Generic placeholder image

Current Enzyme Inhibition

Editor-in-Chief

ISSN (Print): 1573-4080
ISSN (Online): 1875-6662

Research Article

Apocynaceae as a Potential Source for Acetylcholinesterase Inhibition in Symptomatic Regulation and Management of Alzheimer's Disease

In Press, (this is not the final "Version of Record"). Available online 11 July, 2024
Author(s): Priyanka Kumari, Naveen Sarwa, Deepak Meena, Ajaya Eesha and Navneet Singh Chaudhary*
Published on: 11 July, 2024

DOI: 10.2174/0115734080296802240528073027

Price: $95

Abstract

Memory loss or dementia is the key symptom of Alzheimer's disease (AD). In AD, significant interference in a progressive manner is observed in memory, behaviour, and cognitive abilities that affect the daily life of a person. At present, more than 50 million people are affected worldwide with Alzheimer's disease. Urgent attention is needed for the symptomatic regulation and management of this disease. The significant pharmacotherapy research in the last two decades gave only four drug compounds galanthamine, donepezil, rivastigmine, and memantine that inhibit the enzyme acetylcholinesterase (AChE) to elevate the availability of acetylcholine in the brain for symptomatic relief in AD patients. Plant-based AChE inhibitors from many plant families, mainly including Rutaceae, Papaveraceae, Apocynaceae, Rubiaceae, Amaryllidaceae, Liliaceae, Lycopodiaceae, Fabaceae, Lamiaceae, etc., have been characterized for the management of AD progression. AD progression is described by cholinergic, amyloid, Tau protein, oxidative stress, and neuroinflammatory hypothesis. To date, there is no comprehensive review in the literature that combined all plants of the Apocynaceae family showing anti-AChE activity. Therefore, the current review aims to present significant literature, especially on plant-derived compounds from the Apocynaceae family that inhibit AChE. The review compiled all plants showing potent anti-acetylcholinesterase activity. The anti-AChE activity of more than 30 plants is described, which may be potential targets to find new drug molecules by attracting the attention of researchers toward the Apocynaceae family. More than 8 species of genus Tabernaemontana of Apocynaceae have been investigated for indole alkaloids, demonstrating AChE inhibitory activity. The majority of anti-AChE compounds belong to the class of alkaloids.

[1]
Mullard, A. News in focus. Nature, 2021, 594, 309.
[http://dx.doi.org/10.1038/d41586-021-01546-2] [PMID: 34103732]
[2]
Roy, S.K.; Wang, J.J.; Xu, Y.M. 2023 Alzheimer’s disease facts and figures. Alzheimers Dement., 2023, 19(4), 1598-1695.
[http://dx.doi.org/10.1002/alz.13016] [PMID: 36918389]
[3]
Lecca, D.; Jung, Y.J.; Scerba, M.T. Role of chronic neuroinflammation in neuroplasticity and cognitive function: A hypothesis. Alzheimers Dement., 2022, 18(11), 2327-2340.
[http://dx.doi.org/10.1002/alz.12610] [PMID: 35234334]
[4]
Hebert, L.E.; Weuve, J.; Scherr, P.A.; Evans, D.A. Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology, 2013, 80(19), 1778-1783.
[http://dx.doi.org/10.1212/WNL.0b013e31828726f5] [PMID: 23390181]
[5]
Selkoe, D.J. Treatments for Alzheimer’s disease emerge. Science, 2021, 373(6555), 624-626.
[http://dx.doi.org/10.1126/science.abi6401] [PMID: 34353940]
[6]
Kang, J.; Lemaire, H.G.; Unterbeck, A. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature, 1987, 325(6106), 733-736.
[http://dx.doi.org/10.1038/325733a0] [PMID: 2881207]
[7]
Kolarova, M.; García-Sierra, F.; Bartos, A.; Ricny, J.; Ripova, D. Structure and pathology of tau protein in Alzheimer disease. Int. J. Alzheimers Dis., 2012, 2012, 1-13.
[http://dx.doi.org/10.1155/2012/731526] [PMID: 22690349]
[8]
Mietelska-Porowska, A.; Wasik, U.; Goras, M.; Filipek, A.; Niewiadomska, G. Tau protein modifications and interactions: their role in function and dysfunction. Int. J. Mol. Sci., 2014, 15(3), 4671-4713.
[http://dx.doi.org/10.3390/ijms15034671] [PMID: 24646911]
[9]
Persson, T.; Popescu, B.O.; Cedazo-Minguez, A. Oxidative stress in Alzheimer’s disease: Why did antioxidant therapy fail? Oxid. Med. Cell. Longev., 2014, 2014, 427318.
[http://dx.doi.org/10.1155/2014/427318]
[10]
Craig, L.A.; Hong, N.S.; McDonald, R.J. Revisiting the cholinergic hypothesis in the development of Alzheimer’s disease. Neurosci. Biobehav. Rev., 2011, 35(6), 1397-1409.
[http://dx.doi.org/10.1016/j.neubiorev.2011.03.001] [PMID: 21392524]
[11]
Anand, P.; Singh, B. A review on cholinesterase inhibitors for Alzheimer’s disease. Arch. Pharm. Res., 2013, 36(4), 375-399.
[http://dx.doi.org/10.1007/s12272-013-0036-3] [PMID: 23435942]
[12]
Andrieu, S.; Coley, N.; Lovestone, S.; Aisen, P.S.; Vellas, B. Prevention of sporadic Alzheimer’s disease: lessons learned from clinical trials and future directions. Lancet Neurol., 2015, 14(9), 926-944.
[http://dx.doi.org/10.1016/S1474-4422(15)00153-2] [PMID: 26213339]
[13]
Santos, T.C.; Gomes, T.M.; Pinto, B.A.S.; Camara, A.L.; Paes, A.M.A. Naturally occurring acetylcholinesterase inhibitors and their potential use for Alzheimer’s disease therapy. Front. Pharmacol., 2018, 9, 1192.
[http://dx.doi.org/10.3389/fphar.2018.01192] [PMID: 30405413]
[14]
Thomsen, T.; Kewitz, H. Selective inhibition of human acetylcholinesterase by galanthamine in vitro and in vivo. Life Sci., 1990, 46(21), 1553-1558.
[http://dx.doi.org/10.1016/0024-3205(90)90429-U] [PMID: 2355800]
[15]
Schrattenholz, A.; Pereira, E.F.; Roth, U.; Weber, K.H.; Albuquerque, E.X.; Maelicke, A. Agonist responses of neuronal nicotinic acetylcholine receptors are potentiated by a novel class of allosterically acting ligands. Mol. Pharmacol., 1996, 49(1), 1-6.
[PMID: 8569694]
[16]
Heinrich, M. Galanthamine from Galanthus and other Amaryllidaceae chemistry and biology based on traditional use. Alkaloids Chem. Biol., 2010, 68, 157-165.
[http://dx.doi.org/10.1016/S1099-4831(10)06804-5] [PMID: 20334038]
[17]
Murray, A.; Faraoni, M.; Castro, M.; Alza, N.; Cavallaro, V. Natural AChE inhibitors from plants and their contribution to Alzheimer’s disease therapy. Curr. Neuropharmacol., 2013, 11(4), 388-413.
[http://dx.doi.org/10.2174/1570159X11311040004] [PMID: 24381530]
[18]
Huang, L.; Su, T.; Li, X. Natural products as sources of new lead compounds for the treatment of Alzheimer’s disease. Curr. Top. Med. Chem., 2013, 13(15), 1864-1878.
[http://dx.doi.org/10.2174/15680266113139990142] [PMID: 23931437]
[19]
Dhage, P.A.; Sharbidre, A.A.; Dakua, S.P.; Balakrishnan, S. Leveraging hallmark Alzheimer’s molecular targets using phytoconstituents: Current perspective and emerging trends. Biomed. Pharmacother., 2021, 139, 111634.
[http://dx.doi.org/10.1016/j.biopha.2021.111634] [PMID: 33965726]
[20]
Russo, P.; Frustaci, A.; Del Bufalo, A.; Fini, M.; Cesario, A. From traditional European medicine to discovery of new drug candidates for the treatment of dementia and Alzheimer’s disease: Acetylcholinesterase inhibitors. Curr. Med. Chem., 2013, 20(8), 976-983.
[PMID: 23210783]
[21]
Chopra, K.; Misra, S.; Kuhad, A. Current perspectives on pharmacotherapy of Alzheimer’s disease. Expert Opin. Pharmacother., 2011, 12(3), 335-350.
[http://dx.doi.org/10.1517/14656566.2011.520702] [PMID: 21222549]
[22]
Crismon, M.L. Tacrine: First drug approved for Alzheimer’s disease. Ann. Pharmacother., 1994, 28(6), 744-751.
[http://dx.doi.org/10.1177/106002809402800612] [PMID: 7919566]
[23]
Qizilbash, N.; Birks, J.; Lopez Arrieta, J.; Lewington, S.; Szeto, S. WITHDRAWN: Tacrine for Alzheimer’s disease. Cochrane Database Syst. Rev., 2007, (3), CD000202.
[PMID: 17636619]
[24]
Sharma, K. Cholinesterase inhibitors as Alzheimer’s therapeutics (Review). Mol. Med. Rep., 2019, 20(2), 1479-1487.
[PMID: 31257471]
[25]
Dooley, M.; Lamb, H.M. Donepezil. Drugs Aging, 2000, 16(3), 199-226.
[http://dx.doi.org/10.2165/00002512-200016030-00005] [PMID: 10803860]
[26]
Cacabelos, R. Donepezil in Alzheimer’s disease: From conventional trials to pharmacogenetics. Neuropsychiatr. Dis. Treat., 2007, 3(3), 303-333.
[PMID: 19300564]
[27]
Kumar, A.; Gupta, V.; Sharma, S. Donepezil; StatPearls Publishing, 2021.
[28]
Ellman, G.L.; Courtney, K.D.; Andres, V., Jr; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7(2), 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[29]
Rhee, I.K.; van de Meent, M.; Ingkaninan, K.; Verpoorte, R. Screening for acetylcholinesterase inhibitors from Amaryllidaceae using silica gel thin-layer chromatography in combination with bioactivity staining. J. Chromatogr. A, 2001, 915(1-2), 217-223.
[http://dx.doi.org/10.1016/S0021-9673(01)00624-0] [PMID: 11358251]
[30]
López, S.; Bastida, J.; Viladomat, F.; Codina, C. Acetylcholinesterase inhibitory activity of some Amaryllidaceae alkaloids and Narcissus extracts. Life Sci., 2002, 71(21), 2521-2529.
[http://dx.doi.org/10.1016/S0024-3205(02)02034-9] [PMID: 12270757]
[31]
Marston, A.; Kissling, J.; Hostettmann, K. A rapid TLC bioautographic method for the detection of acetylcholinesterase and butyrylcholinesterase inhibitors in plants. Phytochem. Anal., 2002, 13(1), 51-54.
[http://dx.doi.org/10.1002/pca.623] [PMID: 11899607]
[32]
Di Giovanni, S.; Borloz, A.; Urbain, A. in vitro screening assays to identify natural or synthetic acetylcholinesterase inhibitors: Thin layer chromatography versus microplate methods. Eur. J. Pharm. Sci., 2008, 33(2), 109-119.
[http://dx.doi.org/10.1016/j.ejps.2007.10.004] [PMID: 18082383]
[33]
Ballard, C.; Gauthier, S.; Corbett, A.; Brayne, C.; Aarsland, D.; Jones, E. Alzheimer’s disease. Lancet, 2011, 377(9770), 1019-1031.
[34]
Babic, T.; Francis, P.T.; Palmer, A.M.; Snape, M.; Wilcock, G.K. The cholinergic hypothesis of Alzheimer’s disease: A review of progress. J. Neurol. Neurosurg. Psychiatry, 1999, 67(4), 558.
[http://dx.doi.org/10.1136/jnnp.67.4.558] [PMID: 10610396]
[35]
Bartus, R.T.; Dean, R.L., III; Beer, B.; Lippa, A.S. The cholinergic hypothesis of geriatric memory dysfunction. Science, 1982, 217(4558), 408-414.
[http://dx.doi.org/10.1126/science.7046051] [PMID: 7046051]
[36]
Dumas, J.A.; Newhouse, P.A. The cholinergic hypothesis of cognitive aging revisited again: Cholinergic functional compensation. Pharmacol. Biochem. Behav., 2011, 99(2), 254-261.
[http://dx.doi.org/10.1016/j.pbb.2011.02.022] [PMID: 21382398]
[37]
García-Ayllón, M.S.; Riba-Llena, I.; Serra-Basante, C.; Alom, J.; Boopathy, R.; Sáez-Valero, J. Altered levels of acetylcholinesterase in Alzheimer plasma. PLoS One, 2010, 5(1), e8701.
[http://dx.doi.org/10.1371/journal.pone.0008701] [PMID: 20090844]
[38]
Halder, N.; Lal, G. Cholinergic system and its therapeutic importance in inflammation and autoimmunity. Front. Immunol., 2021, 12, 660342.
[http://dx.doi.org/10.3389/fimmu.2021.660342] [PMID: 33936095]
[39]
Zhou, S.; Huang, G. Synthesis and activities of acetylcholinesterase inhibitors. Chem. Biol. Drug Des., 2021, 98(6), 997-1006.
[http://dx.doi.org/10.1111/cbdd.13958] [PMID: 34570966]
[40]
Jiang, Y.; Gao, H.; Turdu, G. Traditional Chinese medicinal herbs as potential AChE inhibitors for anti-Alzheimer’s disease: A review. Bioorg. Chem., 2017, 75, 50-61.
[http://dx.doi.org/10.1016/j.bioorg.2017.09.004] [PMID: 28915465]
[41]
Patil, P.; Thakur, A.; Sharma, A.; Flora, S.J.S. Natural products and their derivatives as multifunctional ligands against Alzheimer’s disease. Drug Dev. Res., 2020, 81(2), 165-183.
[http://dx.doi.org/10.1002/ddr.21587] [PMID: 31820476]
[42]
Xia, Y.; Wu, Q.; Mak, S. Regulation of acetylcholinesterase during the lipopolysaccharide‐induced inflammatory responses in microglial cells. FASEB J., 2022, 36(3), e22189.
[http://dx.doi.org/10.1096/fj.202101302RR] [PMID: 35129858]
[43]
Liang, Z.; Li, X.; Luo, X. The Aptamer Ob2, a novel AChE inhibitor, restores cognitive deficits and alleviates amyloidogenesis in 5×FAD transgenic mice. Mol. Ther. Nucleic Acids, 2022, 28, 114-123.
[http://dx.doi.org/10.1016/j.omtn.2022.02.018] [PMID: 35402070]
[44]
Dobson, C.M. The amyloid phenomenon and its links with human disease. Cold Spring Harb. Perspect. Biol., 2017, 9(6), a023648.
[http://dx.doi.org/10.1101/cshperspect.a023648] [PMID: 28062560]
[45]
Zhang, Z.; Wang, S.; Tan, H. Advances in polysaccharides of natural source of the anti-Alzheimer’s disease effect and mechanism. Carbohydr. Polym., 2022, 296, 119961.
[http://dx.doi.org/10.1016/j.carbpol.2022.119961] [PMID: 36088034]
[46]
Zhang, Y.; Thompson, R.; Zhang, H.; Xu, H. APP processing in Alzheimer’s disease. Mol. Brain, 2011, 4(1), 3.
[http://dx.doi.org/10.1186/1756-6606-4-3] [PMID: 21214928]
[47]
Shin, W.S.; Di, J.; Cao, Q. Amyloid β-protein oligomers promote the uptake of tau fibril seeds potentiating intracellular tau aggregation. Alzheimers Res. Ther., 2019, 11(1), 86.
[http://dx.doi.org/10.1186/s13195-019-0541-9] [PMID: 31627745]
[48]
Avila, J.; Lucas, J.J.; Pérez, M.; Hernández, F. Role of tau protein in both physiological and pathological conditions. Physiol. Rev., 2004, 84(2), 361-384.
[http://dx.doi.org/10.1152/physrev.00024.2003] [PMID: 15044677]
[49]
Pîrşcoveanu, D.F.V.; Pirici, I.; Tudorică, V. Tau protein in neurodegenerative diseases a review. Rom. J. Morphol. Embryol., 2017, 58(4), 1141-1150.
[PMID: 29556602]
[50]
Jouanne, M.; Rault, S.; Voisin-Chiret, A.S. Tau protein aggregation in Alzheimer’s disease: An attractive target for the development of novel therapeutic agents. Eur. J. Med. Chem., 2017, 139, 153-167.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.070] [PMID: 28800454]
[51]
Noori, T.; Dehpour, A.R.; Sureda, A.; Sobarzo-Sanchez, E.; Shirooie, S. Role of natural products for the treatment of Alzheimer’s disease. Eur. J. Pharmacol., 2021, 898, 173974.
[http://dx.doi.org/10.1016/j.ejphar.2021.173974] [PMID: 33652057]
[52]
Zhang, H.; Wei, W.; Zhao, M. Interaction between Aβ and tau in the pathogenesis of Alzheimer’s disease. Int. J. Biol. Sci., 2021, 17(9), 2181-2192.
[http://dx.doi.org/10.7150/ijbs.57078] [PMID: 34239348]
[53]
Dong, Y.; Yu, H.; Li, X. Hyperphosphorylated tau mediates neuronal death by inducing necroptosis and inflammation in Alzheimer’s disease. J. Neuroinflammation, 2022, 19(1), 205.
[http://dx.doi.org/10.1186/s12974-022-02567-y] [PMID: 35971179]
[54]
Praticò, D. Oxidative stress hypothesis in Alzheimer’s disease: A reappraisal. Trends Pharmacol. Sci., 2008, 29(12), 609-615.
[http://dx.doi.org/10.1016/j.tips.2008.09.001] [PMID: 18838179]
[55]
Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.; Hureau, C.; Collin, F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol., 2018, 14, 450-464.
[http://dx.doi.org/10.1016/j.redox.2017.10.014] [PMID: 29080524]
[56]
Benzi, G.; Moretti, A. Are reactive oxygen species involved in Alzheimer’s disease? Neurobiol. Aging, 1995, 16(4), 661-674.
[http://dx.doi.org/10.1016/0197-4580(95)00066-N] [PMID: 8544918]
[57]
Llanos-González, E.; Henares-Chavarino, Á.A.; Pedrero-Prieto, C.M. Interplay between mitochondrial oxidative disorders and proteostasis in Alzheimer’s disease. Front. Neurosci., 2020, 13, 1444.
[http://dx.doi.org/10.3389/fnins.2019.01444] [PMID: 32063825]
[58]
da Rosa, M.M.; de Amorim, L.C.; Alves, J.V.O. The promising role of natural products in Alzheimer’s disease. Brain Disorders, 2022, 7, 100049.
[http://dx.doi.org/10.1016/j.dscb.2022.100049]
[59]
Cisbani, G.; Rivest, S. Targeting innate immunity to protect and cure Alzheimer’s disease: opportunities and pitfalls. Mol. Psychiatry, 2021, 26(10), 5504-5515.
[http://dx.doi.org/10.1038/s41380-021-01083-4] [PMID: 33854189]
[60]
Heneka, M.T.; O’Banion, M.K.; Terwel, D.; Kummer, M.P. Neuroinflammatory processes in Alzheimer’s disease. J. Neural Transm., 2010, 117(8), 919-947.
[http://dx.doi.org/10.1007/s00702-010-0438-z] [PMID: 20632195]
[61]
Gyengesi, E.; Münch, G. In search of an anti-inflammatory drug for Alzheimer disease. Nat. Rev. Neurol., 2020, 16(3), 131-132.
[http://dx.doi.org/10.1038/s41582-019-0307-9] [PMID: 31919414]
[62]
Cummings, J.; Jones, R.; Wilkinson, D. Effect of donepezil on cognition in severe Alzheimer’s disease: A pooled data analysis. J. Alzheimers Dis., 2010, 21(3), 843-851.
[http://dx.doi.org/10.3233/JAD-2010-100078] [PMID: 20634594]
[63]
Vasudevan, M.; Parle, M. Pharmacological actions of Thespesia populnea relevant to Alzheimer’s disease. Phytomedicine, 2006, 13(9-10), 677-687.
[http://dx.doi.org/10.1016/j.phymed.2006.01.007] [PMID: 16860552]
[64]
Nakdook, W.; Khongsombat, O.; Taepavarapruk, P.; Taepavarapruk, N.; Ingkaninan, K. The effects of Tabernaemontana divaricata root extract on amyloid β-peptide 25–35 peptides induced cognitive deficits in mice. J. Ethnopharmacol., 2010, 130(1), 122-126.
[http://dx.doi.org/10.1016/j.jep.2010.04.027] [PMID: 20435125]
[65]
Jahanshahi, M.; Nikmahzar, E.; Yadollahi, N.; Ramazani, K. Protective effects of Ginkgo biloba extract (EGB 761) on astrocytes of rat hippocampus after exposure with scopolamine. Anat. Cell Biol., 2012, 45(2), 92-96.
[http://dx.doi.org/10.5115/acb.2012.45.2.92] [PMID: 22822463]
[66]
Jung, H.A.; Karki, S.; Kim, J.H.; Choi, J.S. BACE1 and cholinesterase inhibitory activities of Nelumbo nucifera embryos. Arch. Pharm. Res., 2015, 38(6), 1178-1187.
[http://dx.doi.org/10.1007/s12272-014-0492-4] [PMID: 25300425]
[67]
Dubey, T.; Chinnathambi, S. Brahmi (Bacopa monnieri): An ayurvedic herb against the Alzheimer’s disease. Arch. Biochem. Biophys., 2019, 676, 108153.
[http://dx.doi.org/10.1016/j.abb.2019.108153] [PMID: 31622587]
[68]
Suganthy, N.; Pandian, S.K.; Devi, K.P. Cholinesterase inhibitors from plants: Possible treatment strategy for neurological disorders-a review. Int J Biomed Pharm Sci, 2009, 3(1), 87-103.
[69]
Baliga, M.S. Alstonia scholaris Linn R Br in the treatment and prevention of cancer: past, present, and future. Integr. Cancer Ther., 2010, 9(3), 261-269.
[http://dx.doi.org/10.1177/1534735410376068] [PMID: 20702494]
[70]
Singh, S.K.; Singh, A. Molluscicidal and anticholinesterase activity of Alstonia scholaris plant against freshwater snail Lymnaea acuminata. Pak. J. Biol. Sci., 2003, 6(16), 1442-1446.
[http://dx.doi.org/10.3923/pjbs.2003.1442.1446]
[71]
Bhowmik, S.; Ks, S.; Praveen, T. Evaluation of antioxidant and anticholinesterase potential of bark extracts of Alstonia scholaris. J. Pharm. Pharmacol., 2015, 2(4), 203-205.
[72]
Aremu, A.O.; Hlophe, N.P.; Van Staden, J.; Finnie, J.F. Ethnobotanical uses, nutritional composition, phytochemicals, biological activities, and propagation of the genus brachystelma (Apocynaceae). Horticulturae, 2022, 8(2), 122.
[http://dx.doi.org/10.3390/horticulturae8020122]
[73]
Pare, D; Hilou, A; Yhi-pênê N’DO, J, et al Phytochemical study and evaluation of the biological activity of anorectic plants used in the Seno province (Burkina Faso). J. Sci. Res. Rep., 2019, 23(4), 1-13.
[http://dx.doi.org/10.9734/jsrr/2019/v23i430125]
[74]
Kareti SR, P.S. In silico molecular docking analysis of potential anti-alzheimer’s compounds present in chloroform extract of Carissa carandas leaf using gas chromatography MS/MS. Curr. Ther. Res. Clin. Exp., 2020, 93, 100615.
[http://dx.doi.org/10.1016/j.curtheres.2020.100615] [PMID: 33306055]
[75]
Pereira, D.M.; Ferreres, F.; Oliveira, J.M.A. Pharmacological effects of Catharanthus roseus root alkaloids in acetylcholinesterase inhibition and cholinergic neurotransmission. Phytomedicine, 2010, 17(8-9), 646-652.
[http://dx.doi.org/10.1016/j.phymed.2009.10.008] [PMID: 19962870]
[76]
Hindmarch, I.; Fuchs, H.H.; Erzigkeit, H. Efficacy and tolerance of vinpocetine in ambulant patients suffering from mild to moderate organic psychosyndromes. Int. Clin. Psychopharmacol., 1991, 6(1), 31-44.
[http://dx.doi.org/10.1097/00004850-199100610-00005] [PMID: 2071888]
[77]
Sz, S.; Whitehouse, P.J. Vinpocetine for cognitive impairment and dementia (Cochrane Review).The Cochrane Library; , 2004, p. 2.
[78]
Deshmukh, R.; Sharma, V.; Mehan, S.; Sharma, N.; Bedi, K.L. Amelioration of intracerebroventricular streptozotocin induced cognitive dysfunction and oxidative stress by vinpocetine a PDE1 inhibitor. Eur. J. Pharmacol., 2009, 620(1-3), 49-56.
[http://dx.doi.org/10.1016/j.ejphar.2009.08.027] [PMID: 19699735]
[79]
Zhan, Z.J.; Yu, Q.; Wang, Z.L.; Shan, W.G. Indole alkaloids from Ervatamia hainanensis with potent acetylcholinesterase inhibition activities. Bioorg. Med. Chem. Lett., 2010, 20(21), 6185-6187.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.123] [PMID: 20850311]
[80]
Ingkaninan, K.; Temkitthawon, P.; Chuenchom, K.; Yuyaem, T.; Thongnoi, W. Screening for acetylcholinesterase inhibitory activity in plants used in Thai traditional rejuvenating and neurotonic remedies. J. Ethnopharmacol., 2003, 89(2-3), 261-264.
[http://dx.doi.org/10.1016/j.jep.2003.08.008] [PMID: 14611889]
[81]
Lima, J.A.; Costa, R.S.; Epifânio, R.A.; Castro, N.G.; Rocha, M.S.; Pinto, A.C. Geissospermum vellosii stembark. Pharmacol. Biochem. Behav., 2009, 92(3), 508-513.
[http://dx.doi.org/10.1016/j.pbb.2009.01.024] [PMID: 19463267]
[82]
Ferreira, H.C.; Serra, C.P.; Endringer, D.C.; Lemos, V.S.; Braga, F.C.; Côrtes, S.F. Endothelium-dependent vasodilation induced by Hancornia speciosa in rat superior mesenteric artery. Phytomedicine, 2007, 14(7-8), 473-478.
[http://dx.doi.org/10.1016/j.phymed.2006.11.008] [PMID: 17174539]
[83]
Marques, S.P.; Oliveira, I.R.; Owen, R.W.; Trevisan, M.T. Antioxidant capacity, angiotensin I converting enzyme (ACE) and acetylcholinesterase inhibition by extracts of the leaves and bark of Hancornia speciosa Gomes. Human J, 2015, 4, 171-183.
[84]
Penido, A.B.; De Morais, S.M.; Ribeiro, A.B. Medicinal plants from northeastern Brazil against Alzheimer’s disease. Evid. Based Complement. Alternat. Med., 2017, 2017, 1-7.
[http://dx.doi.org/10.1155/2017/1753673] [PMID: 28316633]
[85]
Llanos-Romero, R.E.; Cárdenas, R.; Zúñiga, B.; Herrera-Santoyo, J.; Guevara-Fefer, P. Acetylcholinesterase inhibitory activity of Haplophyton cimicidum. Nat. Prod. Res., 2014, 28(10), 757-759.
[http://dx.doi.org/10.1080/14786419.2013.879131] [PMID: 24484055]
[86]
Mroue, M.; Alam, M. Crooksiine, a bisindole alkaloid from Haplophyton crooksii. Phytochemistry, 1991, 30(5), 1741-1744.
[http://dx.doi.org/10.1016/0031-9422(91)84255-Q]
[87]
Mroue, M.A.; Ghuman, M.A.; Alam, M. Crooksidine, an indole alkaloid from Haplophyton crooksii. Phytochemistry, 1993, 33(1), 217-219.
[http://dx.doi.org/10.1016/0031-9422(93)85426-R]
[88]
Mroue, M.A.; Euler, K.L.; Ghuman, M.A.; Alam, M. Indole alkaloids of Haplophyton crooksii. J. Nat. Prod., 1996, 59(9), 890-893.
[http://dx.doi.org/10.1021/np960070c]
[89]
Penumala, M.; Zinka, R.B.; Shaik, J.B.; Mallepalli, S.K.R.; Vadde, R.; Amooru, D.G. Phytochemical profiling and in vitro screening for anticholinesterase, antioxidant, antiglucosidase and neuroprotective effect of three traditional medicinal plants for Alzheimer’s Disease and Diabetes Mellitus dual therapy. BMC Complement. Altern. Med., 2018, 18(1), 77.
[http://dx.doi.org/10.1186/s12906-018-2140-x] [PMID: 29499679]
[90]
Kundu, A.; Mitra, A. Flavoring extracts of Hemidesmus indicus roots and Vanilla planifolia pods exhibit in vitro acetylcholinesterase inhibitory activities. Plant Foods Hum. Nutr., 2013, 68(3), 247-253.
[http://dx.doi.org/10.1007/s11130-013-0363-z] [PMID: 23715789]
[91]
Samaradivakara, S.P.; Samarasekera, R.; Handunnetti, S.M.; Weerasena, O.V.D.S.J. Cholinesterase, protease inhibitory and antioxidant capacities of Sri Lankan medicinal plants. Ind. Crops Prod., 2016, 83, 227-234.
[http://dx.doi.org/10.1016/j.indcrop.2015.12.047]
[92]
Lobine, D.; Mahomoodally, M.F. Himatanthus lancifolius (Müll. Arg.) Woodson. In: In: Naturally Occurring Chemicals Against Alzheimer's Disease; Academic Press, 2021; pp. 463-466.
[93]
Seidl, C.; Correia, B.L.; Stinghen, A.E.M.; Santos, C.A.M. Acetylcholinesterase inhibitory activity of uleine from Himatanthus lancifolius. Z. Naturforsch. C J. Biosci., 2010, 65(7-8), 440-444.
[http://dx.doi.org/10.1515/znc-2010-7-804] [PMID: 20737911]
[94]
Seidl, C.; Santos, C.A.M.; Simone, A.D.; Bartolini, M.; Weffort-Santos, A.M.; Andrisano, V. Uleine disrupts key enzymatic and non-enzymatic biomarkers that leads to Alzheimer’s disease. Curr. Alzheimer Res., 2017, 14(3), 317-326.
[http://dx.doi.org/10.2174/1567205013666161026150455] [PMID: 27784218]
[95]
Mukem, S. Acetylcholinesterase Inhibitory, Anti-inflammatory and Antioxidant Activities of Holarrhena antidysenterica Bark. Prince of Songkla University, 2011.
[96]
Yang, Z.D.; Duan, D.Z.; Xue, W.W.; Yao, X.J.; Li, S. Steroidal alkaloids from Holarrhena antidysenterica as acetylcholinesterase inhibitors and the investigation for structure–activity relationships. Life Sci., 2012, 90(23-24), 929-933.
[http://dx.doi.org/10.1016/j.lfs.2012.04.017] [PMID: 22569298]
[97]
Cheenpracha, S.; Jitonnom, J.; Komek, M.; Ritthiwigrom, T.; Laphookhieo, S. Acetylcholinesterase inhibitory activity and molecular docking study of steroidal alkaloids from Holarrhena pubescens barks. Steroids, 2016, 108, 92-98.
[http://dx.doi.org/10.1016/j.steroids.2016.01.018] [PMID: 26850468]
[98]
Namasudra, S.; Phukan, P.; Bawari, M. GC-MS analysis of bioactive compounds and safety assessment of the ethanol extract of the barks of Holarrhena pubescens Wall. ex.G.Don (Family Apocynaceae): Sub-acute toxicity studies in swiss albino mice. Pharmacogn. J., 2021, 13(1), 162-171.
[http://dx.doi.org/10.5530/pj.2021.13.23]
[99]
Bulbul, I.; Fashiuddin, S.; Asaduzzaman, M. Evaluation of antioxidant and cholinesterase inhibitory activities of Hoya parasitica Variegata: An in-vitro study. Annu. Res. Rev. Biol., 2018, 26(4), 1-12.
[http://dx.doi.org/10.9734/ARRB/2018/39925]
[100]
Hajimehdipoor, H.; Ara, L.; Moazzeni, H.; Esmaeili, S. Evaluating the antioxidant and acetylcholinesterase inhibitory activities of some plants from Kohgiluyeh va Boyerahmad province, Iran. Res J Pharmac, 2016, 3(4), 1-7.
[101]
Singh, D.; Singh, A. The toxicity of four native Indian plants: Effect on AChE and acid/alkaline phosphatase level in fish Channa marulius. Chemosphere, 2005, 60(1), 135-140.
[http://dx.doi.org/10.1016/j.chemosphere.2004.12.078] [PMID: 15910912]
[102]
Atay Balkan, İ.; Doğan, H.T.; Zengin, G. Enzyme inhibitory and antioxidant activities of Nerium oleander L. flower extracts and activity guided isolation of the active components. Ind. Crops Prod., 2018, 112, 24-31.
[http://dx.doi.org/10.1016/j.indcrop.2017.10.058]
[103]
Prasad, W.C.; Viraj, M.M.; Philip, R.; Rani, J.; Swetha, B.N.; Guruprasad, R. Extraction of acetylcholine esterase inhibitors from Plumeria pudica and analyzing its activity on zebrafish brain. World J. Pharm. Pharm. Sci., 2016, 5(4), 1781-1791.
[104]
Moshi, M.J.; Otieno, D.F.; Weisheit, A. Ethnomedicine of the Kagera Region, north western Tanzania. Part 3: plants used in traditional medicine in Kikuku village, Muleba District. J. Ethnobiol. Ethnomed., 2012, 8(1), 14.
[http://dx.doi.org/10.1186/1746-4269-8-14] [PMID: 22472473]
[105]
Fadaeinasab, M.; Hadi, A.; Kia, Y.; Basiri, A.; Murugaiyah, V. Cholinesterase enzymes inhibitors from the leaves of Rauvolfia reflexa and their molecular docking study. Molecules, 2013, 18(4), 3779-3788.
[http://dx.doi.org/10.3390/molecules18043779] [PMID: 23529036]
[106]
Fadaeinasab, M.; Basiri, A.; Kia, Y.; Karimian, H.; Ali, H.M.; Murugaiyah, V. New indole alkaloids from the bark of Rauvolfia reflexa and their cholinesterase inhibitory activity. Cell. Physiol. Biochem., 2015, 37(5), 1997-2011.
[http://dx.doi.org/10.1159/000438560] [PMID: 26584298]
[107]
Atta-ur-Rahman, MM Qureshi KZ. S. Malik, and SS Ali. Fitoterapia, 1989, 60, 291.
[108]
Shadat, A.A.; Ibrahim, A.Y.; Ezzeldin, E.; Alsaid, M.S. Acetylcholinesterase inhibition and antioxidant activity of some medicinal plants for treating neuro degenarative disease. Afr. J. Tradit. Complement. Altern. Med., 2015, 12(3), 97-103.
[http://dx.doi.org/10.4314/ajtcam.v12i3.12]
[109]
Demmak, R.G.; Bordage, S.; Bensegueni, A. Chemical constituents from solenostemma argel and their cholinesterase inhibitory activity. Nat. Prod. Sci., 2019, 25(2), 115-121.
[http://dx.doi.org/10.20307/nps.2019.25.2.115]
[110]
Andrade, M.T.; Lima, J.A.; Pinto, A.C.; Rezende, C.M.; Carvalho, M.P.; Epifanio, R.A. Indole alkaloids from Tabernaemontana australis (Müell. Arg) Miers that inhibit acetylcholinesterase enzyme. Bioorg. Med. Chem., 2005, 13(12), 4092-4095.
[http://dx.doi.org/10.1016/j.bmc.2005.03.045] [PMID: 15911323]
[111]
Naidoo, C.M.; Naidoo, Y.; Dewir, Y.H.; Murthy, H.N.; El-Hendawy, S.; Al-Suhaibani, N. Major bioactive alkaloids and biological activities of Tabernaemontana species (Apocynaceae). Plants, 2021, 10(2), 313.
[http://dx.doi.org/10.3390/plants10020313] [PMID: 33562893]
[112]
Nicola, C.; Salvador, M.; Escalona Gower, A.; Moura, S.; Echeverrigaray, S. Chemical constituents antioxidant and anticholinesterasic activity of Tabernaemontana catharinensis. ScientWorldJ, 2013, 2013, 1-10.
[http://dx.doi.org/10.1155/2013/519858] [PMID: 23983637]
[113]
Marinho, F.F.; Simões, A.O.; Barcellos, T.; Moura, S. Brazilian Tabernaemontana genus: Indole alkaloids and phytochemical activities. Fitoterapia, 2016, 114, 127-137.
[http://dx.doi.org/10.1016/j.fitote.2016.09.002] [PMID: 27639415]
[114]
Musquiari, B; Crevelin, EJ; Bertoni, BW Precursor-directed biosynthesis in Tabernaemontana catharinensis as a new avenue for Alzheimerʼs disease-modifying agents. Planta Medica, 2021, 87(01/02), 136-47.
[115]
Chattipakorn, S.; Pongpanparadorn, A.; Pratchayasakul, W.; Pongchaidacha, A.; Ingkaninan, K.; Chattipakorn, N. Tabernaemontana divaricata extract inhibits neuronal acetylcholinesterase activity in rats. J. Ethnopharmacol., 2007, 110(1), 61-68.
[http://dx.doi.org/10.1016/j.jep.2006.09.007] [PMID: 17023131]
[116]
Pratchayasakul, W.; Pongchaidecha, A.; Chattipakorn, N.; Chattipakorn, S. Ethnobotany & ethnopharmacology of Tabernaemontana divaricata. Indian J. Med. Res., 2008, 127(4), 317-335.
[PMID: 18577786]
[117]
Patel, S.S.; Raghuwanshi, R.; Masood, M.; Acharya, A.; Jain, S.K. Medicinal plants with acetylcholinesterase inhibitory activity. Rev. Neurosci., 2018, 29(5), 491-529.
[http://dx.doi.org/10.1515/revneuro-2017-0054] [PMID: 29303784]
[118]
Chaiyana, W.; Schripsema, J.; Ingkaninan, K.; Okonogi, S. 3′-R/S-Hydroxyvoacamine, a potent acetylcholinesterase inhibitor from Tabernaemontana divaricata. Phytomedicine, 2013, 20(6), 543-548.
[http://dx.doi.org/10.1016/j.phymed.2012.12.016] [PMID: 23375813]
[119]
Monnerat, C.S.; Souza, J.J.; Mathias, L.; Braz-Filho, R.; Vieira, I.J.C. A new indole alkaloid isolated from Tabernaemontana hystrix steud (Apocynaceae). J. Braz. Chem. Soc., 2005, 16(6b), 1331-1335.
[http://dx.doi.org/10.1590/S0103-50532005000800004]
[120]
Vieira, I.J.C.; Medeiros, W.L.B.; Monnerat, C.S. Two fast screening methods (GC-MS and TLC-ChEI assay) for rapid evaluation of potential anticholinesterasic indole alkaloids in complex mixtures. An. Acad. Bras. Cienc., 2008, 80(3), 419-426.
[http://dx.doi.org/10.1590/S0001-37652008000300003] [PMID: 18797794]
[121]
Alper, K.; Reith, M.E.A.; Sershen, H. Ibogaine and the inhibition of acetylcholinesterase. J. Ethnopharmacol., 2012, 139(3), 879-882.
[http://dx.doi.org/10.1016/j.jep.2011.12.006] [PMID: 22200647]
[122]
Medeiros, W.L.B.; Vieira, I.J.C.; Mathias, L. Two known bis-indole alkaloids isolated fromTabernaemontana laeta: complete1H and13C chemical shift assignments. Magn. Reson. Chem., 1999, 37(9), 676-681.
[http://dx.doi.org/10.1002/(SICI)1097-458X(199909)37:9676:AID-MRC5133.0.CO;2-F]
[123]
Medeiros, W.L.B.; Vieira, I.J.C.; Mathias, L.; Braz-Filho, R.; Schripsema, J. A new natural auaternary indole slkaloid isolated from Tabernaemontana laeta Mart. (Apocynaceae). J. Braz. Chem. Soc., 2001, 12(3), 368-372.
[http://dx.doi.org/10.1590/S0103-50532001000300008]
[124]
Athipornchai, A; Ketpoo, P; Saeeng, R. Acetylcholinesterase inhibitor from Tabernaemontana pandacaqui flowers. Nat Prod Communic, 2020, 15(3), 1934578X20911488.
[125]
Abbas-Mohammadi, M.; Moridi Farimani, M.; Salehi, P. Molecular networking based dereplication of AChE inhibitory compounds from the medicinal plant Vincetoxicum funebre (Boiss. & Kotschy). J. Biomol. Struct. Dyn., 2022, 40(5), 1942-1951.
[http://dx.doi.org/10.1080/07391102.2020.1834455] [PMID: 33054569]
[126]
Bahadori, F; Topçu, G; Boǧa, M; Türkekul, A; Kolak, U; Kartal, M. Indole alkaloids from Vinca major and V. minor growing in Turkey. Nat Prod Communic, 2012, 7(6), 1934578X1200700610.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy