Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Characterization of Carbamide Peroxide: Stability Studies, and Degradation Kinetics under Isothermal Conditions for Industrial Application

In Press, (this is not the final "Version of Record"). Available online 11 July, 2024
Author(s): Fabiana Vieira Lima Solino Pessoa*, Rafael Nicolay Pereira, Cassiana Mendes and Marcos Antonio Segatto Silva
Published on: 11 July, 2024

DOI: 10.2174/0115734129305540240702114124

Price: $95

Abstract

Background: Carbamide peroxide (CP) is a hydrogen peroxide derivative bonded with urea. It is asolid substitute for liquid hydrogen peroxide in the chemical, cosmetics, and pharmaceutical industries, mainly as a disinfectant and bleaching application. However, it has an unstable nature, and there are scant studies on CP thermal analysis.

Objective: This study focuses on CP thermal analysis and degradation behavior.

Methods: CP was characterized by differential scanning calorimetry, thermogravimetric analysis, Fourier-transformed infrared, diffraction by X-ray, as well as, thermal and photodegradation was determined by ultraviolet spectrophotometer.

Results: CP was characterized with a sharp endothermic event (88.50 oC; ΔH= -643.20 J.g-1), and a thermal decomposition behavior in a four-steps process. The pattern diffraction presented sharp peaks at 2θ: 15.2, 25.1 and 26.0o . The Arrhenius plot obtained by isothermal thermogravimetric analysis showed a linear relation with temperature in two steps. The first step the activation energy values was Ea = 45.73 J.mol-1.K-1. The thermal degradation recovery was 3.29% after 5 days, and 11.31% against 97.4% under the dark control to photostability.

Conclusion: The study contributed to characterizing the CP and the results suggest that degradation depends on the surface transition state and the ternary formed system (CP-urea-water) and that the temperature influenced this system. The data were obtained through quick and easy techniques, which use wispy raw material and presented a significant result that can be used by the entire industry in the development of new formulations.

[1]
Bloomfield, M. A rapid and precise assay for peroxide as? active oxygen? in products, by flow injection analysis in a high pressure system with spectrophotometric detection*1. Talanta, 2004, 64(5), 1175-1182.
[http://dx.doi.org/10.1016/j.talanta.2004.05.054] [PMID: 18969726]
[2]
Matyáš, R.; Selesovsky, J.; Pelikán, V.; Szala, M.; Cudziło, S.; Trzciński, W.A.; Gozin, M. Explosive properties and thermal stability of urea-hydrogen peroxide adduct. Propellants Explos. Pyrotech., 2017, 42(2), 198-203.
[http://dx.doi.org/10.1002/prep.201600101]
[3]
Vidal, I.G.; Dias, I.L.T.; Neto, G.O.; Lanza, M.R.V.; Sotomayor, M.D.P.T. Carbamide peroxide determination in tooth whitening using a reagentless HRP-biosensor. Anal. Lett., 2009, 42(2), 352-365.
[http://dx.doi.org/10.1080/00032710802507927]
[4]
Ball, M.C.; Massey, S. The thermal decomposition of solid urea hydrogen peroxide. Thermochim. Acta, 1995, 261, 95-106.
[http://dx.doi.org/10.1016/0040-6031(95)02399-M]
[5]
Stradella, L.; Argentero, M. A study of the thermal decomposition of urea, of related compounds and thiourea using DSC and TG-EGA. Thermochim. Acta, 1993, 219, 315-323.
[http://dx.doi.org/10.1016/0040-6031(93)80508-8]
[6]
Adhesive Dental Bleaching Compositions Containing Polyvinylpyrrolidone. Patent US9782338B2, 2016.
[7]
Gadanha, A.N.; Rossini, C.R. Stability of carbamide peroxide in gel formulation as prepared in Brazilian compounding pharmacies. Rev. Bras. Farm., 2013, 94, 115-119.
[8]
Bonesi, C.M.; Ulian, L.S.; Balem, P.; Angeli, V.W. Carbamide peroxide gel stability under different temperature conditions: is manipulated formulation an option? Braz. J. Pharm. Sci., 2011, 47(4), 719-724.
[http://dx.doi.org/10.1590/S1984-82502011000400008]
[9]
Aulton, M.E. Pharmaceutics: The Science of Dosage Form Design, 2nd ed; Churchill Livingstone, 2005.
[10]
Ionashiro, M.; Caires, F.J.; Gomes, D.J.C. Giolito: Fundamentals of thermogravimetry and Differential Thermal Analysis/Differential Scanning Calorimetry, 2nd ed; Vesper: São Paulo, 2014.
[11]
Oliveira, M.A.; Yoshida, M.I.; Lima Gomes, E.C. Thermal analysis applied to drugs and pharmaceutical formulations in the pharmaceutical industry. Quim. Nova, 2011, 34(7), 1224-1230.
[http://dx.doi.org/10.1590/S0100-40422011000700022]
[12]
Bertol, C.D.; Cruz, A.P.; Stulzer, H.K.; Murakami, F.S.; Silva, M.A.S. Thermal decomposition kinetics and compatibility studies of primaquine under isothermal and non-isothermal conditions. J. Therm. Anal. Calorim., 2010, 102(1), 187-192.
[http://dx.doi.org/10.1007/s10973-009-0540-3]
[13]
Genaro, A.R. Remington - The Science and Practice of Pharmacy. Academia: Philadelphia, 2004.
[14]
Fandaruff, C.; Araya-Sibaja, A.M.; Pereira, R.N.; Hoffmeister, C.R.D.; Rocha, H.V.A.; Silva, M.A.S. Thermal behavior and decomposition kinetics of efavirenz under isothermal and non-isothermal conditions. J. Therm. Anal. Calorim., 2014, 115(3), 2351-2356.
[http://dx.doi.org/10.1007/s10973-013-3306-x]
[15]
Salama, N.N.; Mohammad, M.A.; Fattah, T.A. Thermal behavior study and decomposition kinetics of amisulpride under non-isothermal and isothermal conditions. J. Therm. Anal. Calorim., 2015, 120(1), 953-958.
[http://dx.doi.org/10.1007/s10973-015-4419-1]
[16]
United States Pharmacopeia XXXIX. USP 39; The United States Pharmacopeial Convention: Rockville, 2016.
[17]
Morita, T.; Assumpção, R.M.V. Solutions, Reagents and Solvents Manual, 2nd ed; Editora Edgard Blucher Ltda: São Paulo, 2007.
[18]
Baccan, N. Elementary Quantitative Analytical Chemistry, 3rd ed; Editora Edgard Blucher Ltda: São Paulo, 2001.
[19]
Lima, F.V.; Farias, A.; Mendes, C.; Cardoso, S.G.; Silva, M.A.S. A simple, green and fast ultraviolet spectrophotometric method for the carbamide peroxide determination in dental whitening products (in press). Curr. Pharm. Anal., 2017, 13, 1-7.
[20]
Wynne, A.M. The thermal decomposition of urea: An undergraduate thermal analysis experiment. J. Chem. Educ., 1987, 64(2), 180-182.
[http://dx.doi.org/10.1021/ed064p180]
[21]
Chen, J.P.; Isa, K. Thermal decomposition of urea and urea derivatives by simultaneous TG/(DTA)/MS. J. Mass Spectrom. Soc. Jpn., 1998, 46(4), 299-303.
[http://dx.doi.org/10.5702/massspec.46.299]
[22]
Barbosa, L.C.A. Infrared spectroscopy in the characterization of organic compounds; American Chemical Society, 2008.
[23]
Lum, Y.H.; Shaaban, A.; Mitan, N.M.M.; Dimin, M.F.; Mohamad, N.; Hamid, N.; Se, S.M. Characterization of urea encapsulated by biodegradable starch-PVA-Glycerol. J. Polym. Environ., 2013, 21(4), 1083-1087.
[http://dx.doi.org/10.1007/s10924-012-0552-0]
[24]
Silverstein, R.M.; Webster, F.X.; Kiemle, D.J. Spectrometric identification of organic compounds, 7th ed; LTC: Rio de Janeiro, 2006.
[25]
Fritchie, C.J., Jnr; McMullan, R.K. Neutron diffraction study of the 1:1 urea:Hydrogen peroxide complex at 81 K. Acta Crystallogr. B, 1981, 37(5), 1086-1091.
[http://dx.doi.org/10.1107/S0567740881005116]
[26]
Cordes, H.F. Preexponential factors for solid-state thermal decomposition. J. Phys. Chem., 1968, 72(6), 2185-2189.
[http://dx.doi.org/10.1021/j100852a052]
[27]
Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Pérez-Maqueda, L.A.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta, 2011, 520(1-2), 1-19.
[http://dx.doi.org/10.1016/j.tca.2011.03.034]
[28]
Lima, F.V.; Mendes, C.; Zanetti-Ramos, B.G.; Nandi, J.K.; Cardoso, S.G.; Bernardon, J.K.; Silva, M.A.S. Carbamide peroxide nanoparticles for dental whitening application: Characterization, stability and in vivo/in situ evaluation. Colloids Surf. B Biointerfaces, 2019, 179, 326-333.
[http://dx.doi.org/10.1016/j.colsurfb.2019.04.006] [PMID: 30981068]
[29]
Baxendale, J.H.; Wilson, J.A. The photolysis of hydrogen peroxide at high light intensities. Trans. Faraday Soc., 1957, 53, 344-356.
[http://dx.doi.org/10.1039/tf9575300344]
[30]
Ikai, H.; Nakamura, K.; Shirato, M.; Kanno, T.; Iwasawa, A.; Sasaki, K.; Niwano, Y.; Kohno, M. Photolysis of hydrogen peroxide, an effective disinfection system via hydroxyl radical formation. Antimicrob. Agents Chemother., 2010, 54(12), 5086-5091.
[http://dx.doi.org/10.1128/AAC.00751-10] [PMID: 20921319]

© 2025 Bentham Science Publishers | Privacy Policy