H.H.; Al-Rayes, L.I. Spectrofluorimetric determination of fluvoxamine in dosage forms and plasma via derivatization with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole. J. Fluoresc., 2009, 19(3), 463-471.
[http://dx.doi.org/10.1007/s10895-008-0433-z] [PMID: 18949539]
[24]
Miyano, H.; Toyo’oka, T.; Imai, K. Further studies on the reaction of amines and proteins with 4-fluoro-7-nitrobenzo-2-oxa-1,3-diazole. Anal. Chim. Acta, 1985, 170, 81-87.
[http://dx.doi.org/10.1016/S0003-2670(00)81728-6]
[25]
Hussein, S.A.; Salman, B.I.; Ali, M.F.B.; Marzouq, M.A. Development of sensitive benzofurazan-based spectrometric methods for analysis of spectinomycin in vials and human biological samples. Luminescence, 2019, 34(8), 895-902.
[http://dx.doi.org/10.1002/bio.3688] [PMID: 31379072]
[26]
Branch, S.K. Guidelines from the International Conference on Harmonisation (ICH). J. Pharm. Biomed. Anal., 2005, 38(5), 798-805.
[http://dx.doi.org/10.1016/j.jpba.2005.02.037] [PMID: 16076542]
[27]
Zimmer, D. New US FDA draft guidance on bioanalytical method validation versus current FDA and EMA guidelines: Chromatographic methods and ISR. Bioanalysis, 2014, 6(1), 13-19.
[http://dx.doi.org/10.4155/bio.13.298] [PMID: 24256335]
[28]
United States Pharmacopeial Convention, (905) Uniformity of Dosage Units, Stage 6 Harmonization. 2011. Available from: https://www.usp.org/sites/default/files/usp/document/harmonization/gen-method/q0304_stage_6_monograph_25_feb_2011.pdf

© 2024 Bentham Science Publishers | Privacy Policy