Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Role of Cytochrome P450 3A4 in Cancer Drug Resistance: Challenges and Opportunities

Author(s): Swaroop Kumar Pandey*, Sona Verma, Shobha Upreti, Anuja Mishra, Neha Yadav and Hemlata Dwivedi-Agnihotri*

Volume 25, Issue 4, 2024

Published on: 09 July, 2024

Page: [235 - 247] Pages: 13

DOI: 10.2174/0113892002312369240703102215

Price: $65

Abstract

One of the biggest obstacles to the treatment of diseases, particularly serious conditions like cancer, is therapeutic resistance. The process of drug resistance is influenced by a number of important variables, including MDR genes, drug efflux, low-quality medications, inadequate dosage, etc. Drug resistance must be addressed, and new combinations based on the pharmacokinetics/pharmacodynamics (PK-PD) characteristics of the partner pharmaceuticals must be developed in order to extend the half-lives of already available medications. The primary mechanism of drug elimination is hepatic biotransformation of medicines by cytochrome P450 (CYP) enzymes; of these CYPs, CYP3A4 makes up 30–40% of all known cytochromes that metabolize medications. Induction or inhibition of CYP3A4-mediated metabolism affects the pharmacokinetics of most anticancer drugs, but these details are not fully understood and highlighted because of the complexity of tumor microenvironments and various influencing patient related factors. The involvement of CYPs, particularly CYP3A4 and other drug-metabolizing enzymes, in cancer medication resistance will be covered in the current review.One of the biggest obstacles to the treatment of diseases, particularly serious conditions like cancer, is therapeutic resistance. The process of drug resistance is influenced by a number of important variables, including MDR genes, drug efflux, low-quality medications, inadequate dosage, etc. Drug resistance must be addressed, and new combinations based on the pharmacokinetics/pharmacodynamics (PK-PD) characteristics of the partner pharmaceuticals must be developed in order to extend the half-lives of already available medications. The primary mechanism of drug elimination is hepatic biotransformation of medicines by cytochrome P450 (CYP) enzymes; of these CYPs, CYP3A4 makes up 30–40% of all known cytochromes that metabolize medications. Induction or inhibition of CYP3A4-mediated metabolism affects the pharmacokinetics of most anticancer drugs, but these details are not fully understood and highlighted because of the complexity of tumor microenvironments and various influencing patient related factors. The involvement of CYPs, particularly CYP3A4 and other drug-metabolizing enzymes, in cancer medication resistance will be covered in the current review.

Next »
[1]
Kivistö KT, Kroemer HK, Eichelbaum M. The role of human cytochrome P450 enzymes in the metabolism of anticancer agents: Implications for drug interactions. Br J Clin Pharmacol 1995; 40(6): 523-30.
[http://dx.doi.org/10.1111/j.1365-2125.1995.tb05796.x] [PMID: 8703657]
[2]
Preissner S, Simmaco M, Gentile G, Preissner R. Personalized cancer therapy considering cytochrome p450 variability. Adv Pharmacol 2015; 74: 113-30.
[http://dx.doi.org/10.1016/bs.apha.2015.03.004] [PMID: 26233905]
[3]
Fujita K. Cytochrome P450 and anticancer drugs. Curr Drug Metab 2006; 7(1): 23-37.
[http://dx.doi.org/10.2174/138920006774832587] [PMID: 16454691]
[4]
Zaal EA, Berkers CR. The influence of metabolism on drug response in cancer. Front Oncol 2018; 8: 500.
[http://dx.doi.org/10.3389/fonc.2018.00500] [PMID: 30456204]
[5]
Wang F, Zhang X, Wang Y, et al. Activation/inactivation of anticancer drugs by cyp3a4: Influencing factors for personalized cancer therapy. Drug Metab Dispos 2023; 51(5): 543-59.
[http://dx.doi.org/10.1124/dmd.122.001131] [PMID: 36732076]
[6]
Zhao M, Ma J, Li M, et al. Cytochrome p450 enzymes and drug metabolism in humans. Int J Mol Sci 2021; 22(23): 12808.
[http://dx.doi.org/10.3390/ijms222312808] [PMID: 34884615]
[7]
Stipp MC, Acco A. Involvement of cytochrome P450 enzymes in inflammation and cancer: A review. Cancer Chemother Pharmacol 2021; 87(3): 295-309.
[http://dx.doi.org/10.1007/s00280-020-04181-2] [PMID: 33112969]
[8]
Alzahrani AM, Rajendran P. The multifarious link between cytochrome P450s and cancer. Oxid Med Cell Longev 2020; 2020: 3028387.
[http://dx.doi.org/10.1155/2020/3028387]
[9]
Haidar C, Jeha S. Drug interactions in childhood cancer. Lancet Oncol 2011; 12(1): 92-9.
[http://dx.doi.org/10.1016/S1470-2045(10)70105-4] [PMID: 20869315]
[10]
Slatter JG, Su P, Sams JP, Schaaf LJ, Wienkers LC. Bioactivation of the anticancer agent CPT-11 to SN-38 by human hepatic microsomal carboxylesterases and the in vitro assessment of potential drug interactions. Drug Metab Dispos 1997; 25(10): 1157-64.
[PMID: 9321519]
[11]
Almazroo OA, Miah MK, Venkataramanan R. Drug metabolism in the liver. Clin Liver Dis 2017; 21(1): 1-20.
[http://dx.doi.org/10.1016/j.cld.2016.08.001] [PMID: 27842765]
[12]
Planchard D, Jänne PA, Cheng Y, et al. Osimertinib with or without chemotherapy in egfr-mutated advanced nsclc. N Engl J Med 2023; 389(21): 1935-48.
[http://dx.doi.org/10.1056/NEJMoa2306434] [PMID: 37937763]
[13]
Tariq B, Ou YC, Stern JC, et al. A phase 1, open-label, randomized drug–drug interaction study of zanubrutinib with moderate or strong CYP3A inhibitors in patients with B-cell malignancies. Leuk Lymphoma 2023; 64(2): 329-38.
[http://dx.doi.org/10.1080/10428194.2022.2150820] [PMID: 36480811]
[14]
Hoy SM. Tazemetostat: First Approval. Drugs 2020; 80(5): 513-21.
[http://dx.doi.org/10.1007/s40265-020-01288-x] [PMID: 32166598]
[15]
Cortés J, Kim SB, Chung WP, et al. Trastuzumab deruxtecan versus trastuzumab emtansine for breast cancer. N Engl J Med 2022; 386(12): 1143-54.
[http://dx.doi.org/10.1056/NEJMoa2115022] [PMID: 35320644]
[16]
Markham A. Pamiparib: First Approval. Drugs 2021; 81(11): 1343-8.
[http://dx.doi.org/10.1007/s40265-021-01552-8] [PMID: 34287805]
[17]
Liewer S, Huddleston A. Alisertib: A review of pharmacokinetics, efficacy and toxicity in patients with hematologic malignancies and solid tumors. Expert Opin Investig Drugs 2018; 27(1): 105-12.
[http://dx.doi.org/10.1080/13543784.2018.1417382] [PMID: 29260599]
[18]
Vishwanathan K, Dickinson PA, So K, et al. The effect of itraconazole and rifampicin on the pharmacokinetics of osimertinib. Br J Clin Pharmacol 2018; 84(6): 1156-69.
[http://dx.doi.org/10.1111/bcp.13534] [PMID: 29381826]
[19]
Erba HP, Montesinos P, Kim HJ, et al. Quizartinib plus chemotherapy in newly diagnosed patients with FLT3-internal-tandem-duplication-positive acute myeloid leukaemia (QuANTUM-First): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2023; 401(10388): 1571-83.
[http://dx.doi.org/10.1016/S0140-6736(23)00464-6] [PMID: 37116523]
[20]
Das T, Anand U, Pandey SK, et al. Therapeutic strategies to overcome taxane resistance in cancer. Drug Resist Updat 2021; 55: 100754.
[http://dx.doi.org/10.1016/j.drup.2021.100754] [PMID: 33691261]
[21]
Makhov P, Golovine K, Canter D, et al. Co-administration of piperine and docetaxel results in improved anti-tumor efficacy via inhibition of CYP3A4 activity. Prostate 2012; 72(6): 661-7.
[http://dx.doi.org/10.1002/pros.21469] [PMID: 21796656]
[22]
Huizing MT, Misser VHS, Pieters RC, et al. Taxanes: A new class of antitumor agents. Cancer Invest 1995; 13(4): 381-404.
[http://dx.doi.org/10.3109/07357909509031919] [PMID: 7627725]
[23]
Hendrikx JJMA, Lagas JS, Wagenaar E, et al. Oral co-administration of elacridar and ritonavir enhances plasma levels of oral paclitaxel and docetaxel without affecting relative brain accumulation. Br J Cancer 2014; 110(11): 2669-76.
[http://dx.doi.org/10.1038/bjc.2014.222] [PMID: 24781280]
[24]
van Herwaarden AE, Wagenaar E, van der Kruijssen CMM, et al. Knockout of cytochrome P450 3A yields new mouse models for understanding xenobiotic metabolism. J Clin Invest 2007; 117(11): 3583-92.
[http://dx.doi.org/10.1172/JCI33435] [PMID: 17975676]
[25]
Hendrikx JJMA, Lagas JS, Rosing H, Schellens JHM, Beijnen JH, Schinkel AH. P-glycoprotein and cytochrome P450 3A act together in restricting the oral bioavailability of paclitaxel. Int J Cancer 2013; 132(10): 2439-47.
[http://dx.doi.org/10.1002/ijc.27912] [PMID: 23090875]
[26]
van Waterschoot RAB, Lagas JS, Wagenaar E, et al. Absence of both cytochrome P450 3A and P-glycoprotein dramatically increases docetaxel oral bioavailability and risk of intestinal toxicity. Cancer Res 2009; 69(23): 8996-9002.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2915] [PMID: 19920203]
[27]
van Eijk M, Boosman RJ, Schinkel AH, Huitema ADR, Beijnen JH. Cytochrome P450 3A4, 3A5, and 2C8 expression in breast, prostate, lung, endometrial, and ovarian tumors: Relevance for resistance to taxanes. Cancer Chemother Pharmacol 2019; 84(3): 487-99.
[http://dx.doi.org/10.1007/s00280-019-03905-3] [PMID: 31309254]
[28]
Choi JS, Piao YJ, Kang KW. Effects of quercetin on the bioavailability of doxorubicin in rats: Role of CYP3A4 and P-gp inhibition by quercetin. Arch Pharm Res 2011; 34(4): 607-13.
[http://dx.doi.org/10.1007/s12272-011-0411-x] [PMID: 21544726]
[29]
Moudi M, Go R, Yien CY, Nazre M. Vinca alkaloids. Int J Prev Med 2013; 4(11): 1231-5.
[PMID: 24404355]
[30]
Martino E, Casamassima G, Castiglione S, et al. Vinca alkaloids and analogues as anti-cancer agents: Looking back, peering ahead. Bioorg Med Chem Lett 2018; 28(17): 2816-26.
[http://dx.doi.org/10.1016/j.bmcl.2018.06.044] [PMID: 30122223]
[31]
Arora RD, Menezes RG. Vinca alkaloid toxicity. StatPearls 2022.
[32]
Böhme A, Ganser A, Hoelzer D. Aggravation of vincristine-induced neurotoxicity by itraconazole in the treatment of adult ALL. Ann Hematol 1995; 71(6): 311-2.
[http://dx.doi.org/10.1007/BF01697985] [PMID: 8534764]
[33]
Tobe SW, Siu LL, Jamal SA, Skorecki KL, Murphy GF, Warner E. Vinblastine and erythromycin: an unrecognized serious drug interaction. Cancer Chemother Pharmacol 1995; 35(3): 188-90.
[http://dx.doi.org/10.1007/BF00686546] [PMID: 7805175]
[34]
Delord JP, Puozzo C, Lefresne F, Bugat R. Combination chemotherapy of vinorelbine and cisplatin: a phase I pharmacokinetic study in patients with metastatic solid tumors. Anticancer Res 2009; 29(2): 553-60.
[PMID: 19331202]
[35]
Gralla RJ, Gatzemeier U, Gebbia V, Huber R, O’Brien M, Puozzo C. Oral vinorelbine in the treatment of non-small cell lung cancer: Rationale and implications for patient management. Drugs 2007; 67(10): 1403-10.
[http://dx.doi.org/10.2165/00003495-200767100-00003] [PMID: 17600389]
[36]
Mittal B, Tulsyan S, Kumar S, Mittal RD, Agarwal G. Cytochrome P450 in cancer susceptibility and treatment. Adv Clin Chem 2015; 71: 77-139.
[http://dx.doi.org/10.1016/bs.acc.2015.06.003] [PMID: 26411412]
[37]
Cohen P, Cross D, Jänne PA. Kinase drug discovery 20 years after imatinib: Progress and future directions. Nat Rev Drug Discov 2021; 20(7): 551-69.
[http://dx.doi.org/10.1038/s41573-021-00195-4] [PMID: 34002056]
[38]
Peng B, Lloyd P, Schran H. Clinical pharmacokinetics of imatinib. Clin Pharmacokinet 2005; 44(9): 879-94.
[http://dx.doi.org/10.2165/00003088-200544090-00001] [PMID: 16122278]
[39]
Frye R, Fitzgerald S, Lagattuta T, Hruska M, Egorin M. Effect of St John’s wort on imatinib mesylate pharmacokinetics. Clin Pharmacol Ther 2004; 76(4): 323-9.
[http://dx.doi.org/10.1016/j.clpt.2004.06.007] [PMID: 15470331]
[40]
Rahman AFMM, Korashy HM, Kassem MG. Gefitinib. Profiles Drug Subst Excip Relat Methodol 2014; 39: 239-64.
[http://dx.doi.org/10.1016/B978-0-12-800173-8.00005-2] [PMID: 24794908]
[41]
Crisci S, Amitrano F, Saggese M, et al. Overview of current targeted anti-cancer drugs for therapy in onco-hematology. Medicina (Kaunas) 2019; 55(8): 414.
[http://dx.doi.org/10.3390/medicina55080414] [PMID: 31357735]
[42]
Min HY, Lee HY. Molecular targeted therapy for anticancer treatment. Exp Mol Med 2022; 54(10): 1670-94.
[http://dx.doi.org/10.1038/s12276-022-00864-3] [PMID: 36224343]
[43]
Incze E, Mangó K, Fekete F, et al. Potential association of cytochrome P450 copy number alteration in tumour with chemotherapy resistance in lung adenocarcinoma patients. Int J Mol Sci 2023; 24(17): 13380.
[http://dx.doi.org/10.3390/ijms241713380] [PMID: 37686184]
[44]
Zhang J, Tian Q, Yung Chan S, et al. Metabolism and transport of oxazaphosphorines and the clinical implications. Drug Metab Rev 2005; 37(4): 611-703.
[http://dx.doi.org/10.1080/03602530500364023] [PMID: 16393888]
[45]
Kerbusch T, de Kraker J, Keizer HJ, et al. Clinical pharmacokinetics and pharmacodynamics of ifosfamide and its metabolites. Clin Pharmacokinet 2001; 40(1): 41-62.
[http://dx.doi.org/10.2165/00003088-200140010-00004] [PMID: 11236809]
[46]
Gilbert CJ, Petros WP, Vredenburgh J, et al. Pharmacokinetic interaction between ondansetron and cyclophosphamide during high-dose chemotherapy for breast cancer. Cancer Chemother Pharmacol 1998; 42(6): 497-503.
[http://dx.doi.org/10.1007/s002800050851] [PMID: 9788577]
[47]
Nguyen TA, Tychopoulos M, Bichat F, et al. Improvement of cyclophosphamide activation by CYP2B6 mutants: From in silico to ex vivo. Mol Pharmacol 2008; 73(4): 1122-33.
[http://dx.doi.org/10.1124/mol.107.042861] [PMID: 18212249]
[48]
Blackledge G, Averbuch S. Gefitinib (‘Iressa’, ZD1839) and new epidermal growth factor receptor inhibitors. Br J Cancer 2004; 90(3): 566-72.
[http://dx.doi.org/10.1038/sj.bjc.6601550] [PMID: 14760365]
[49]
Jin Y, Desta Z, Stearns V, et al. CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Natl Cancer Inst 2005; 97(1): 30-9.
[http://dx.doi.org/10.1093/jnci/dji005] [PMID: 15632378]
[50]
Stearns V, Ullmer L, López JF, Smith Y, Isaacs C, Hayes DF. Hot flushes. Lancet 2002; 360(9348): 1851-61.
[http://dx.doi.org/10.1016/S0140-6736(02)11774-0] [PMID: 12480376]
[51]
Ikeda K, Yoshisue K, Matsushima E, et al. Bioactivation of tegafur to 5-fluorouracil is catalyzed by cytochrome P-450 2A6 in human liver microsomes in vitro. Clin Cancer Res 2000; 6(11): 4409-15.
[PMID: 11106261]
[52]
Draper AJ, Madan A, Parkinson A. Inhibition of coumarin 7-hydroxylase activity in human liver microsomes. Arch Biochem Biophys 1997; 341(1): 47-61.
[http://dx.doi.org/10.1006/abbi.1997.9964] [PMID: 9143352]
[53]
Cresteil T, Monsarrat B, Alvinerie P, Tréluyer JM, Vieira I, Wright M. Taxol metabolism by human liver microsomes: Identification of cytochrome P450 isozymes involved in its biotransformation. Cancer Res 1994; 54(2): 386-92.
[PMID: 7903909]
[54]
Zhang Y, Liu Y, Xie S, Xu X, Xu R. Evaluation of the inhibitory effect of quercetin on the pharmacokinetics of tucatinib in rats by a novel UPLC–MS/MS assay. Pharm Biol 2022; 60(1): 621-6.
[http://dx.doi.org/10.1080/13880209.2022.2048862] [PMID: 35289238]
[55]
Monsarrat B, Mariel E, Cros S, et al. Taxol metabolism. Isolation and identification of three major metabolites of taxol in rat bile. Drug Metab Dispos 1990; 18(6): 895-901.
[PMID: 1981534]
[56]
Ando Y, Fuse E, Figg WD. Thalidomide metabolism by the CYP2C subfamily. Clin Cancer Res 2002; 8(6): 1964-73.
[PMID: 12060642]
[57]
Baldwin RM, Ohlsson S, Pedersen RS, et al. Increased omeprazole metabolism in carriers of the CYP2C19*17 allele; a pharmacokinetic study in healthy volunteers. Br J Clin Pharmacol 2008; 65(5): 767-74.
[http://dx.doi.org/10.1111/j.1365-2125.2008.03104.x] [PMID: 18294333]
[58]
Fleming RA. An overview of cyclophosphamide and ifosfamide pharmacology. Pharmacotherapy 1997; 17(5P2): 146S-54S.
[http://dx.doi.org/10.1002/j.1875-9114.1997.tb03817.x] [PMID: 9322882]
[59]
Allen LM, Creaven PJ. Pharmacokinetics of ifosfamide. Clin Pharmacol Ther 1975; 17(4): 492-8.
[http://dx.doi.org/10.1002/cpt1975174492] [PMID: 1122690]
[60]
Boddy AV, Murray Yule S. Metabolism and pharmacokinetics of oxazaphosphorines. Clin Pharmacokinet 2000; 38(4): 291-304.
[http://dx.doi.org/10.2165/00003088-200038040-00001] [PMID: 10803453]
[61]
Kiyotani K, Mushiroda T, Nakamura Y, Zembutsu H. Pharmacogenomics of tamoxifen: Roles of drug metabolizing enzymes and transporters. Drug Metab Pharmacokinet 2012; 27(1): 122-31.
[http://dx.doi.org/10.2133/dmpk.DMPK-11-RV-084] [PMID: 22041137]
[62]
Desta Z, Ward BA, Soukhova NV, Flockhart DA. Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: Prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther 2004; 310(3): 1062-75.
[http://dx.doi.org/10.1124/jpet.104.065607] [PMID: 15159443]
[63]
Stearns V, Johnson MD, Rae JM, et al. Active tamoxifen metabolite plasma concentrations after coadministration of tamoxifen and the selective serotonin reuptake inhibitor paroxetine. J Natl Cancer Inst 2003; 95(23): 1758-64.
[http://dx.doi.org/10.1093/jnci/djg108] [PMID: 14652237]
[64]
Squirewell EJ, Qin X, Duffel MW. Endoxifen and other metabolites of tamoxifen inhibit human hydroxysteroid sulfotransferase 2A1 (hSULT2A1). Drug Metab Dispos 2014; 42(11): 1843-50.
[http://dx.doi.org/10.1124/dmd.114.059709] [PMID: 25157097]
[65]
Chang BY, Kim SA, Malla B, Kim SY. The effect of selective estrogen receptor modulators (serms) on the tamoxifen resistant breast cancer cells. Toxicol Res 2011; 27(2): 85-93.
[http://dx.doi.org/10.5487/TR.2011.27.2.085] [PMID: 24278556]
[66]
Beland FA, Marques MM, Gamboa da Costa G, Phillips DH. Tamoxifen-DNA adduct formation in human endometrium. Chem Res Toxicol 2005; 18(10): 1507-9.
[http://dx.doi.org/10.1021/tx050255w]
[67]
Rowinsky EK, Onetto N, Canetta RM, Arbuck SG. Taxol: The first of the taxanes, an important new class of antitumor agents. Semin Oncol 1992; 19(6): 646-62.
[PMID: 1361079]
[68]
Sparreboom A, van Tellingen O, Nooijen WJ, Beijnen JH. Preclinical pharmacokinetics of paclitaxel and docetaxel. Anticancer Drugs 1998; 9(1): 1-17.
[http://dx.doi.org/10.1097/00001813-199801000-00001] [PMID: 9491787]
[69]
Bardelmeijer HA, Ouwehand M, Buckle T, et al. Low systemic exposure of oral docetaxel in mice resulting from extensive first-pass metabolism is boosted by ritonavir. Cancer Res 2002; 62(21): 6158-64.
[PMID: 12414642]
[70]
Lagas JS, Vlaming ML, van Tellingen O, et al. Multidrug resistance protein 2 is an important determinant of paclitaxel pharmacokinetics. Clin Cancer Res 2006; 12(20): 6125-32.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1352] [PMID: 17062689]
[71]
Baldwin SJ, Clarke SE, Chenery RJ. Characterization of the cytochrome P450 enzymes involved in the in vitro metabolism of rosiglitazone. Br J Clin Pharmacol 1999; 48(3): 424-32.
[http://dx.doi.org/10.1046/j.1365-2125.1999.00030.x] [PMID: 10510156]
[72]
Kostrubsky VE, Lewis LD, Wood SG, Sinclair PR, Wrighton SA, Sinclair JF. Effect of Taxol on cytochrome P450 3A and acetaminophen toxicity in cultured rat hepatocytes: Comparison to dexamethasone. Toxicol Appl Pharmacol 1997; 142(1): 79-86.
[http://dx.doi.org/10.1006/taap.1996.8023] [PMID: 9007036]
[73]
Rahman A, Korzekwa KR, Grogan J, Gonzalez FJ, Harris JW. Selective biotransformation of taxol to 6 alpha-hydroxytaxol by human cytochrome P450 2C8. Cancer Res 1994; 54(21): 5543-6.
[PMID: 7923194]
[74]
Royer I, Monsarrat B, Sonnier M, Wright M, Cresteil T. Metabolism of docetaxel by human cytochromes P450: Interactions with paclitaxel and other antineoplastic drugs. Cancer Res 1996; 56(1): 58-65.
[PMID: 8548776]
[75]
Bartlett JB, Dredge K, Dalgleish AG. The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat Rev Cancer 2004; 4(4): 314-22.
[http://dx.doi.org/10.1038/nrc1323] [PMID: 15057291]
[76]
Kajita J, Fuse E, Kuwabara T, Kobayashi H. The contribution of cytochrome P450 to the metabolism of tegafur in human liver. Drug Metab Pharmacokinet 2003; 18(5): 303-9.
[http://dx.doi.org/10.2133/dmpk.18.303] [PMID: 15618749]
[77]
Zhou-Pan XR, Sérée E, Zhou XJ, et al. Involvement of human liver cytochrome P450 3A in vinblastine metabolism: Drug interactions. Cancer Res 1993; 53(21): 5121-6.
[PMID: 8221648]
[78]
Rahmani R, Zhou XJ. Pharmacokinetics and metabolism of vinca alkaloids. Cancer Surv 1993; 17: 269-81.
[PMID: 8137344]
[79]
Huang Z, Roy P, Waxman DJ. Role of human liver microsomal CYP3A4 and CYP2B6 in catalyzing N-dechloroethylation of cyclophosphamide and ifosfamide. Biochem Pharmacol 2000; 59(8): 961-72.
[http://dx.doi.org/10.1016/S0006-2952(99)00410-4] [PMID: 10692561]
[80]
Chang TK, Weber GF, Crespi CL, Waxman DJ. Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res 1993; 53(23): 5629-37.
[PMID: 8242617]
[81]
Mckillop D, McCormick AD, Millar A, Miles GS, Phillips PJ, Hutchison M. Cytochrome P450-dependent metabolism of gefitinib. Xenobiotica 2005; 35(1): 39-50.
[http://dx.doi.org/10.1080/00498250400026464] [PMID: 15788367]
[82]
Crewe HK, Ellis SW, Lennard MS, Tucker GT. Variable contribution of cytochromes p450 2d6, 2c9 and 3a4 to the 4-hydroxylation of tamoxifen by human liver microsomes. Biochem Pharmacol 1997; 53(2): 171-8.
[http://dx.doi.org/10.1016/S0006-2952(96)00650-8] [PMID: 9037249]
[83]
Cohen MH, Williams G, Johnson JR, et al. Approval summary for imatinib mesylate capsules in the treatment of chronic myelogenous leukemia. Clin Cancer Res 2002; 8(5): 935-42.
[PMID: 12006504]
[84]
Lund OE, von Barsewisch B, Greite JH, Magoley R. Retinal vasculitis: Classification and therapeutic attempts. Mod Probl Ophthalmol 1979; 20: 419-20.
[PMID: 548776]
[85]
Shou M, Martinet M, Korzekwa KR, Krausz KW, Gonzalez FJ, Gelboin HV. Role of human cytochrome P450 3A4 and 3A5 in the metabolism of taxotere and its derivatives: Enzyme specificity, interindividual distribution and metabolic contribution in human liver. Pharmacogenetics 1998; 8(5): 391-401.
[http://dx.doi.org/10.1097/00008571-199810000-00004] [PMID: 9825831]
[86]
Daigo S, Takahashi Y, Fujieda M, et al. A novel mutant allele of the CYP2A6 gene (CYP2A6*11) found in a cancer patient who showed poor metabolic phenotype towards tegafur. Pharmacogenetics 2002; 12(4): 299-306.
[http://dx.doi.org/10.1097/00008571-200206000-00005] [PMID: 12042667]
[87]
Dai D, Zeldin DC, Blaisdell JA, et al. Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid. Pharmacogenetics 2001; 11(7): 597-607.
[http://dx.doi.org/10.1097/00008571-200110000-00006] [PMID: 11668219]
[88]
Malaiyandi V, Sellers EM, Tyndale RF. Implications of CYP2A6 genetic variation for smoking behaviors and nicotine dependence. Clin Pharmacol Ther 2005; 77(3): 145-58.
[http://dx.doi.org/10.1016/j.clpt.2004.10.011] [PMID: 15735609]
[89]
Berardinelli F, Masi A, Antoccia A. Nbn gene polymorphisms and cancer susceptibility: A systemic review. Curr Genomics 2013; 14(7): 425-40.
[http://dx.doi.org/10.2174/13892029113146660012] [PMID: 24396275]
[90]
Mandel JS, Bond JH, Church TR, et al. Reducing mortality from colorectal cancer by screening for fecal occult blood. Minnesota colon cancer control study. N Engl J Med 1993; 328(19): 1365-71.
[http://dx.doi.org/10.1056/NEJM199305133281901] [PMID: 8474513]
[91]
Xu C, Goodz S, Sellers EM, Tyndale RF. CYP2A6 genetic variation and potential consequences. Adv Drug Deliv Rev 2002; 54(10): 1245-56.
[http://dx.doi.org/10.1016/S0169-409X(02)00065-0] [PMID: 12406643]
[92]
Kamataki T, Fujieda M, Kiyotani K, Iwano S, Kunitoh H. Genetic polymorphism of CYP2A6 as one of the potential determinants of tobacco-related cancer risk. Biochem Biophys Res Commun 2005; 338(1): 306-10.
[http://dx.doi.org/10.1016/j.bbrc.2005.08.268] [PMID: 16176798]
[93]
Fujieda M, Yamazaki H, Saito T, et al. Evaluation of CYP2A6 genetic polymorphisms as determinants of smoking behavior and tobacco-related lung cancer risk in male Japanese smokers. Carcinogenesis 2004; 25(12): 2451-8.
[http://dx.doi.org/10.1093/carcin/bgh258] [PMID: 15308589]
[94]
Rotger M, Tegude H, Colombo S, et al. Predictive value of known and novel alleles of CYP2B6 for efavirenz plasma concentrations in HIV-infected individuals. Clin Pharmacol Ther 2007; 81(4): 557-66.
[http://dx.doi.org/10.1038/sj.clpt.6100072] [PMID: 17235330]
[95]
Wang J, Sönnerborg A, Rane A, et al. Identification of a novel specific CYP2B6 allele in Africans causing impaired metabolism of the HIV drug efavirenz. Pharmacogenet Genomics 2006; 16(3): 191-8.
[http://dx.doi.org/10.1097/01.fpc.0000189797.03845.90] [PMID: 16495778]
[96]
Poeta J, Linden R, Antunes MV, et al. Plasma concentrations of efavirenz are associated with body weight in HIV-positive individuals. J Antimicrob Chemother 2011; 66(11): 2601-4.
[http://dx.doi.org/10.1093/jac/dkr360] [PMID: 21890538]
[97]
Cavaco I, Strömberg-Nörklit J, Kaneko A, et al. CYP2C8 polymorphism frequencies among malaria patients in Zanzibar. Eur J Clin Pharmacol 2005; 61(1): 15-8.
[http://dx.doi.org/10.1007/s00228-004-0871-8] [PMID: 15785959]
[98]
Lee S, Roy F, Galmarini CM, et al. Frameshift mutation in the Dok1 gene in chronic lymphocytic leukemia. Oncogene 2004; 23(13): 2287-97.
[http://dx.doi.org/10.1038/sj.onc.1207385] [PMID: 14730347]
[99]
Eidens M, Weise A, Klemm M, Fleischer M, Prause S. Development and validation of a rapid and reliable real-time PCR method for CYP3A5 genotyping. Clin Lab 2015; 61(03+04/2015): 353-62.
[http://dx.doi.org/10.7754/Clin.Lab.2014.140827] [PMID: 25975003]
[100]
Daly AK, Aithal GP, Leathart JBS, Swainsbury RA, Dang TS, Day CP. Genetic susceptibility to diclofenac-induced hepatotoxicity: Contribution of UGT2B7, CYP2C8, and ABCC2 genotypes. Gastroenterology 2007; 132(1): 272-81.
[http://dx.doi.org/10.1053/j.gastro.2006.11.023] [PMID: 17241877]
[101]
Huang C-S, Shen C-Y, Chang K-J, Hsu S-M, Chern H-D. Cytochrome P4501A1 polymorphism as a susceptibility factor for breast cancer in postmenopausal chinese women in Taiwan. Br J Cancer 1999; 80(11): 1838-43.
[http://dx.doi.org/10.1038/sj.bjc.6690608] [PMID: 10468307]
[102]
Ishibe N, Hankinson SE, Colditz GA, et al. Cigarette smoking, cytochrome P450 1A1 polymorphisms, and breast cancer risk in the Nurses’ Health Study. Cancer Res 1998; 58(4): 667-71.
[PMID: 9485019]
[103]
Taioli E, Trachman J, Chen X, Toniolo P, Garte SJ. A CYP1A1 restriction fragment length polymorphism is associated with breast cancer in African-American women. Cancer Res 1995; 55(17): 3757-8.
[PMID: 7641189]
[104]
Krajinovic M, Ghadirian P, Richer C, et al. Genetic susceptibility to breast cancer in French-Canadians: Role of carcinogen-metabolizing enzymes and gene-environment interactions. Int J Cancer 2001; 92(2): 220-5.
[http://dx.doi.org/10.1002/1097-0215(200102)9999:9999<::AID-IJC1184>3.0.CO;2-H] [PMID: 11291049]
[105]
Zheng W, Xie DW, Jin F, et al. Genetic polymorphism of cytochrome P450-1B1 and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 2000; 9(2): 147-50.
[PMID: 10698474]
[106]
Floriano-Sanchez E, Rodriguez NC, Bandala C, Coballase-Urrutia E, Lopez-Cruz J. CYP3A4 expression in breast cancer and its association with risk factors in Mexican women. Asian Pac J Cancer Prev 2014; 15(8): 3805-9.
[http://dx.doi.org/10.7314/APJCP.2014.15.8.3805] [PMID: 24870798]
[107]
Slattery ML, Samowtiz W, Ma K, et al. CYP1A1, cigarette smoking, and colon and rectal cancer. Am J Epidemiol 2004; 160(9): 842-52.
[http://dx.doi.org/10.1093/aje/kwh298] [PMID: 15496536]
[108]
Sachse C, Smith G, Wilkie MJ, et al. A pharmacogenetic study to investigate the role of dietary carcinogens in the etiology of colorectal cancer. Carcinogenesis 2002; 23(11): 1839-50.
[http://dx.doi.org/10.1093/carcin/23.11.1839] [PMID: 12419832]
[109]
Tranah GJ, Chan AT, Giovannucci E, Ma J, Fuchs C, Hunter DJ. Epoxide hydrolase and CYP2C9 polymorphisms, cigarette smoking, and risk of colorectal carcinoma in the Nurse's health study and the physician's health study. Mol Carcinog 2005; 44(1): 21-30.
[http://dx.doi.org/10.1002/mc.20112] [PMID: 15924351]
[110]
Martínez C, García-Martín E, Ladero JM, et al. Association of CYP2C9 genotypes leading to high enzyme activity and colorectal cancer risk. Carcinogenesis 2001; 22(8): 1323-6.
[http://dx.doi.org/10.1093/carcin/22.8.1323] [PMID: 11470765]
[111]
Kiss I, Sándor J, Pajkos G, Bogner B, Hegedüs G, Ember I. Colorectal cancer risk in relation to genetic polymorphism of cytochrome P450 1A1, 2E1, and glutathione-S-transferase M1 enzymes. Anticancer Res 2000; 20(1B): 519-22.
[PMID: 10769717]
[112]
Tsuchiya Y, Baez S, Calvo A, et al. Evidence that genetic variants of metabolic detoxication and cell cycle control are not related to gallbladder cancer risk in Chilean women. Int J Biol Markers 2010; 25(2): 75-8.
[http://dx.doi.org/10.1177/172460081002500203] [PMID: 20544687]
[113]
Srivastava A, Pandey SN, Choudhuri G, Mittal B. Role of genetic variant A-204C of cholesterol 7α-hydroxylase (CYP7A1) in susceptibility to gallbladder cancer. Mol Genet Metab 2008; 94(1): 83-9.
[http://dx.doi.org/10.1016/j.ymgme.2007.11.014] [PMID: 18178499]
[114]
Srivastava K, Srivastava A, Sharma KL, Mittal B. Candidate gene studies in gallbladder cancer: A systematic review and meta-analysis. Mutat Res Rev Mutat Res 2011; 728(1-2): 67-79.
[http://dx.doi.org/10.1016/j.mrrev.2011.06.002] [PMID: 21708280]
[115]
Song N, Tan W, Xing D, Lin D. CYP 1A1 polymorphism and risk of lung cancer in relation to tobacco smoking: A case-control study in China. Carcinogenesis 2001; 22(1): 11-6.
[http://dx.doi.org/10.1093/carcin/22.1.11] [PMID: 11159735]
[116]
Tan W, Chen GF, Xing DY, Song CY, Kadlubar FF, Lin DX. Frequency ofCYP2A6 gene deletion and its relation to risk of lung and esophageal cancer in the Chinese population. Int J Cancer 2001; 95(2): 96-101.
[http://dx.doi.org/10.1002/1097-0215(20010320)95:2<96::AID-IJC1017>3.0.CO;2-2] [PMID: 11241319]
[117]
Kamataki T, Nunoya K, Sakai Y, Kushida H, Fujita K. Genetic polymorphism of CYP2A6 in relation to cancer. Mutat Res 1999; 428(1-2): 125-30.
[http://dx.doi.org/10.1016/S1383-5742(99)00040-X] [PMID: 10517986]
[118]
Miyamoto M, Umetsu Y, Dosaka-Akita H, et al. CYP2A6 gene deletion reduces susceptibility to lung cancer. Biochem Biophys Res Commun 1999; 261(3): 658-60.
[http://dx.doi.org/10.1006/bbrc.1999.1089] [PMID: 10441482]
[119]
Yeh KT, Chen JC, Chen CM, Wang YF, Lee TP, Chang JG. CYP3A5*1 is an inhibitory factor for lung cancer in Taiwanese. Kaohsiung J Med Sci 2003; 19(5): 201-6.
[http://dx.doi.org/10.1016/S1607-551X(09)70425-5] [PMID: 12822676]
[120]
Boccia S, Lauretis AD, Gianfagna F, Duijn CM, Ricciardi G. CYP2E1PstI/RsaI polymorphism and interaction with tobacco, alcohol and GSTs in gastric cancer susceptibility: A meta-analysis of the literature. Carcinogenesis 2007; 28(1): 101-6.
[http://dx.doi.org/10.1093/carcin/bgl124] [PMID: 16837478]
[121]
Wu MS, Chen CJ, Lin MT, et al. Genetic polymorphisms of cytochrome P450 2E1, glutathione S-transferase M1 and T1, and susceptibility to gastric carcinoma in Taiwan. Int J Colorectal Dis 2002; 17(5): 338-43.
[http://dx.doi.org/10.1007/s00384-001-0383-2] [PMID: 12172927]
[122]
Park GT, Lee OY, Kwon SJ, et al. Analysis of CYP2E1 polymorphism for the determination of genetic susceptibility to gastric cancer in Koreans. J Gastroenterol Hepatol 2003; 18(11): 1257-63.
[http://dx.doi.org/10.1046/j.1440-1746.2003.03167.x] [PMID: 14535982]
[123]
Nishimoto IN, Hanaoka T, Sugimura H, et al. Cytochrome P450 2E1 polymorphism in gastric cancer in Brazil: Case-control studies of Japanese Brazilians and non-Japanese Brazilians. Cancer Epidemiol Biomarkers Prev 2000; 9(7): 675-80.
[PMID: 10919737]
[124]
Roth MJ, Abnet CC, Johnson LL, et al. Polymorphic variation of CYP1A1 is associated with the risk of gastric cardia cancer: A prospective case?cohort study of cytochrome P-450 1A1 and GST enzymes. Cancer Causes Control 2004; 15(10): 1077-83.
[http://dx.doi.org/10.1007/s10552-004-2233-3] [PMID: 15801491]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy