Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Myeloid-derived Suppressor Cells and Multiple Sclerosis

In Press, (this is not the final "Version of Record"). Available online 10 July, 2024
Author(s): Aurora Zanghì, Paola Sofia Di Filippo, Carlo Avolio and Emanuele D’Amico*
Published on: 10 July, 2024

DOI: 10.2174/1570159X22999240710142942

Price: $95

Abstract

Myeloid-Derived Suppressor Cells (MDSCs) are a heterogeneous population of immature myeloid cells that play important roles in maintaining immune homeostasis and regulating immune responses. MDSCs can be divided into two main subsets based on their surface markers and functional properties: granulocytic MDSCs (G-MDSCs) and monocytic MDSCs (M-MDSCs). Recently greatest attention has been paid to innate immunity in Multiple Sclerosis (MS), so the aim of our review is to provide an overview of the main characteristics of MDSCs in MS and its preclinical model by discussing the most recent data available. The immunosuppressive functions of MDSCs can be dysregulated in MS, leading to an exacerbation of the autoimmune response and disease progression. Antigen-specific peptide immunotherapy, which aims to restore tolerance while avoiding the use of non-specific immunosuppressive drugs, is a promising approach for autoimmune diseases, but the cellular mechanisms behind successful therapy remain poorly understood. Therefore, targeting MDSCs could be a promising therapeutic approach for MS. Various strategies for modulating MDSCs have been investigated, including the use of pharmacological agents, biological agents, and adoptive transfer of exogenous MDSCs. However, it remained unclear whether MDSCs display any therapeutic potential in MS and how this therapy could modulate different aspects of the disease. Collectively, all the described studies revealed a pivotal role for MDSCs in the regulation of MS.

[1]
Gabrilovich, D.I.; Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol., 2009, 9(3), 162-174.
[http://dx.doi.org/10.1038/nri2506] [PMID: 19197294]
[2]
Veglia, F.; Sanseviero, E.; Gabrilovich, D.I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol., 2021, 21(8), 485-498.
[http://dx.doi.org/10.1038/s41577-020-00490-y] [PMID: 33526920]
[3]
Crook, K.R.; Liu, P. Role of myeloid-derived suppressor cells in autoimmune disease. World J. Immunol., 2014, 4(1), 26-33.
[http://dx.doi.org/10.5411/wji.v4.i1.26] [PMID: 25621222]
[4]
Consonni, F.M.; Porta, C.; Marino, A.; Pandolfo, C.; Mola, S. Bleve, A Myeloid-derived suppressor cells: Ductile targets in disease. Front. Immunol., 2019, 10, 949.
[5]
Sanchez-Pino, M.D.; Dean, M.J.; Ochoa, A.C. Myeloid-derived suppressor cells (MDSC): When good intentions go awry. Cell. Immunol., 2021, 362, 104302.
[http://dx.doi.org/10.1016/j.cellimm.2021.104302] [PMID: 33592540]
[6]
Peranzoni, E.; Zilio, S.; Marigo, I.; Dolcetti, L.; Zanovello, P.; Mandruzzato, S.; Bronte, V. Myeloid-derived suppressor cell heterogeneity and subset definition. Curr. Opin. Immunol., 2010, 22(2), 238-244.
[http://dx.doi.org/10.1016/j.coi.2010.01.021] [PMID: 20171075]
[7]
Bronte, V.; Brandau, S.; Chen, S.H.; Colombo, M.P.; Frey, A.B.; Greten, T.F.; Mandruzzato, S.; Murray, P.J.; Ochoa, A.; Ostrand-Rosenberg, S.; Rodriguez, P.C.; Sica, A.; Umansky, V.; Vonderheide, R.H.; Gabrilovich, D.I. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat. Commun., 2016, 7(1), 12150.
[http://dx.doi.org/10.1038/ncomms12150] [PMID: 27381735]
[8]
Dumitru, C.A.; Moses, K.; Trellakis, S.; Lang, S.; Brandau, S. Neutrophils and granulocytic myeloid-derived suppressor cells: Immunophenotyping, cell biology and clinical relevance in human oncology. Cancer Immunol. Immunother., 2012, 61(8), 1155-1167.
[http://dx.doi.org/10.1007/s00262-012-1294-5] [PMID: 22692756]
[9]
Filipazzi, P.; Huber, V.; Rivoltini, L. Phenotype, function and clinical implications of myeloid-derived suppressor cells in cancer patients. Cancer Immunol. Immunother., 2012, 61(2), 255-263.
[http://dx.doi.org/10.1007/s00262-011-1161-9] [PMID: 22120756]
[10]
Millrud, C.R.; Bergenfelz, C.; Leandersson, K. On the origin of myeloid-derived suppressor cells. Oncotarget, 2017, 8(2), 3649-3665.
[http://dx.doi.org/10.18632/oncotarget.12278] [PMID: 27690299]
[11]
Feng, P.H.; Lee, K.Y.; Chang, Y.L.; Chan, Y.F.; Kuo, L.W.; Lin, T.Y.; Chung, F.T.; Kuo, C.S.; Yu, C.T.; Lin, S.M.; Wang, C.H.; Chou, C.L.; Huang, C.D.; Kuo, H.P. CD14(+)S100A9(+) monocytic myeloid-derived suppressor cells and their clinical relevance in non-small cell lung cancer. Am. J. Respir. Crit. Care Med., 2012, 186(10), 1025-1036.
[http://dx.doi.org/10.1164/rccm.201204-0636OC] [PMID: 22955317]
[12]
Zhao, F.; Hoechst, B.; Duffy, A.; Gamrekelashvili, J.; Fioravanti, S.; Manns, M.P.; Greten, T.F.; Korangy, F. S100A9 a new marker for monocytic human myeloid‐derived suppressor cells. Immunology, 2012, 136(2), 176-183.
[http://dx.doi.org/10.1111/j.1365-2567.2012.03566.x] [PMID: 22304731]
[13]
Bergenfelz, C.; Leandersson, K. The generation and identity of human myeloid-derived suppressor cells. Front. Oncol., 2020, 10, 109.
[http://dx.doi.org/10.3389/fonc.2020.00109]
[14]
Zhao, Y.; Wu, T.; Shao, S.; Shi, B.; Zhao, Y. Phenotype, development, and biological function of myeloid-derived suppressor cells. OncoImmunology, 2016, 5(2), e1004983.
[http://dx.doi.org/10.1080/2162402X.2015.1004983] [PMID: 27057424]
[15]
Pillay, J.; Tak, T.; Kamp, V.M.; Koenderman, L. Immune suppression by neutrophils and granulocytic myeloid-derived suppressor cells: Similarities and differences. Cell. Mol. Life Sci., 2013, 70(20), 3813-3827.
[http://dx.doi.org/10.1007/s00018-013-1286-4] [PMID: 23423530]
[16]
Bar-Or, A.; Nuttall, R.K.; Duddy, M.; Alter, A.; Kim, H.J.; Ifergan, I.; Pennington, C.J.; Bourgoin, P.; Edwards, D.R.; Yong, V.W. Analyses of all matrix metalloproteinase members in leukocytes emphasize monocytes as major inflammatory mediators in multiple sclerosis. Brain, 2003, 126(12), 2738-2749.
[http://dx.doi.org/10.1093/brain/awg285] [PMID: 14506071]
[17]
Parisi, L.; Gini, E.; Baci, D.; Tremolati, M.; Fanuli, M.; Bassani, B.; Farronato, G.; Bruno, A.; Mortara, L. Macrophage polarization in chronic inflammatory diseases: Killers or builders? J. Immunol. Res., 2018, 2018, 1-25.
[http://dx.doi.org/10.1155/2018/8917804] [PMID: 29507865]
[18]
Reder, A.T.; Genç, K.; Byskosh, P.V.; Porrini, A.M. Monocyte activation in multiple sclerosis. Mult. Scler., 1998, 4(3), 162-168.
[19]
Palumbo, G.A.; Parrinello, N.L.; Giallongo, C.; D’Amico, E.; Zanghì, A.; Puglisi, F.; Conticello, C.; Chiarenza, A.; Tibullo, D.; Raimondo, F.D.; Romano, A. Monocytic myeloid derived suppressor cells in hematological malignancies. Int. J. Mol. Sci., 2019, 20(21), 5459.
[http://dx.doi.org/10.3390/ijms20215459] [PMID: 31683978]
[20]
Youn, J.I.; Nagaraj, S.; Collazo, M.; Gabrilovich, D.I. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J. Immunol., 2008, 181(8), 5791-5802.
[http://dx.doi.org/10.4049/jimmunol.181.8.5791]
[21]
Corzo, C.A.; Cotter, M.J.; Cheng, P.; Cheng, F.; Kusmartsev, S.; Sotomayor, E. Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J. Immunol., 2009, 182(9), 5693-5701.
[http://dx.doi.org/10.4049/jimmunol.0900092]
[22]
Ohl, K.; Tenbrock, K. Reactive oxygen species as regulators of MDSC-mediated immune suppression. Front. Immunol., 2018, 9, 2499.
[http://dx.doi.org/10.3389/fimmu.2018.02499] [PMID: 30425715]
[23]
Cho, H.; Kang, H.; Lee, H.; Kim, C. Programmed cell death 1 (PD-1) and cytotoxic T Lymphocyte-Associated Antigen 4 (CTLA-4) in viral hepatitis. Int. J. Mol. Sci., 2017, 18(7), 1517.
[http://dx.doi.org/10.3390/ijms18071517] [PMID: 28703774]
[24]
Zhang, H.; Dai, Z.; Wu, W.; Wang, Z.; Zhang, N.; Zhang, L.; Zeng, W.J.; Liu, Z.; Cheng, Q. Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer. J. Exp. Clin. Cancer Res., 2021, 40(1), 184.
[http://dx.doi.org/10.1186/s13046-021-01987-7] [PMID: 34088360]
[25]
McGinley, M.P.; Goldschmidt, C.H.; Rae-Grant, A.D. Diagnosis and treatment of multiple sclerosis. JAMA, 2021, 325(8), 765-779.
[http://dx.doi.org/10.1001/jama.2020.26858] [PMID: 33620411]
[26]
Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; Fujihara, K.; Galetta, S.L.; Hartung, H.P.; Kappos, L.; Lublin, F.D.; Marrie, R.A.; Miller, A.E.; Miller, D.H.; Montalban, X.; Mowry, E.M.; Sorensen, P.S.; Tintoré, M.; Traboulsee, A.L.; Trojano, M.; Uitdehaag, B.M.J.; Vukusic, S.; Waubant, E.; Weinshenker, B.G.; Reingold, S.C.; Cohen, J.A. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol., 2018, 17(2), 162-173.
[http://dx.doi.org/10.1016/S1474-4422(17)30470-2] [PMID: 29275977]
[27]
Thompson, A.J.; Baranzini, S.E.; Geurts, J.; Hemmer, B.; Ciccarelli, O. Multiple sclerosis. Lancet, 2018, 391(10130), 1622-1636.
[http://dx.doi.org/10.1016/S0140-6736(18)30481-1] [PMID: 29576504]
[28]
Lublin, F.D.; Reingold, S.C.; Cohen, J.A.; Cutter, G.R.; Sørensen, P.S.; Thompson, A.J.; Wolinsky, J.S.; Balcer, L.J.; Banwell, B.; Barkhof, F.; Bebo, B., Jr; Calabresi, P.A.; Clanet, M.; Comi, G.; Fox, R.J.; Freedman, M.S.; Goodman, A.D.; Inglese, M.; Kappos, L.; Kieseier, B.C.; Lincoln, J.A.; Lubetzki, C.; Miller, A.E.; Montalban, X.; O’Connor, P.W.; Petkau, J.; Pozzilli, C.; Rudick, R.A.; Sormani, M.P.; Stüve, O.; Waubant, E.; Polman, C.H. Defining the clinical course of multiple sclerosis. Neurology, 2014, 83(3), 278-286.
[http://dx.doi.org/10.1212/WNL.0000000000000560] [PMID: 24871874]
[29]
Tur, C.; Carbonell-Mirabent, P.; Cobo-Calvo, Á.; Otero-Romero, S.; Arrambide, G.; Midaglia, L.; Castilló, J.; Vidal-Jordana, Á.; Rodríguez-Acevedo, B.; Zabalza, A.; Galán, I.; Nos, C.; Salerno, A.; Auger, C.; Pareto, D.; Comabella, M.; Río, J.; Sastre-Garriga, J.; Rovira, À.; Tintoré, M.; Montalban, X. Association of early progression independent of relapse activity with long-term disability after a first demyelinating event in multiple sclerosis. JAMA Neurol., 2023, 80(2), 151-160.
[http://dx.doi.org/10.1001/jamaneurol.2022.4655] [PMID: 36534392]
[30]
Telesford, K.M.; Amezcua, L.; Tardo, L.; Horton, L.; Lund, B.T.; Reder, A.T.; Vartanian, T.; Monson, N.L. Understanding humoral immunity and multiple sclerosis severity in Black, and Latinx patients. Front. Immunol., 2023, 14, 1172993.
[http://dx.doi.org/10.3389/fimmu.2023.1172993] [PMID: 37215103]
[31]
Baskaran, A.B.; Grebenciucova, E.; Shoemaker, T.; Graham, E.L. Current updates on the diagnosis and management of multiple sclerosis for the general neurologist. J. Clin. Neurol., 2023, 19(3), 217-229.
[http://dx.doi.org/10.3988/jcn.2022.0208] [PMID: 37151139]
[32]
Matsuzaka, Y.; Yashiro, R. Unraveling the immunopathogenesis of multiple sclerosis: The dynamic dance of plasmablasts and pathogenic T cells. Biologics, 2023, 3(3), 232-252.
[http://dx.doi.org/10.3390/biologics3030013]
[33]
Liu, R.; Du, S.; Zhao, L.; Jain, S.; Sahay, K.; Rizvanov, A.; Lezhnyova, V.; Khaibullin, T.; Martynova, E.; Khaiboullina, S.; Baranwal, M. Autoreactive lymphocytes in multiple sclerosis: Pathogenesis and treatment target. Front. Immunol., 2022, 13, 996469.
[http://dx.doi.org/10.3389/fimmu.2022.996469] [PMID: 36211343]
[34]
Kunkl, M.; Frascolla, S.; Amormino, C.; Volpe, E.; Tuosto, L. T Helper Cells: The modulators of inflammation in multiple sclerosis. Cells, 2020, 9(2), 482.
[http://dx.doi.org/10.3390/cells9020482] [PMID: 32093011]
[35]
Chastain, E.M.L.; Duncan, D.A.S.; Rodgers, J.M.; Miller, S.D. The role of antigen presenting cells in multiple sclerosis. Biochim. Biophys. Acta Mol. Basis Dis., 2011, 1812(2), 265-274.
[http://dx.doi.org/10.1016/j.bbadis.2010.07.008]
[36]
Gandhi, R.; Laroni, A.; Weiner, H.L. Role of the innate immune system in the pathogenesis of multiple sclerosis. J. Neuroimmunol., 2010, 221(1-2), 7-14.
[http://dx.doi.org/10.1016/j.jneuroim.2009.10.015] [PMID: 19931190]
[37]
Freeman, L.; Longbrake, E.E.; Coyle, P.K.; Hendin, B.; Vollmer, T. High-Efficacy therapies for treatment-naïve individuals with relapsing–remitting multiple sclerosis. CNS Drugs, 2022, 36(12), 1285-1299.
[http://dx.doi.org/10.1007/s40263-022-00965-7] [PMID: 36350491]
[38]
Xu, D.; Li, C.; Xu, Y.; Huang, M.; Cui, D.; Xie, J. Myeloid-derived suppressor cell: A crucial player in autoimmune diseases. Front. Immunol., 2022, 13, 1021612.
[http://dx.doi.org/10.3389/fimmu.2022.1021612] [PMID: 36569895]
[39]
Raber, P.; Ochoa, A.C.; Rodríguez, P.C. Metabolism of L-arginine by myeloid-derived suppressor cells in cancer: Mechanisms of T cell suppression and therapeutic perspectives. Immunol. Invest., 2012, 41(6-7), 614-634.
[http://dx.doi.org/10.3109/08820139.2012.680634] [PMID: 23017138]
[40]
Bruno, A.; Mortara, L.; Baci, D.; Noonan, D.M.; Albini, A. Myeloid derived suppressor cells interactions with natural killer cells and pro-angiogenic activities: Roles in tumor progression. Front. Immunol., 2019, 10, 771.
[41]
Krishnamoorthy, M.; Gerhardt, L.; Maleki Vareki, S. Immunosuppressive effects of myeloid-derived suppressor cells in cancer and immunotherapy. Cells, 2021, 10(5), 1170.
[http://dx.doi.org/10.3390/cells10051170] [PMID: 34065010]
[42]
De Veirman, K.; Van Valckenborgh, E.; Lahmar, Q.; Geeraerts, X.; De Bruyne, E.; Menu, E. Myeloid-derived suppressor cells as therapeutic target in hematological malignancies. Front. Oncol., 2014, 4, 349.
[http://dx.doi.org/10.3389/fonc.2014.00349]
[43]
Ghorbani, M.M.; Farazmandfar, T.; Abediankenari, S.; Hassannia, H.; Maleki, Z.; Shahbazi, M. Treatment of EAE mice with Treg, G-MDSC and IL-2: A new insight into cell therapy for multiple sclerosis. Immunotherapy, 2022, 14(10), 789-798.
[http://dx.doi.org/10.2217/imt-2021-0045] [PMID: 35678041]
[44]
Melero-Jerez, C.; Fernández-Gómez, B.; Lebrón-Galán, R.; Ortega, M.C.; Sánchez-de Lara, I.; Ojalvo, A.C.; Clemente, D.; de Castro, F. Myeloid‐derived suppressor cells support remyelination in a murine model of multiple sclerosis by promoting oligodendrocyte precursor cell survival, proliferation, and differentiation. Glia, 2021, 69(4), 905-924.
[http://dx.doi.org/10.1002/glia.23936] [PMID: 33217041]
[45]
Melero-Jerez, C.; Alonso-Gómez, A.; Moñivas, E.; Lebrón-Galán, R.; Machín-Díaz, I.; de Castro, F.; Clemente, D. The proportion of myeloid-derived suppressor cells in the spleen is related to the severity of the clinical course and tissue damage extent in a murine model of multiple sclerosis. Neurobiol. Dis., 2020, 140, 104869.
[http://dx.doi.org/10.1016/j.nbd.2020.104869] [PMID: 32278882]
[46]
Elliott, D.M.; Singh, N.; Nagarkatti, M.; Nagarkatti, P.S. Cannabidiol attenuates experimental autoimmune encephalomyelitis model of multiple sclerosis through induction of myeloid-derived suppressor cells. Front. Immunol., 2018, 9, 1782.
[http://dx.doi.org/10.3389/fimmu.2018.01782]
[47]
Mecha, M.; Feliú, A.; Machín, I.; Cordero, C.; Carrillo-Salinas, F.; Mestre, L.; Hernández-Torres, G.; Ortega-Gutiérrez, S.; López-Rodríguez, M.L.; de Castro, F.; Clemente, D.; Guaza, C. 2‐AG limits Theiler’s virus induced acute neuroinflammation by modulating microglia and promoting MDSCs. Glia, 2018, 66(7), 1447-1463.
[http://dx.doi.org/10.1002/glia.23317] [PMID: 29484707]
[48]
Bowen, J.L.; Olson, J.K. Innate immune CD11b+Gr-1+ cells, suppressor cells, affect the immune response during Theiler’s virus-induced demyelinating disease. J. Immunol. (Baltimore, Md), 2009, 183(11), 6971-6980.
[49]
Wegner, A.; Verhagen, J.; Wraith, D.C. Myeloid‐derived suppressor cells mediate tolerance induction in autoimmune disease. Immunology, 2017, 151(1), 26-42.
[http://dx.doi.org/10.1111/imm.12718] [PMID: 28140447]
[50]
Casacuberta-Serra, S.; Costa, C.; Eixarch, H.; Mansilla, M.J.; López-Estévez, S.; Martorell, L.; Parés, M.; Montalban, X.; Espejo, C.; Barquinero, J. Myeloid-derived suppressor cells expressing a self-antigen ameliorate experimental autoimmune encephalomyelitis. Exp. Neurol., 2016, 286, 50-60.
[http://dx.doi.org/10.1016/j.expneurol.2016.09.012] [PMID: 27693617]
[51]
Ioannou, M.; Alissafi, T.; Lazaridis, I.; Deraos, G.; Matsoukas, J.; Gravanis, A. Crucial role of granulocytic myeloid-derived suppressor cells in the regulation of central nervous system autoimmune disease. J. Immunol., 2012, 188(3), 1136-1146.
[http://dx.doi.org/10.4049/jimmunol.1101816]
[52]
Dagkonaki, A.; Papalambrou, A.; Avloniti, M.; Gkika, A.; Evangelidou, M.; Androutsou, M.E.; Tselios, T.; Probert, L. Maturation of circulating Ly6ChiCCR2+ monocytes by mannan-MOG induces antigen-specific tolerance and reverses autoimmune encephalomyelitis. Front. Immunol., 2022, 13, 972003.
[http://dx.doi.org/10.3389/fimmu.2022.972003] [PMID: 36159850]
[53]
Ishihara, A.; Ishihara, J.; Watkins, E.A.; Tremain, A.C.; Nguyen, M.; Solanki, A.; Katsumata, K.; Mansurov, A.; Budina, E.; Alpar, A.T.; Hosseinchi, P.; Maillat, L.; Reda, J.W.; Kageyama, T.; Swartz, M.A.; Yuba, E.; Hubbell, J.A. Prolonged residence of an albumin–IL-4 fusion protein in secondary lymphoid organs ameliorates experimental autoimmune encephalomyelitis. Nat. Biomed. Eng., 2020, 5(5), 387-398.
[http://dx.doi.org/10.1038/s41551-020-00627-3] [PMID: 33046864]
[54]
Moliné-Velázquez, V.; Cuervo, H.; Vila-del Sol, V.; Ortega, M.C.; Clemente, D.; de Castro, F. Myeloid-derived suppressor cells limit the inflammation by promoting T lymphocyte apoptosis in the spinal cord of a murine model of multiple sclerosis. Brain Pathol., 2011, 21(6), 678-691.
[http://dx.doi.org/10.1111/j.1750-3639.2011.00495.x] [PMID: 21507122]
[55]
Wang, J.L.; Li, B.; Tan, G.J.; Gai, X.L.; Xing, J.N.; Wang, J.Q.; Quan, M.Y.; Zhang, N.; Guo, L. NAD+ attenuates experimental autoimmune encephalomyelitis through induction of CD11b+ gr-1+ myeloid-derived suppressor cells. Biosci. Rep., 2020, 40(4), BSR20200353.
[http://dx.doi.org/10.1042/BSR20200353] [PMID: 32301489]
[56]
Zhu, B.; Bando, Y.; Xiao, S.; Yang, K.; Anderson, A.C.; Kuchroo, V.K.; Khoury, S.J. CD11b+Ly-6C(hi) suppressive monocytes in experimental autoimmune encephalomyelitis. J. Immunol., 2007, 179(8), 5228-5237.
[http://dx.doi.org/10.4049/jimmunol.179.8.5228] [PMID: 17911608]
[57]
Zhu, B.; Kennedy, J.K.; Wang, Y.; Sandoval-Garcia, C.; Cao, L. Xiao, S Plasticity of Ly-6C(hi) myeloid cells in T cell regulation. J. Immunol. (Baltimore, Md), 2011, 187(5), 2418-2432.
[58]
Ortega, M.C.; Lebrón-Galán, R.; Machín-Díaz, I.; Naughton, M.; Pérez-Molina, I.; García-Arocha, J.; Garcia-Dominguez, J.M.; Goicoechea-Briceño, H.; Vila-del Sol, V.; Quintanero-Casero, V.; García-Montero, R.; Galán, V.; Calahorra, L.; Camacho-Toledano, C.; Martínez-Ginés, M.L.; Fitzgerald, D.C.; Clemente, D. Central and peripheral myeloid-derived suppressor cell-like cells are closely related to the clinical severity of multiple sclerosis. Acta Neuropathol., 2023, 146(2), 263-282.
[http://dx.doi.org/10.1007/s00401-023-02593-x] [PMID: 37243699]
[59]
Glenn, J.D.; Liu, C.; Whartenby, K.A. Frontline science: Induction of experimental autoimmune encephalomyelitis mobilizes Th17-promoting myeloid derived suppressor cells to the lung. J. Leukoc. Biol., 2019, 105(5), 829-841.
[http://dx.doi.org/10.1002/JLB.4HI0818-335R] [PMID: 30762897]
[60]
Vijitha, N.; Engel, D.R. Remote control of Th17 responses: The lung-CNS axis during EAE. J. Leukoc. Biol., 2019, 105(5), 827-828.
[http://dx.doi.org/10.1002/JLB.1CE0219-072R] [PMID: 30958568]
[61]
Yi, H.; Guo, C.; Yu, X.; Zuo, D.; Wang, X.Y. Mouse CD11b+Gr-1+ myeloid cells can promote Th17 cell differentiation and experimental autoimmune encephalomyelitis. J. Immunol. (Baltimore, Md), 2012, 189(9), 4295-4304.
[62]
Radojević, D.; Bekić, M.; Gruden-Movsesijan, A.; Ilić, N.; Dinić, M.; Bisenić, A.; Golić, N.; Vučević, D.; Đokić, J.; Tomić, S. Myeloid-derived suppressor cells prevent disruption of the gut barrier, preserve microbiota composition, and potentiate immunoregulatory pathways in a rat model of experimental autoimmune encephalomyelitis. Gut Microbes, 2022, 14(1), 2127455.
[http://dx.doi.org/10.1080/19490976.2022.2127455] [PMID: 36184742]
[63]
Parekh, V.V.; Wu, L.; Olivares-Villagómez, D.; Wilson, K.T. Van Kaer, L Activated invariant NKT cells control central nervous system autoimmunity in a mechanism that involves myeloid-derived suppressor cells. J. Immunol., 2013, 190(5), 1948-1960.
[http://dx.doi.org/10.4049/jimmunol.1201718]
[64]
Alabanza, L.M.; Esmon, N.L.; Esmon, C.T.; Bynoe, M.S. Inhibition of endogenous activated protein C attenuates experimental autoimmune encephalomyelitis by inducing myeloid-derived suppressor cells. J. Immunol., 2013, 191(7), 3764-3777.
[http://dx.doi.org/10.4049/jimmunol.1202556]
[65]
Moliné-Velázquez, V.; Ortega, M.C.; Vila del Sol, V.; Melero-Jerez, C.; de Castro, F.; Clemente, D. The synthetic retinoid Am80 delays recovery in a model of multiple sclerosis by modulating myeloid-derived suppressor cell fate and viability. Neurobiol. Dis., 2014, 67, 149-164.
[http://dx.doi.org/10.1016/j.nbd.2014.03.017] [PMID: 24709559]
[66]
King, I.L.; Dickendesher, T.L.; Segal, B.M. Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease. Blood, 2009, 113(14), 3190-3197.
[http://dx.doi.org/10.1182/blood-2008-07-168575] [PMID: 19196868]
[67]
Zhang, G.; Zhu, X.; Yang, F.; Li, J.; Leng, X.; Mo, C.; Li, L.; Wang, Y. Pseudolycorine chloride ameliorates Th17 cell-mediated central nervous system autoimmunity by restraining myeloid-derived suppressor cell expansion. Pharm. Biol., 2022, 60(1), 899-908.
[http://dx.doi.org/10.1080/13880209.2022.2063344] [PMID: 36082828]
[68]
Calahorra, L.; Camacho-Toledano, C.; Serrano-Regal, M.P.; Ortega, M.C.; Clemente, D. Regulatory cells in multiple sclerosis: From blood to brain. Biomedicines, 2022, 10(2), 335.
[http://dx.doi.org/10.3390/biomedicines10020335] [PMID: 35203544]
[69]
Hertzenberg, D.; Lehmann-Horn, K.; Kinzel, S.; Husterer, V.; Cravens, P.D.; Kieseier, B.C.; Hemmer, B.; Brück, W.; Zamvil, S.S.; Stüve, O.; Weber, M.S. Developmental maturation of innate immune cell function correlates with susceptibility to central nervous system autoimmunity. Eur. J. Immunol., 2013, 43(8), 2078-2088.
[http://dx.doi.org/10.1002/eji.201343338] [PMID: 23637087]
[70]
Melero-Jerez, C.; Suardíaz, M.; Lebrón-Galán, R.; Marín-Bañasco, C.; Oliver-Martos, B.; Machín-Díaz, I.; Fernández, Ó.; de Castro, F.; Clemente, D. The presence and suppressive activity of myeloid-derived suppressor cells are potentiated after interferon-β treatment in a murine model of multiple sclerosis. Neurobiol. Dis., 2019, 127, 13-31.
[http://dx.doi.org/10.1016/j.nbd.2019.02.014] [PMID: 30798007]
[71]
Tanwar, S.; Oguz, C.; Metidji, A.; Dahlstrom, E.; Barbian, K.; Kanakabandi, K.; Sykora, L.; Shevach, E.M. Type I IFN signaling in T regulatory cells modulates chemokine production and myeloid derived suppressor cells trafficking during EAE. J. Autoimmun., 2020, 115, 102525.
[http://dx.doi.org/10.1016/j.jaut.2020.102525] [PMID: 32709481]
[72]
van der Touw, W.; Kang, K.; Luan, Y.; Ma, G.; Mai, S.; Qin, L. Glatiramer acetate enhances myeloid-derived suppressor cell function via recognition of paired Ig-like receptor B. J. Immunol. (Baltimore, Md), 2018, 201(6), 1727-1734.
[73]
Knier, B.; Hiltensperger, M.; Sie, C.; Aly, L.; Lepennetier, G.; Engleitner, T.; Garg, G.; Muschaweckh, A.; Mitsdörffer, M.; Koedel, U.; Höchst, B.; Knolle, P.; Gunzer, M.; Hemmer, B.; Rad, R.; Merkler, D.; Korn, T. Myeloid-derived suppressor cells control B cell accumulation in the central nervous system during autoimmunity. Nat. Immunol., 2018, 19(12), 1341-1351.
[http://dx.doi.org/10.1038/s41590-018-0237-5] [PMID: 30374128]
[74]
Camacho-Toledano, C.; Machín-Díaz, I.; Calahorra, L.; Cabañas-Cotillas, M.; Otaegui, D.; Castillo-Triviño, T.; Villar, L.M.; Costa-Frossard, L.; Comabella, M.; Midaglia, L.; García-Domínguez, J.M.; García-Arocha, J.; Ortega, M.C.; Clemente, D. Peripheral myeloid-derived suppressor cells are good biomarkers of the efficacy of fingolimod in multiple sclerosis. J. Neuroinflammation, 2022, 19(1), 277.
[http://dx.doi.org/10.1186/s12974-022-02635-3] [PMID: 36403026]
[75]
D’Amico, E.; Zanghì, A.; Parrinello, N.L.; Romano, A.; Palumbo, G.A.; Chisari, C.G.; Toscano, S.; Raimondo, F.D.; Zappia, M.; Patti, F. Immunological subsets characterization in newly diagnosed relapsing-remitting multiple sclerosis. Front. Immunol., 2022, 13, 819136.
[http://dx.doi.org/10.3389/fimmu.2022.819136] [PMID: 35273601]
[76]
Iacobaeus, E.; Douagi, I.; Jitschin, R.; Marcusson-Ståhl, M.; Andrén, A.T.; Gavin, C.; Lefsihane, K.; Davies, L.C.; Mougiakakos, D.; Kadri, N.; Le Blanc, K. Phenotypic and functional alterations of myeloid‐derived suppressor cells during the disease course of multiple sclerosis. Immunol. Cell Biol., 2018, 96(8), 820-830.
[http://dx.doi.org/10.1111/imcb.12042] [PMID: 29569304]
[77]
Cantoni, C.; Cignarella, F.; Ghezzi, L.; Mikesell, B.; Bollman, B.; Berrien-Elliott, M.M.; Ireland, A.R.; Fehniger, T.A.; Wu, G.F.; Piccio, L. Mir-223 regulates the number and function of myeloid-derived suppressor cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol., 2017, 133(1), 61-77.
[http://dx.doi.org/10.1007/s00401-016-1621-6] [PMID: 27704281]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy