Generic placeholder image

Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5230
ISSN (Online): 1875-614X

Review Article

Potential of Natural Products as Therapeutic Agents for Inflammatory Diseases

In Press, (this is not the final "Version of Record"). Available online 09 July, 2024
Author(s): Chintan Aundhia*, Ghanshyam Parmar, Chitrali Talele, Piyushkumar Sadhu, Ashim Kumar Sen and Pramojeeta Rana
Published on: 09 July, 2024

DOI: 10.2174/0118715230307969240614102321

Price: $95

Abstract

Inflammation is a complex biological response that plays a pivotal role in various pathological conditions, including inflammatory diseases. The search for effective therapeutic agents has led researchers to explore natural products due to their diverse chemical composition and potential therapeutic benefits. This review comprehensively examines the current state of research on natural products as potential therapeutic agents for inflammatory diseases. The article discusses the antiinflammatory properties of various natural compounds, their mechanisms of action, and their potential applications in managing inflammatory disorders. Additionally, formulation and delivery systems, challenges and future prospects in this field are also highlighted.

[1]
Botero, JSH; Pérez, MCF The history of sepsis from ancient Egypt to the XIX century. In: Sepsis-an ongoing and significant challenge; Intechopen, 2012.
[2]
Hannoodee, S.; Nasuruddin, D.N. Acute Inflammatory Response; StatPearls Publishing: Treasure Island, FL, 2023.
[3]
Granger, D.N.; Senchenkova, E. Inflammation and the Microcirculation; Morgan & Claypool Publishers, 2010.
[http://dx.doi.org/10.4199/C00013ED1V01Y201006ISP008]
[4]
Janeway, C.A., Jr; Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol., 2002, 20(1), 197-216.
[http://dx.doi.org/10.1146/annurev.immunol.20.083001.084359] [PMID: 11861602]
[5]
Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 2018, 9(6), 7204-7218.
[http://dx.doi.org/10.18632/oncotarget.23208] [PMID: 29467962]
[6]
Pahwa, R; Goyal, A; Bansal, P; Jialal, I. Chronic inflammation. In: StatPearls ; StatPearls Publishing: Treasure Island (FL), 2024.
[7]
Hannoodee, S; Nasuruddin, DN Acute inflammatory response. In: StatPearls ; StatPearls Publishing: Treasure Island (FL), 2024.
[8]
Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; Miller, A.H.; Mantovani, A.; Weyand, C.M.; Barzilai, N.; Goronzy, J.J.; Rando, T.A.; Effros, R.B.; Lucia, A.; Kleinstreuer, N.; Slavich, G.M. Chronic inflammation in the etiology of disease across the life span. Nat. Med., 2019, 25(12), 1822-1832.
[http://dx.doi.org/10.1038/s41591-019-0675-0] [PMID: 31806905]
[9]
Bennett, J.M.; Reeves, G.; Billman, G.E.; Sturmberg, J.P. Inflammation–nature’s way to efficiently respond to all types of challenges: Implications for understanding and managing “the epidemic” of chronic diseases. Front. Med., 2018, 5, 316.
[http://dx.doi.org/10.3389/fmed.2018.00316] [PMID: 30538987]
[10]
Sugimoto, M.A.; Sousa, L.P.; Pinho, V.; Perretti, M.; Teixeira, M.M. Resolution of inflammation: What controls its onset? Front. Immunol., 2016, 7, 160.
[http://dx.doi.org/10.3389/fimmu.2016.00160] [PMID: 27199985]
[11]
Gallo, J.; Raska, M.; Kriegova, E.; Goodman, S.B. Inflammation and its resolution and the musculoskeletal system. J. Orthop. Translat., 2017, 10, 52-67.
[http://dx.doi.org/10.1016/j.jot.2017.05.007] [PMID: 28781962]
[12]
Schilrreff, P.; Alexiev, U. Chronic inflammation in non-healing skin wounds and promising natural bioactive compounds treatment. Int. J. Mol. Sci., 2022, 23(9), 4928.
[http://dx.doi.org/10.3390/ijms23094928] [PMID: 35563319]
[13]
Coutinho, A.E.; Chapman, K.E. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol. Cell. Endocrinol., 2011, 335(1), 2-13.
[http://dx.doi.org/10.1016/j.mce.2010.04.005] [PMID: 20398732]
[14]
Krensky, A.M.; Vincenti, F.; Bennett, W.M. Immunosuppressants, tolerogens, and immunostimulants. in chief Goodman% Gilman’s the pharmacological basis of therapeutics, 11th ed; McGraw-Hill Companies, Inc.: New York, 2006, pp. 1405-1431.
[15]
Leone, G.M.; Mangano, K.; Petralia, M.C.; Nicoletti, F.; Fagone, P. Past, present and (Foreseeable) future of biological anti-TNF alpha therapy. J. Clin. Med., 2023, 12(4), 1630.
[http://dx.doi.org/10.3390/jcm12041630] [PMID: 36836166]
[16]
Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct. Target. Ther., 2021, 6(1), 263.
[http://dx.doi.org/10.1038/s41392-021-00658-5] [PMID: 34248142]
[17]
Ghlichloo, I; Gerriets, V. Nonsteroidal anti-inflammatory drugs (NSAIDs). In: StatPearls ; StatPearls Publishing: Treasure Island (FL), 2024.
[18]
Fleischman, A.N.; Li, W.T.; Luzzi, A.J.; Van Nest, D.S.; Torjman, M.C.; Schwenk, E.S.; Arnold, W.A.; Parvizi, J. Risk of gastrointestinal bleeding with extended use of nonsteroidal anti-inflammatory drug analgesia after joint arthroplasty. J. Arthroplasty, 2021, 36(6), 1921-1925.e1.
[http://dx.doi.org/10.1016/j.arth.2021.02.015] [PMID: 33642110]
[19]
Sinniah, A.; Yazid, S.; Flower, R.J. From NSAIDs to glucocorticoids and beyond. Cells, 2021, 10(12), 3524.
[http://dx.doi.org/10.3390/cells10123524] [PMID: 34944032]
[20]
Moghadam-Kia, S.; Werth, V.P. Prevention and treatment of systemic glucocorticoid side effects. Int. J. Dermatol., 2010, 49(3), 239-248.
[http://dx.doi.org/10.1111/j.1365-4632.2009.04322.x] [PMID: 20465658]
[21]
Bosani, M.; Ardizzone, S.; Porro, G.B. Biologic targeting in the treatment of inflammatory bowel diseases. Biologics, 2009, 3, 77-97.
[PMID: 19707398]
[22]
Pichler, W.J. Adverse side‐effects to biological agents. Allergy, 2006, 61(8), 912-920.
[http://dx.doi.org/10.1111/j.1398-9995.2006.01058.x] [PMID: 16867042]
[23]
Sobhani, M.; Farzaei, M.H.; Kiani, S.; Khodarahmi, R. Immunomodulatory; Anti-inflammatory/antioxidant effects of polyphenols: A comparative review on the parental compounds and their metabolites. Food Rev. Int., 2021, 37(8), 759-811.
[http://dx.doi.org/10.1080/87559129.2020.1717523]
[24]
Kassim, M.; Achoui, M.; Mustafa, M.R.; Mohd, M.A.; Yusoff, K.M. Ellagic acid, phenolic acids, and flavonoids in Malaysian honey extracts demonstrate in vitro anti-inflammatory activity. Nutr. Res., 2010, 30(9), 650-659.
[http://dx.doi.org/10.1016/j.nutres.2010.08.008] [PMID: 20934607]
[25]
Zhang, L.; Ravipati, A.S.; Koyyalamudi, S.R.; Jeong, S.C.; Reddy, N.; Smith, P.T.; Bartlett, J.; Shanmugam, K.; Münch, G.; Wu, M.J. Antioxidant and anti-inflammatory activities of selected medicinal plants containing phenolic and flavonoid compounds. J. Agric. Food Chem., 2011, 59(23), 12361-12367.
[http://dx.doi.org/10.1021/jf203146e] [PMID: 22023309]
[26]
Karak, P. Biological activities of flavonoids: An overview. Int. J. Pharm. Sci. Res., 2019, 10(4), 1567-1574.
[27]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci., 2016, 5, e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[28]
Wang, X.; Cao, Y.; Chen, S.; Lin, J.; Bian, J.; Huang, D. Anti-inflammation activity of flavones and their structure–activity relationship. J. Agric. Food Chem., 2021, 69(26), 7285-7302.
[http://dx.doi.org/10.1021/acs.jafc.1c02015] [PMID: 34160206]
[29]
Rathee, P; Chaudhary, H; Rathee, S; Rathee, D; Kumar, V; Kohli, K Mechanism of action of flavonoids as anti-inflammatory agents: A review. Inflamm Allergy Drug Targets, 2009, 8(3), 229-235.
[http://dx.doi.org/10.2174/187152809788681029]
[30]
Devi, K.P.; Kiruthiga, P.V.; Pandian, S.K. Emerging role of flavonoids in inhibition of NF-κB-mediated signaling pathway: A review. Int J Biomed Pharm Sci., 2009, 3(1), 31-45.
[31]
Wu, Y.; Zhou, C.; Li, X.; Song, L.; Wu, X.; Lin, W.; Chen, H.; Bai, H.; Zhao, J.; Zhang, R.; Sun, H.; Zhao, Y. Evaluation of antiinflammatory activity of the total flavonoids of Laggera pterodonta on acute and chronic inflammation models. Phytother. Res., 2006, 20(7), 585-590.
[http://dx.doi.org/10.1002/ptr.1918] [PMID: 16673449]
[32]
Zhao, J; Maitituersun, A; Li, C; Li, Q; Xu, F; Liu, T Evaluation on analgesic and anti-inflammatory activities of total flavonoids from Juniperus sabina. Evid Based Complement Alternat Med., 2018, 2018, 7965306.
[http://dx.doi.org/10.1155/2018/7965306]
[33]
Giménez-Bastida, J.A.; González-Sarrías, A.; Laparra-Llopis, J.M.; Schneider, C.; Espín, J.C. Targeting mammalian 5-lipoxygenase by dietary phenolics as an anti-inflammatory mechanism: A systematic review. Int. J. Mol. Sci., 2021, 22(15), 7937.
[http://dx.doi.org/10.3390/ijms22157937] [PMID: 34360703]
[34]
Khan, H.; Ullah, H.; Castilho, P.C.M.F.; Gomila, A.S.; D’Onofrio, G.; Filosa, R.; Wang, F.; Nabavi, S.M.; Daglia, M.; Silva, A.S.; Rengasamy, K.R.R.; Ou, J.; Zou, X.; Xiao, J.; Cao, H. Targeting NF-κB signaling pathway in cancer by dietary polyphenols. Crit. Rev. Food Sci. Nutr., 2020, 60(16), 2790-2800.
[http://dx.doi.org/10.1080/10408398.2019.1661827] [PMID: 31512490]
[35]
Taofiq, O.; Calhelha, R.C.; Heleno, S.; Barros, L.; Martins, A.; Santos-Buelga, C.; Queiroz, M.J.R.P.; Ferreira, I.C.F.R. The contribution of phenolic acids to the anti-inflammatory activity of mushrooms: Screening in phenolic extracts, individual parent molecules and synthesized glucuronated and methylated derivatives. Food Res. Int., 2015, 76(Pt 3), 821-827.
[http://dx.doi.org/10.1016/j.foodres.2015.07.044] [PMID: 28455068]
[36]
dos Santos, M.D.; Almeida, M.C.; Lopes, N.P.; de Souza, G.E.P. Evaluation of the anti-inflammatory, analgesic and antipyretic activities of the natural polyphenol chlorogenic acid. Biol. Pharm. Bull., 2006, 29(11), 2236-2240.
[http://dx.doi.org/10.1248/bpb.29.2236] [PMID: 17077520]
[37]
Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines, 2016, 3(4), 25.
[http://dx.doi.org/10.3390/medicines3040025] [PMID: 28930135]
[38]
Quintans, J.S.S.; Shanmugam, S.; Heimfarth, L.; Araújo, A.A.S.; Almeida, J.R.G.S.; Picot, L.; Quintans-Júnior, L.J. Monoterpenes modulating cytokines - A review. Food Chem. Toxicol., 2019, 123, 233-257.
[http://dx.doi.org/10.1016/j.fct.2018.10.058] [PMID: 30389585]
[39]
Rodrigues, T.G.; Fernandes, A., Jr; Sousa, J.P.B.; Bastos, J.K.; Sforcin, J.M. In vitro and in vivo effects of clove on pro-inflammatory cytokines production by macrophages. Nat. Prod. Res., 2009, 23(4), 319-326.
[http://dx.doi.org/10.1080/14786410802242679] [PMID: 19296372]
[40]
Wang, J; Song, Y; Chen, Z; Leng, SX Connection between systemic inflammation and neuroinflammation underlies neuroprotective mechanism of several phytochemicals in neurodegenerative diseases. Oxid Med Cell Longev, 2018, 2018, 1972714.
[http://dx.doi.org/10.1155/2018/1972714]
[41]
Siani, A.C.; Ramos, M.F.S.; Menezes-de-Lima, O., Jr; Ribeiro-dos-Santos, R.; Fernadez-Ferreira, E.; Soares, R.O.A.; Rosas, E.C.; Susunaga, G.S.; Guimarães, A.C.; Zoghbi, M.G.B.; Henriques, M.G.M.O. Evaluation of anti-inflammatory-related activity of essential oils from the leaves and resin of species of Protium. J. Ethnopharmacol., 1999, 66(1), 57-69.
[http://dx.doi.org/10.1016/S0378-8741(98)00148-2] [PMID: 10432208]
[42]
Silva, J.; Abebe, W.; Sousa, S.M.; Duarte, V.G.; Machado, M.I.L.; Matos, F.J.A. Analgesic and anti-inflammatory effects of essential oils of Eucalyptus. J. Ethnopharmacol., 2003, 89(2-3), 277-283.
[http://dx.doi.org/10.1016/j.jep.2003.09.007] [PMID: 14611892]
[43]
Kashyap, D.; Sharma, A.; Tuli, H.S.; Punia, S.; Sharma, A.K. Ursolic acid and oleanolic acid: Pentacyclic terpenoids with promising anti-inflammatory activities. Recent Pat. Inflamm. Allergy Drug Discov., 2016, 10(1), 21-33.
[http://dx.doi.org/10.2174/1872213X10666160711143904] [PMID: 27531153]
[44]
Chen, M.; Qin, Y.; Ma, H.; Zheng, X.; Zhou, R.; Sun, S.; Huang, Y.; Duan, Q.; Liu, W.; Wu, P.; Xu, X.; Sheng, Z.; Zhang, K.; Li, D. Downregulating NF-κB signaling pathway with triterpenoids for attenuating inflammation: In vitro and in vivo studies. Food Funct., 2019, 10(8), 5080-5090.
[http://dx.doi.org/10.1039/C9FO00561G] [PMID: 31361289]
[45]
Hohmann, MSN; Longhi-Balbinot, DT; Guazelli, CFS; Navarro, SA; Zarpelon, AC; Casagrande, R Sesquiterpene lactones: Structural diversity and perspectives as anti-inflammatory molecules. Stud Nat Prod Chem, 2016, 49, 243-264.
[46]
Matos, M.S.; Anastácio, J.D.; Nunes dos Santos, C. Sesquiterpene lactones: Promising natural compounds to fight inflammation. Pharmaceutics, 2021, 13(7), 991.
[http://dx.doi.org/10.3390/pharmaceutics13070991] [PMID: 34208907]
[47]
Fattori, V.; Hohmann, M.; Rossaneis, A.; Pinho-Ribeiro, F.; Verri, W., Jr Capsaicin: Current understanding of its mechanisms and therapy of pain and other pre-clinical and clinical uses. Molecules, 2016, 21(7), 844.
[http://dx.doi.org/10.3390/molecules21070844] [PMID: 27367653]
[48]
Lee, I.O.; Lee, K.H.; Pyo, J.H.; Kim, J.H.; Choi, Y.J.; Lee, Y.C. Anti-inflammatory effect of capsaicin in Helicobacter pylori-infected gastric epithelial cells. Helicobacter, 2007, 12(5), 510-517.
[http://dx.doi.org/10.1111/j.1523-5378.2007.00521.x] [PMID: 17760719]
[49]
Zheng, Q.; Sun, W.; Qu, M. Anti-neuro-inflammatory effects of the bioactive compound capsaicin through the NF-κB signaling pathway in LPS-stimulated BV2 microglial cells. Pharmacogn. Mag., 2018, 14(58)
[50]
Silva, R.C.M.C.; Tan, L.; Rodrigues, D.A.; Prestes, E.B.; Gomes, C.P.; Gama, A.M.; Oliveira, P.L.; Paiva, C.N.; Manoury, B.; Bozza, M.T. Chloroquine inhibits pro-inflammatory effects of heme on macrophages and in vivo. Free Radic. Biol. Med., 2021, 173, 104-116.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.07.028] [PMID: 34303829]
[51]
Brindha, P. Role of phytochemicals as immunomodulatory agents: A review. Int. J. Green Pharm., 2016, 10(1)
[52]
Galvão, I; Sugimoto, MA; Vago, JP; Machado, MG; Sousa, LP Mediators of inflammation. In: Mediators of Inflammation. ; Springer, Cham, 2018; pp. 3-32.
[53]
Sakthivel, K.M.; Guruvayoorappan, C. Acacia ferruginea inhibits tumor progression by regulating inflammatory mediators-(TNF-a, iNOS, COX-2, IL-1β, IL-6, IFN-γ, IL-2, GM-CSF) and pro-angiogenic growth factor- VEGF. Asian Pac. J. Cancer Prev., 2013, 14(6), 3909-3919.
[http://dx.doi.org/10.7314/APJCP.2013.14.6.3909] [PMID: 23886206]
[54]
Mohankumar, K.; Francis, A.P.; Pajaniradje, S.; Rajagopalan, R. Synthetic curcumin analog: Inhibiting the invasion, angiogenesis, and metastasis in human laryngeal carcinoma cells via NF-kB pathway. Mol. Biol. Rep., 2021, 48(8), 6065-6074.
[http://dx.doi.org/10.1007/s11033-021-06610-8] [PMID: 34355287]
[55]
de Vries, J.E. Immunosuppressive and anti-inflammatory properties of interleukin 10. Ann. Med., 1995, 27(5), 537-541.
[http://dx.doi.org/10.3109/07853899509002465] [PMID: 8541028]
[56]
Bi, Y; Chen, J; Hu, F; Liu, J; Li, M; Zhao, L. M2 macrophages as a potential target for antiatherosclerosis treatment. Neural Plast., 2019, 2019, 6724903.
[http://dx.doi.org/10.1155/2019/6724903]
[57]
Viola, A.; Luster, A.D. Chemokines and their receptors: Drug targets in immunity and inflammation. Annu. Rev. Pharmacol. Toxicol., 2008, 48(1), 171-197.
[http://dx.doi.org/10.1146/annurev.pharmtox.48.121806.154841] [PMID: 17883327]
[58]
Gautam, R.; Jachak, S.M. Recent developments in anti‐inflammatory natural products. Med. Res. Rev., 2009, 29(5), 767-820.
[http://dx.doi.org/10.1002/med.20156] [PMID: 19378317]
[59]
Keane, M.P.; Strieter, R.M. Chemokine signaling in inflammation. Crit. Care Med., 2000, 28(4)(Suppl.), N13-N26.
[http://dx.doi.org/10.1097/00003246-200004001-00003] [PMID: 10807313]
[60]
Wang, R.X.; Zhou, M.; Ma, H.L.; Qiao, Y.B.; Li, Q.S. The role of chronic inflammation in various diseases and anti‐inflammatory therapies containing natural products. ChemMedChem, 2021, 16(10), 1576-1592.
[http://dx.doi.org/10.1002/cmdc.202000996] [PMID: 33528076]
[61]
Rajakariar, R.; Yaqoob, M.M.; Gilroy, D.W. COX-2 in inflammation and resolution. Mol. Interv., 2006, 6(4), 199-207.
[http://dx.doi.org/10.1124/mi.6.4.6] [PMID: 16960142]
[62]
Yatoo, M.I.; Gopalakrishnan, A.; Saxena, A.; Parray, O.R.; Tufani, N.A.; Chakraborty, S.; Tiwari, R.; Dhama, K.; Iqbal, H.M.N. Anti-inflammatory drugs and herbs with special emphasis on herbal medicines for countering inflammatory diseases and disorders-a review. Recent Pat. Inflamm. Allergy Drug Discov., 2018, 12(1), 39-58.
[http://dx.doi.org/10.2174/1872213X12666180115153635] [PMID: 29336271]
[63]
Bashir Dar, K.; Hussain Bhat, A.; Amin, S.; Masood, A.; Afzal Zargar, M.; Ahmad Ganie, S. Inflammation: A multidimensional insight on natural anti-inflammatory therapeutic compounds. Curr. Med. Chem., 2016, 23(33), 3775-3800.
[http://dx.doi.org/10.2174/0929867323666160817163531] [PMID: 27538691]
[64]
Janakiram, N.; Rao, C. Role of lipoxins and resolvins as anti-inflammatory and proresolving mediators in colon cancer. Curr. Mol. Med., 2009, 9(5), 565-579.
[http://dx.doi.org/10.2174/156652409788488748] [PMID: 19601807]
[65]
Choy, K.W.; Murugan, D.; Leong, X.F.; Abas, R.; Alias, A.; Mustafa, M.R. Flavonoids as natural anti-inflammatory agents targeting nuclear factor-kappa B (NFκB) signaling in cardiovascular diseases: A mini review. Front. Pharmacol., 2019, 10, 1295.
[http://dx.doi.org/10.3389/fphar.2019.01295] [PMID: 31749703]
[66]
Mobasheri, A.; Henrotin, Y.; Biesalski, H.K.; Shakibaei, M. Scientific evidence and rationale for the development of curcumin and resveratrol as nutraceutricals for joint health. Int. J. Mol. Sci., 2012, 13(4), 4202-4232.
[http://dx.doi.org/10.3390/ijms13044202] [PMID: 22605974]
[67]
Xu, L.; Botchway, B.O.A.; Zhang, S.; Zhou, J.; Liu, X. Inhibition of NF-κB signaling pathway by resveratrol improves spinal cord injury. Front. Neurosci., 2018, 12, 690.
[http://dx.doi.org/10.3389/fnins.2018.00690] [PMID: 30337851]
[68]
Aparicio-Soto, M.; Redhu, D.; Sánchez-Hidalgo, M.; Fernández-Bolaños, J.G.; Alarcón-de-la-Lastra, C.; Worm, M.; Babina, M. Olive‐oil‐derived polyphenols effectively attenuate inflammatory responses of human keratinocytes by interfering with the NF‐κB pathway. Mol. Nutr. Food Res., 2019, 63(21), 1900019.
[http://dx.doi.org/10.1002/mnfr.201900019] [PMID: 31393642]
[69]
Mandal, S.K.; Debnath, U.; Kumar, A.; Thomas, S.; Mandal, S.C.; Choudhury, M.D.; Palit, P. Natural sesquiterpene lactones in the prevention and treatment of inflammatory disorders and cancer: A systematic study of this emerging therapeutic approach based on chemical and pharmacological aspect. Lett. Drug Des. Discov., 2020, 17(9), 1102-1116.
[http://dx.doi.org/10.2174/1570180817999200421144007]
[70]
Park, E.; Song, J.H.; Kim, M.S.; Park, S.H.; Kim, T.S. Costunolide, a sesquiterpene lactone, inhibits the differentiation of pro-inflammatory CD4 + T cells through the modulation of mitogen-activated protein kinases. Int. Immunopharmacol., 2016, 40, 508-516.
[http://dx.doi.org/10.1016/j.intimp.2016.10.006] [PMID: 27756053]
[71]
Harijith, A.; Ebenezer, D.L.; Natarajan, V. Reactive oxygen species at the crossroads of inflammasome and inflammation. Front. Physiol., 2014, 5, 352.
[http://dx.doi.org/10.3389/fphys.2014.00352] [PMID: 25324778]
[72]
Özenver, N.; Efferth, T. Phytochemical inhibitors of the NLRP3 inflammasome for the treatment of inflammatory diseases. Pharmacol. Res., 2021, 170, 105710.
[http://dx.doi.org/10.1016/j.phrs.2021.105710] [PMID: 34089866]
[73]
Latz, E.; Xiao, T.S.; Stutz, A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol., 2013, 13(6), 397-411.
[http://dx.doi.org/10.1038/nri3452] [PMID: 23702978]
[74]
Yin, H.; Guo, Q.; Li, X.; Tang, T.; Li, C.; Wang, H.; Sun, Y.; Feng, Q.; Ma, C.; Gao, C.; Yi, F.; Peng, J. Curcumin suppresses IL-1β secretion and prevents inflammation through inhibition of the NLRP3 inflammasome. J. Immunol., 2018, 200(8), 2835-2846.
[http://dx.doi.org/10.4049/jimmunol.1701495] [PMID: 29549176]
[75]
Chen, B.; Zhao, J.; Zhang, R.; Zhang, L.; Zhang, Q.; Yang, H.; An, J. Neuroprotective effects of natural compounds on neurotoxin-induced oxidative stress and cell apoptosis. Nutr. Neurosci., 2022, 25(5), 1078-1099.
[http://dx.doi.org/10.1080/1028415X.2020.1840035] [PMID: 33164705]
[76]
Sisein, E.A. Biochemistry of free radicals and antioxidants. Scholars Acad. J. Biosci., 2014, 2(2), 110-118.
[77]
Truong, V.L.; Jun, M.; Jeong, W.S. Role of resveratrol in regulation of cellular defense systems against oxidative stress. Biofactors, 2018, 44(1), 36-49.
[http://dx.doi.org/10.1002/biof.1399] [PMID: 29193412]
[78]
Diniz do Nascimento, L.; Moraes, A.A.B.; Costa, K.S.; Pereira Galúcio, J.M.; Taube, P.S.; Costa, C.M.L.; Neves Cruz, J.; de Aguiar Andrade, E.H.; Faria, L.J.G. Bioactive natural compounds and antioxidant activity of essential oils from spice plants: New findings and potential applications. Biomolecules, 2020, 10(7), 988.
[http://dx.doi.org/10.3390/biom10070988] [PMID: 32630297]
[79]
Macáková, K.; Afonso, R.; Saso, L.; Mladěnka, P. The influence of alkaloids on oxidative stress and related signaling pathways. Free Radic. Biol. Med., 2019, 134, 429-444.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.01.026] [PMID: 30703480]
[80]
Akbari, B.; Baghaei-Yazdi, N.; Bahmaie, M.; Mahdavi Abhari, F. The role of plant‐derived natural antioxidants in reduction of oxidative stress. Biofactors, 2022, 48(3), 611-633.
[http://dx.doi.org/10.1002/biof.1831] [PMID: 35229925]
[81]
Lee, K.W.; Hur, H.J.; Lee, H.J.; Lee, C.Y. Antiproliferative effects of dietary phenolic substances and hydrogen peroxide. J. Agric. Food Chem., 2005, 53(6), 1990-1995.
[http://dx.doi.org/10.1021/jf0486040] [PMID: 15769125]
[82]
Graßmann, J. Terpenoids as plant antioxidants. Vitam. Horm., 2005, 72, 505-535.
[http://dx.doi.org/10.1016/S0083-6729(05)72015-X] [PMID: 16492481]
[83]
Dumanović, J.; Nepovimova, E.; Natić, M.; Kuča, K.; Jaćević, V. The significance of reactive oxygen species and antioxidant defense system in plants: A concise overview. Front. Plant Sci., 2021, 11, 552969.
[http://dx.doi.org/10.3389/fpls.2020.552969] [PMID: 33488637]
[84]
Bhadoriya, S.S.; Mangal, A.; Madoriya, N.; Dixit, P. Bioavailability and bioactivity enhancement of herbal drugs by “Nanotechnology”: A review. J Curr Pharm Res., 2011, 8(1), 1-7.
[85]
Sayed, N.; Khurana, A.; Godugu, C. Pharmaceutical perspective on the translational hurdles of phytoconstituents and strategies to overcome. J. Drug Deliv. Sci. Technol., 2019, 53, 101201.
[http://dx.doi.org/10.1016/j.jddst.2019.101201]
[86]
Thakur, L.; Ghodasra, U.; Patel, N.; Dabhi, M. Novel approaches for stability improvement in natural medicines. Pharmacogn. Rev., 2011, 5(9), 48-54.
[http://dx.doi.org/10.4103/0973-7847.79099] [PMID: 22096318]
[87]
Ranjbar, S.; Emamjomeh, A.; Sharifi, F.; Zarepour, A.; Aghaabbasi, K.; Dehshahri, A.; Sepahvand, A.M.; Zarrabi, A.; Beyzaei, H.; Zahedi, M.M.; Mohammadinejad, R. Lipid-based delivery systems for flavonoids and flavonolignans: Liposomes, nanoemulsions, and solid lipid nanoparticles. Pharmaceutics, 2023, 15(7), 1944.
[http://dx.doi.org/10.3390/pharmaceutics15071944] [PMID: 37514130]
[88]
Plaza-Oliver, M.; Santander-Ortega, M.J.; Lozano, M.V. Current approaches in lipid-based nanocarriers for oral drug delivery. Drug Deliv. Transl. Res., 2021, 11(2), 471-497.
[http://dx.doi.org/10.1007/s13346-021-00908-7] [PMID: 33528830]
[89]
Carneiro, S.; Costa Duarte, F.; Heimfarth, L.; Siqueira Quintans, J.; Quintans-Júnior, L.; Veiga Júnior, V.; Neves de Lima, Á. Cyclodextrin–drug inclusion complexes: In vivo and in vitro approaches. Int. J. Mol. Sci., 2019, 20(3), 642.
[http://dx.doi.org/10.3390/ijms20030642] [PMID: 30717337]
[90]
Lengyel, M.; Kállai-Szabó, N.; Antal, V.; Laki, A.J.; Antal, I. Microparticles, microspheres, and microcapsules for advanced drug delivery. Sci. Pharm., 2019, 87(3), 20.
[http://dx.doi.org/10.3390/scipharm87030020]
[91]
Gordillo-Galeano, A.; Mora-Huertas, C.E. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur. J. Pharm. Biopharm., 2018, 133, 285-308.
[http://dx.doi.org/10.1016/j.ejpb.2018.10.017] [PMID: 30463794]
[92]
Akbari, J.; Saeedi, M.; Ahmadi, F.; Hashemi, S.M.H.; Babaei, A.; Yaddollahi, S.; Rostamkalaei, S.S.; Asare-Addo, K.; Nokhodchi, A. Solid lipid nanoparticles and nanostructured lipid carriers: A review of the methods of manufacture and routes of administration. Pharm. Dev. Technol., 2022, 27(5), 525-544.
[http://dx.doi.org/10.1080/10837450.2022.2084554] [PMID: 35635506]
[93]
Lin, C-H.; Chen, C-H.; Lin, Z-C.; Fang, J-Y. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. Yao Wu Shi Pin Fen Xi, 2017, 25(2), 219-234.
[PMID: 28911663]
[94]
Begines, B.; Ortiz, T.; Pérez-Aranda, M.; Martínez, G.; Merinero, M.; Argüelles-Arias, F.; Alcudia, A. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials, 2020, 10(7), 1403.
[http://dx.doi.org/10.3390/nano10071403] [PMID: 32707641]
[95]
Ma, Y.; Cong, Z.; Gao, P.; Wang, Y. Nanosuspensions technology as a master key for nature products drug delivery and In vivo fate. Eur. J. Pharm. Sci., 2023, 185, 106425.
[http://dx.doi.org/10.1016/j.ejps.2023.106425] [PMID: 36934992]
[96]
Arora, D.; Khurana, B.; Rath, G.; Nanda, S.; Goyal, A.K. Recent advances in nanosuspension technology for drug delivery. Curr. Pharm. Des., 2018, 24(21), 2403-2415.
[http://dx.doi.org/10.2174/1381612824666180522100251] [PMID: 29788880]
[97]
Chandran, B.; Goel, A. A randomized, pilot study to assess the efficacy and safety of curcumin in patients with active rheumatoid arthritis. Phytother. Res., 2012, 26(11), 1719-1725.
[http://dx.doi.org/10.1002/ptr.4639] [PMID: 22407780]
[98]
Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J., 2013, 15(1), 195-218.
[http://dx.doi.org/10.1208/s12248-012-9432-8] [PMID: 23143785]
[99]
Ammon, H. Boswellic acids in chronic inflammatory diseases. Planta Med., 2006, 72(12), 1100-1116.
[http://dx.doi.org/10.1055/s-2006-947227] [PMID: 17024588]
[100]
Siddiqui, M.Z. Boswellia serrata, a potential antiinflammatory agent: An overview. Indian J. Pharm. Sci., 2011, 73(3), 255-261.
[PMID: 22457547]
[101]
Grzanna, R.; Lindmark, L.; Frondoza, C.G. Ginger--an herbal medicinal product with broad anti-inflammatory actions. J. Med. Food, 2005, 8(2), 125-132.
[http://dx.doi.org/10.1089/jmf.2005.8.125] [PMID: 16117603]
[102]
Mashhadi, N.S.; Ghiasvand, R.; Askari, G.; Hariri, M.; Darvishi, L.; Mofid, M.R. Anti-oxidative and anti-inflammatory effects of ginger in health and physical activity: Review of current evidence. Int. J. Prev. Med., 2013, 4(Suppl. 1), S36-S42.
[PMID: 23717767]
[103]
Kolluru, GK; Bir, SC; Kevil, CG Endothelial dysfunction and diabetes: Effects on angiogenesis, vascular remodeling, and wound healing. Int J Vasc Med., 2012, 2012, 918267.
[http://dx.doi.org/10.1155/2012/918267]
[104]
Chrubasik, S.; Eisenberg, E.; Balan, E.; Weinberger, T.; Luzzati, R.; Conradt, C. Treatment of low back pain exacerbations with willow bark extract: A randomized double-blind study. Am. J. Med., 2000, 109(1), 9-14.
[http://dx.doi.org/10.1016/S0002-9343(00)00442-3] [PMID: 10936472]
[105]
Chrubasik, S.; Künzel, O.; Model, A.; Conradt, C.; Black, A. Treatment of low back pain with a herbal or synthetic anti-rheumatic: A randomized controlled study. Willow bark extract for low back pain. Br. J. Rheumatol., 2001, 40(12), 1388-1393.
[http://dx.doi.org/10.1093/rheumatology/40.12.1388] [PMID: 11752510]
[106]
Khan, N.; Mukhtar, H. Tea polyphenols for health promotion. Life Sci., 2007, 81(7), 519-533.
[http://dx.doi.org/10.1016/j.lfs.2007.06.011] [PMID: 17655876]
[107]
Kim, H.P.; Son, K.H.; Chang, H.W.; Kang, S.S. Anti-inflammatory plant flavonoids and cellular action mechanisms. J. Pharmacol. Sci., 2004, 96(3), 229-245.
[http://dx.doi.org/10.1254/jphs.CRJ04003X] [PMID: 15539763]
[108]
Singh, B.N.; Shankar, S.; Srivastava, R.K. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochem. Pharmacol., 2011, 82(12), 1807-1821.
[http://dx.doi.org/10.1016/j.bcp.2011.07.093] [PMID: 21827739]
[109]
Piscoya, J.; Rodriguez, Z.; Bustamante, S.A.; Okuhama, N.N.; Miller, M.J.S.; Sandoval, M. Efficacy and safety of freeze-dried cat’s claw in osteoarthritis of the knee: Mechanisms of action of the species Uncaria guianensis. Inflamm. Res., 2001, 50(9), 442-448.
[http://dx.doi.org/10.1007/PL00000268] [PMID: 11603848]
[110]
Sandoval, M.; Charbonnet, R.M.; Okuhama, N.N.; Roberts, J.; Krenova, Z.; Trentacosti, A.M.; Miller, M.J.S. Cat’s claw inhibits TNFα production and scavenges free radicals: Role in cytoprotection. Free Radic. Biol. Med., 2000, 29(1), 71-78.
[http://dx.doi.org/10.1016/S0891-5849(00)00327-0] [PMID: 10962207]
[111]
Gagnier, J.J.; Chrubasik, S.; Manheimer, E. Harpgophytum procumbens for osteoarthritis and low back pain: A systematic review. BMC Complement. Altern. Med., 2004, 4(1), 13.
[http://dx.doi.org/10.1186/1472-6882-4-13] [PMID: 15369596]
[112]
Wegener, T.; Lüpke, N.P. Treatment of patients with arthrosis of hip or knee with an aqueous extract of Devil’s Claw ( Harpagophytum procumbens DC.). Phytother. Res., 2003, 17(10), 1165-1172.
[http://dx.doi.org/10.1002/ptr.1322] [PMID: 14669250]
[113]
Eshun, K.; He, Q. Aloe vera: A valuable ingredient for the food, pharmaceutical and cosmetic industries--a review. Crit. Rev. Food Sci. Nutr., 2004, 44(2), 91-96.
[http://dx.doi.org/10.1080/10408690490424694] [PMID: 15116756]
[114]
Surjushe, A.; Vasani, R.; Saple, D.G. Aloe vera: A short review. Indian J. Dermatol., 2008, 53(4), 163-166.
[http://dx.doi.org/10.4103/0019-5154.44785] [PMID: 19882025]
[115]
Fu, Y.; Chen, J.; Li, Y.J.; Zheng, Y.F.; Li, P. Antioxidant and anti-inflammatory activities of six flavonoids separated from licorice. Food Chem., 2013, 141(2), 1063-1071.
[http://dx.doi.org/10.1016/j.foodchem.2013.03.089] [PMID: 23790887]
[116]
Viswanathan, P.; Muralidaran, Y.; Ragavan, G. Challenges in oral drug delivery: A nano-based strategy to overcome. In: Nanostructures for oral medicine; Elsevier, 2017; pp. 173-201.
[117]
Cech, N.B.; Yu, K. Mass spectrometry for natural products research: Challenges, pitfalls, and opportunities. LC GC N. Am., 2013, 31(11), 938-947.
[118]
Pereira, L.; Valado, A. Algae-derived natural products in diabetes and its complications—current advances and future prospects. Life, 2023, 13(9), 1831.
[http://dx.doi.org/10.3390/life13091831] [PMID: 37763235]
[119]
George, P. Concerns regarding the safety and toxicity of medicinal plants-An overview. J. Appl. Pharm. Sci., 2011, 1(6), 40-44.
[120]
van Wyk, A.S.; Prinsloo, G. Health, safety and quality concerns of plant-based traditional medicines and herbal remedies. S. Afr. J. Bot., 2020, 133, 54-62.
[http://dx.doi.org/10.1016/j.sajb.2020.06.031]
[121]
Caesar, L.K.; Montaser, R.; Keller, N.P.; Kelleher, N.L. Metabolomics and genomics in natural products research: Complementary tools for targeting new chemical entities. Nat. Prod. Rep., 2021, 38(11), 2041-2065.
[http://dx.doi.org/10.1039/D1NP00036E] [PMID: 34787623]
[122]
Thomford, N.; Senthebane, D.; Rowe, A.; Munro, D.; Seele, P.; Maroyi, A.; Dzobo, K. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. Int. J. Mol. Sci., 2018, 19(6), 1578.
[http://dx.doi.org/10.3390/ijms19061578] [PMID: 29799486]
[123]
Aswad, M.; Rayan, M.; Abu-Lafi, S.; Falah, M.; Raiyn, J.; Abdallah, Z.; Rayan, A. Nature is the best source of anti-inflammatory drugs: Indexing natural products for their anti-inflammatory bioactivity. Inflamm. Res., 2018, 67(1), 67-75.
[http://dx.doi.org/10.1007/s00011-017-1096-5] [PMID: 28956064]
[124]
Wang, L.C.; Wei, W.H.; Zhang, X.W.; Liu, D.; Zeng, K.W.; Tu, P.F. An integrated proteomics and bioinformatics approach reveals the anti-inflammatory mechanism of carnosic acid. Front. Pharmacol., 2018, 9, 370.
[http://dx.doi.org/10.3389/fphar.2018.00370] [PMID: 29713284]
[125]
Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The traditional medicine and modern medicine from natural products. Molecules, 2016, 21(5), 559.
[http://dx.doi.org/10.3390/molecules21050559] [PMID: 27136524]
[126]
Mirsadeghi, S.; Larijani, B. Personalized medicine: Pharmacogenomics and drug development. Acta Med. Iran., 2017, 55(3), 150-165.
[PMID: 28282716]
[127]
Gligorijević, V.; Malod-Dognin, N.; Pržulj, N. Integrative methods for analyzing big data in precision medicine. Proteomics, 2016, 16(5), 741-758.
[http://dx.doi.org/10.1002/pmic.201500396] [PMID: 26677817]
[128]
Rodrigues, T.; Reker, D.; Schneider, P.; Schneider, G. Counting on natural products for drug design. Nat. Chem., 2016, 8(6), 531-541.
[http://dx.doi.org/10.1038/nchem.2479] [PMID: 27219696]
[129]
Lurie-Luke, E. Product and technology innovation: What can biomimicry inspire? Biotechnol. Adv., 2014, 32(8), 1494-1505.
[http://dx.doi.org/10.1016/j.biotechadv.2014.10.002] [PMID: 25316672]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy