Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Perspective

Glia as a New Target for Therapeutic Actions of Electroconvulsive Therapy

In Press, (this is not the final "Version of Record"). Available online 12 July, 2024
Author(s): Sadayuki Hashioka*
Published on: 12 July, 2024

DOI: 10.2174/0118715273319405240707164638

Price: $95

Abstract

Although electroconvulsive therapy (ECT) has immediate and profound effects on severe psychiatric disorders compared to pharmacotherapy, the mechanisms underlying its therapeutic effects remain elusive. Increasing evidence indicates that glial activation is a common pathogenetic factor in both major depression and schizophrenia, raising the question of whether ECT can inhibit glial activation. This article summarizes the findings from both clinical and experimental studies addressing this key question. Based on the findings, it is proposed that the suppression of glial activation associated with neuroinflammation is the mechanism by which ECT restores brain homeostasis and exerts its therapeutic effects.

[1]
Rush AJ, Trivedi MH, Wisniewski SR, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: A STAR*D report. Am J Psychiatry 2006; 163(11): 1905-17.
[http://dx.doi.org/10.1176/ajp.2006.163.11.1905] [PMID: 17074942]
[2]
Siskind D, Orr S, Sinha S, et al. Rates of treatment-resistant schizophrenia from first-episode cohorts: Systematic review and meta-analysis. Br J Psychiatry 2022; 220(3): 115-20.
[http://dx.doi.org/10.1192/bjp.2021.61] [PMID: 35049446]
[3]
Castaneda-Ramirez S, Becker TD, Bruges-Boude A, Kellner C, Rice TR. Systematic review: Electroconvulsive therapy for treatment-resistant mood disorders in children and adolescents. Eur Child Adolesc Psychiatry 2022; 32(9): 1529-60.
[PMID: 34999973]
[4]
Sinclair DJ, Zhao S, Qi F, Nyakyoma K, Kwong JS, Adams CE. Electroconvulsive therapy for treatment-resistant schizophrenia. Cochrane Database Syst Rev 2019; 3(3): CD011847.
[PMID: 30888709]
[5]
Mental Health America. Electroconvulsive Therapy (ECT). 2024. Available From: https://www.mhanational.org/ect
[6]
Freire TFV, de Almeida Fleck MP, da Rocha NS. Remission of depression following electroconvulsive therapy (ECT) is associated with higher levels of brain-derived neurotrophic factor (BDNF). Brain Res Bull 2016; 121: 263-9.
[http://dx.doi.org/10.1016/j.brainresbull.2016.02.013] [PMID: 26892396]
[7]
Minelli A, Zanardini R, Abate M, Bortolomasi M, Gennarelli M, Bocchio-Chiavetto L. Vascular Endothelial Growth Factor (VEGF) serum concentration during electroconvulsive therapy (ECT) in treatment resistant depressed patients. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35(5): 1322-5.
[http://dx.doi.org/10.1016/j.pnpbp.2011.04.013] [PMID: 21570438]
[8]
Dukart J, Regen F, Kherif F, et al. Electroconvulsive therapy-induced brain plasticity determines therapeutic outcome in mood disorders. Proc Natl Acad Sci USA 2014; 111(3): 1156-61.
[http://dx.doi.org/10.1073/pnas.1321399111] [PMID: 24379394]
[9]
Joshi SH, Espinoza RT, Pirnia T, et al. Structural plasticity of the hippocampus and amygdala induced by electroconvulsive therapy in major depression. Biol Psychiatry 2016; 79(4): 282-92.
[http://dx.doi.org/10.1016/j.biopsych.2015.02.029] [PMID: 25842202]
[10]
Hestad KA, Tønseth S, Støen CD, Ueland T, Aukrust P. Raised plasma levels of tumor necrosis factor alpha in patients with depression: Normalization during electroconvulsive therapy. J ECT 2003; 19(4): 183-8.
[http://dx.doi.org/10.1097/00124509-200312000-00002] [PMID: 14657769]
[11]
Järventausta K, Sorri A, Kampman O, et al. Changes in interleukin‐6 levels during electroconvulsive therapy may reflect the therapeutic response in major depression. Acta Psychiatr Scand 2017; 135(1): 87-92.
[http://dx.doi.org/10.1111/acps.12665] [PMID: 27858966]
[12]
Carlier A, Rhebergen D, Schilder F, et al. The pattern of inflammatory markers during electroconvulsive therapy in older depressed patients. World J Biol Psychiatry 2021; 22(10): 770-7.
[http://dx.doi.org/10.1080/15622975.2021.1907718] [PMID: 33821774]
[13]
Mindt S, Neumaier M, Hoyer C, Sartorius A, Kranaster L. Cytokine-mediated cellular immune activation in electroconvulsive therapy: A CSF study in patients with treatment-resistant depression. World J Biol Psychiatry 2020; 21(2): 139-47.
[http://dx.doi.org/10.1080/15622975.2019.1618494] [PMID: 31081432]
[14]
Meyer JH, Cervenka S, Kim MJ, Kreisl WC, Henter ID, Innis RB. Neuroinflammation in psychiatric disorders: PET imaging and promising new targets. Lancet Psychiatry 2020; 7(12): 1064-74.
[http://dx.doi.org/10.1016/S2215-0366(20)30255-8] [PMID: 33098761]
[15]
Najjar S, Pearlman DM, Alper K, Najjar A, Devinsky O. Neuroinflammation and psychiatric illness. J Neuroinflammation 2013; 10(1): 816.
[http://dx.doi.org/10.1186/1742-2094-10-43] [PMID: 23547920]
[16]
Bayer TA, Buslei R, Havas L, Falkai P. Evidence for activation of microglia in patients with psychiatric illnesses. Neurosci Lett 1999; 271(2): 126-8.
[http://dx.doi.org/10.1016/S0304-3940(99)00545-5] [PMID: 10477118]
[17]
Radewicz K, Garey LJ, Gentleman SM, Reynolds R. Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics. J Neuropathol Exp Neurol 2000; 59(2): 137-50.
[http://dx.doi.org/10.1093/jnen/59.2.137] [PMID: 10749103]
[18]
Torres-Platas SG, Cruceanu C, Chen GG, Turecki G, Mechawar N. Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behav Immun 2014; 42: 50-9.
[http://dx.doi.org/10.1016/j.bbi.2014.05.007] [PMID: 24858659]
[19]
Stockmeier CA, Mahajan GJ, Konick LC, et al. Cellular changes in the postmortem hippocampus in major depression. Biol Psychiatry 2004; 56(9): 640-50.
[http://dx.doi.org/10.1016/j.biopsych.2004.08.022] [PMID: 15522247]
[20]
Torres-Platas SG, Hercher C, Davoli MA, et al. Astrocytic hypertrophy in anterior cingulate white matter of depressed suicides. Neuropsychopharmacology 2011; 36(13): 2650-8.
[http://dx.doi.org/10.1038/npp.2011.154] [PMID: 21814185]
[21]
Cotter D, Mackay D, Landau S, Kerwin R, Everall I. Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch Gen Psychiatry 2001; 58(6): 545-53.
[http://dx.doi.org/10.1001/archpsyc.58.6.545] [PMID: 11386983]
[22]
Rajkowska G, Miguel-Hidalgo JJ, Wei J, et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 1999; 45(9): 1085-98.
[http://dx.doi.org/10.1016/S0006-3223(99)00041-4] [PMID: 10331101]
[23]
Holmes SE, Hinz R, Conen S, et al. Elevated translocator protein in anterior cingulate in major depression and a role for inflammation in suicidal thinking: A positron emission tomography study. Biol Psychiatry 2018; 83(1): 61-9.
[http://dx.doi.org/10.1016/j.biopsych.2017.08.005] [PMID: 28939116]
[24]
Li H, Sagar AP, Kéri S. Microglial markers in the frontal cortex are related to cognitive dysfunctions in major depressive disorder. J Affect Disord 2018; 241: 305-10.
[http://dx.doi.org/10.1016/j.jad.2018.08.021] [PMID: 30142589]
[25]
Setiawan E, Wilson AA, Mizrahi R, et al. Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes. JAMA Psychiatry 2015; 72(3): 268-75.
[http://dx.doi.org/10.1001/jamapsychiatry.2014.2427] [PMID: 25629589]
[26]
Bloomfield PS, Selvaraj S, Veronese M, et al. Microglial activity in people at ultra high risk of psychosis and in Schizophrenia: An [ 11 C]PBR28 PET brain imaging study. Am J Psychiatry 2016; 173(1): 44-52.
[http://dx.doi.org/10.1176/appi.ajp.2015.14101358] [PMID: 26472628]
[27]
Ekblom J, Jossan SS, Bergstrüm M, Oreland L, Walum E, Aquilonius SM. Monoamine oxidase‐B in astrocytes. Glia 1993; 8(2): 122-32.
[http://dx.doi.org/10.1002/glia.440080208] [PMID: 8406673]
[28]
Moriguchi S, Wilson AA, Miler L, et al. Monoamine oxidase B total distribution volume in the prefrontal cortex of major depressive disorder. JAMA Psychiatry 2019; 76(6): 634-41.
[http://dx.doi.org/10.1001/jamapsychiatry.2019.0044] [PMID: 30840042]
[29]
Ling E, Nemesh J, Goldman M, et al. A concerted neuron–astrocyte program declines in ageing and schizophrenia. Nature 2024; 627(8004): 604-11.
[http://dx.doi.org/10.1038/s41586-024-07109-5] [PMID: 38448582]
[30]
Hashioka S, Han YH, Fujii S, et al. Phosphatidylserine and phosphatidylcholine-containing liposomes inhibit amyloid β and interferon-γ-induced microglial activation. Free Radic Biol Med 2007; 42(7): 945-54.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.12.003] [PMID: 17349923]
[31]
Venneti S, Lopresti BJ, Wiley CA. Molecular imaging of microglia/macrophages in the brain. Glia 2013; 61(1): 10-23.
[http://dx.doi.org/10.1002/glia.22357] [PMID: 22615180]
[32]
Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science 2003; 302(5651): 1760-5.
[http://dx.doi.org/10.1126/science.1088417] [PMID: 14615545]
[33]
Kopschina Feltes P, Doorduin J, Klein HC, et al. Anti-inflammatory treatment for major depressive disorder: Implications for patients with an elevated immune profile and non-responders to standard antidepressant therapy. J Psychopharmacol 2017; 31(9): 1149-65.
[http://dx.doi.org/10.1177/0269881117711708] [PMID: 28653857]
[34]
Liu M, Li J, Dai P, et al. Microglia activation regulates GluR1 phosphorylation in chronic unpredictable stress-induced cognitive dysfunction. Stress 2015; 18(1): 96-106.
[http://dx.doi.org/10.3109/10253890.2014.995085] [PMID: 25472821]
[35]
Njau S, Joshi SH, Leaver AM, et al. Variations in myo-inositol in fronto-limbic regions and clinical response to electroconvulsive therapy in major depression. J Psychiatr Res 2016; 80: 45-51.
[http://dx.doi.org/10.1016/j.jpsychires.2016.05.012] [PMID: 27285661]
[36]
Xu S, Xie X, Yao L, et al. Human in vivo evidence of reduced astrocyte activation and neuroinflammation in patients with treatment‐resistant depression following electroconvulsive therapy. Psychiatry Clin Neurosci 2023; 77(12): 653-64.
[http://dx.doi.org/10.1111/pcn.13596] [PMID: 37675893]
[37]
Jinno S, Kosaka T. Reduction of Iba1-expressing microglial process density in the hippocampus following electroconvulsive shock. Exp Neurol 2008; 212(2): 440-7.
[http://dx.doi.org/10.1016/j.expneurol.2008.04.028] [PMID: 18538764]
[38]
Jansson L, Wennström M, Johanson A, Tingström A. Glial cell activation in response to electroconvulsive seizures. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33(7): 1119-28.
[http://dx.doi.org/10.1016/j.pnpbp.2009.06.007] [PMID: 19540297]
[39]
Ceresér KM, Frey BN, Bernardes FB, et al. Glial fibrillary acidic protein expression after electroconvulsive shocks in rat brain. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30(4): 663-7.
[http://dx.doi.org/10.1016/j.pnpbp.2005.11.038] [PMID: 16451815]
[40]
Arauchi R, Hashioka S, Tsuchie K, et al. Gunn rats with glial activation in the hippocampus show prolonged immobility time in the forced swimming test and tail suspension test. Brain Behav 2018; 8(8): e01028.
[http://dx.doi.org/10.1002/brb3.1028] [PMID: 29953737]
[41]
Limoa E, Hashioka S, Miyaoka T, et al. Electroconvulsive shock attenuated microgliosis and astrogliosis in the hippocampus and ameliorated schizophrenia-like behavior of Gunn rat. J Neuroinflammation 2016; 13(1): 230.
[http://dx.doi.org/10.1186/s12974-016-0688-2] [PMID: 27590010]
[42]
Azis IA, Hashioka S, Tsuchie K, et al. Electroconvulsive shock restores the decreased coverage of brain blood vessels by astrocytic endfeet and ameliorates depressive-like behavior. J Affect Disord 2019; 257: 331-9.
[http://dx.doi.org/10.1016/j.jad.2019.07.008] [PMID: 31302522]
[43]
Goldfarb S, Fainstein N, Ben-Hur T. Electroconvulsive stimulation attenuates chronic neuroinflammation. JCI Insight 2020; 5(17): e137028.
[http://dx.doi.org/10.1172/jci.insight.137028] [PMID: 32780728]
[44]
Goldfarb S, Fainstein N, Ganz T, Vershkov D, Lachish M, Ben-Hur T. Electric neurostimulation regulates microglial activation via retinoic acid receptor α signaling. Brain Behav Immun 2021; 96: 40-53.
[http://dx.doi.org/10.1016/j.bbi.2021.05.007] [PMID: 33989746]
[45]
Chen L, Lv F, Min S, Yang Y, Liu D. Roles of prokineticin 2 in electroconvulsive shock-induced memory impairment via regulation of phenotype polarization in astrocytes. Behav Brain Res 2023; 446: 114350.
[http://dx.doi.org/10.1016/j.bbr.2023.114350] [PMID: 36804440]
[46]
Svensson M, Olsson G, Yang Y, et al. The effect of electroconvulsive therapy on neuroinflammation, behavior and amyloid plaques in the 5xFAD mouse model of Alzheimer’s disease. Sci Rep 2021; 11(1): 4910.
[http://dx.doi.org/10.1038/s41598-021-83998-0] [PMID: 33649346]
[47]
Zhu X, Li P, Hao X, et al. Ketamine-mediated alleviation of electroconvulsive shock-induced memory impairment is associated with the regulation of neuroinflammation and soluble amyloid-beta peptide in depressive-like rats. Neurosci Lett 2015; 599: 32-7.
[http://dx.doi.org/10.1016/j.neulet.2015.05.022] [PMID: 25980993]
[48]
Rimmerman N, Verdiger H, Goldenberg H, et al. Microglia and their LAG3 checkpoint underlie the antidepressant and neurogenesis-enhancing effects of electroconvulsive stimulation. Mol Psychiatry 2022; 27(2): 1120-35.
[http://dx.doi.org/10.1038/s41380-021-01338-0] [PMID: 34650207]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy