Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

The Growth Inhibitory Effect of Resveratrol and Gallic Acid on Prostate Cancer Cell Lines through the Alteration of Oxidative Stress Balance: The Interplay between Nrf2, HO-1, and BACH1 Genes

Author(s): Delaram Moghadam, Reza Zarei, Amirabbas Rostami, Mohammad Samare-Najaf, Rozita Ghojoghi, Amir Savardashtaki, Morteza Jafarinia, Sina Vakili* and Cambyz Irajie*

Volume 24, Issue 16, 2024

Published on: 09 July, 2024

Page: [1220 - 1232] Pages: 13

DOI: 10.2174/0118715206317999240708062744

Price: $65

Abstract

Background: The association between oxidative stress and prostate cancer (PC) has been demonstrated both epidemiologically and experimentally. Balance in reactive oxygen species (ROS) levels depends on multiple factors, such as the expression of Nrf2, HO-1, and BACH1 genes. Natural polyphenols, such as resveratrol (RSV) and gallic acid (GA), affect cellular oxidative profiles.

Objective: The present study investigated the possible effects of GA and RSV on the oxidative profiles of PC3 and DU145 cells, as well as Nrf2, HO-1, and BACH1 gene expression to achieve an understanding of the mechanisms involved.

Methods: PC3 and DU145 cells were treated with ascending concentrations of RSV and GA for 72 h. Then cell growth and mRNA expression of Nrf2, HO-1, and BACH1 genes were analyzed by real-time PCR. Various spectrophotometric analyses were performed to measure oxidative stress markers.

Results: RSV and GA significantly decreased the growth of PC3 and DU145 cells compared to the control group in a concentration-dependent manner. RSV and GA also decreased ROS production in PC3 cells, but in DU145 cells, only the latter polyphenol significantly decreased ROS content. In addition, RSV and GA had ameliorating effects on SOD, GR, GPX, and CAT activities and GSH levels in both cell lines. Also, RSV and GA induced HO- 1 and Nrf2 gene expression in both cell lines. BACH1 gene expression was induced by RSV only at lower concentrations, in contrast to GA in both cell lines.

Conclusion: Our data suggest that RSV and GA can prevent the growth of prostate cancer cells by disrupting oxidative stress-related pathways, such as changes in Nrf2, HO-1, and BACH1 gene expression.

[1]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[2]
Kitamura, H.; Motohashi, H. NRF2 addiction in cancer cells. Cancer Sci., 2018, 109(4), 900-911.
[http://dx.doi.org/10.1111/cas.13537] [PMID: 29450944]
[3]
Bellezza, I.; Scarpelli, P.; Pizzo, S.V.; Grottelli, S.; Costanzi, E.; Minelli, A. ROS-independent Nrf2 activation in prostate cancer. Oncotarget, 2017, 8(40), 67506-67518.
[http://dx.doi.org/10.18632/oncotarget.18724] [PMID: 28978049]
[4]
Zuo, J.; Zhang, Z.; Li, M.; Yang, Y.; Zheng, B.; Wang, P.; Huang, C.; Zhou, S. The crosstalk between reactive oxygen species and noncoding RNAs: from cancer code to drug role. Mol. Cancer, 2022, 21(1), 30.
[http://dx.doi.org/10.1186/s12943-021-01488-3] [PMID: 35081965]
[5]
Abbasi, A.; Mostafavi-Pour, Z.; Amiri, A.; Keshavarzi, F.; Nejabat, N.; Ramezani, F.; Sardarian, A.; Zal, F. Chemoprevention of prostate cancer cells by vitamin C plus quercetin: Role of Nrf2 in inducing oxidative stress. Nutr. Cancer, 2020, 2020, 1-11.
[PMID: 32924610]
[6]
Dodson, M.; Castro-Portuguez, R.; Zhang, D.D. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol., 2019, 23, 101107.
[http://dx.doi.org/10.1016/j.redox.2019.101107] [PMID: 30692038]
[7]
Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta Mol. Cell Res., 2016, 1863(12), 2977-2992.
[http://dx.doi.org/10.1016/j.bbamcr.2016.09.012] [PMID: 27646922]
[8]
Brigelius-Flohé, R.; Flohé, L. Basic principles and emerging concepts in the redox control of transcription factors. Antioxid. Redox Signal., 2011, 15(8), 2335-2381.
[http://dx.doi.org/10.1089/ars.2010.3534] [PMID: 21194351]
[9]
Zhang, M.J.; Sun, W.W.; Yang, J.; Shi, D.D.; Dai, X.F.; Li, X.M. The effect of preventing oxidative stress and its mechanisms in the extract from Sonchus brachyotus DC. Based on the Nrf2-Keap1-ARE signaling pathway. Antioxidants, 2023, 12(9), 1677.
[http://dx.doi.org/10.3390/antiox12091677] [PMID: 37759980]
[10]
Bellezza, I.; Grottelli, S.; Gatticchi, L.; Mierla, A.L.; Minelli, A. α-Tocopheryl succinate pre-treatment attenuates quinone toxicity in prostate cancer PC3 cells. Gene, 2014, 539(1), 1-7.
[http://dx.doi.org/10.1016/j.gene.2014.02.009] [PMID: 24530478]
[11]
Ferrando, M.; Gueron, G.; Elguero, B.; Giudice, J.; Salles, A.; Leskow, F.C.; Jares-Erijman, E.A.; Colombo, L.; Meiss, R.; Navone, N.; De Siervi, A.; Vazquez, E. Heme oxygenase 1 (HO-1) challenges the angiogenic switch in prostate cancer. Angiogenesis, 2011, 14(4), 467-479.
[http://dx.doi.org/10.1007/s10456-011-9230-4] [PMID: 21833623]
[12]
Chapple, S.J.; Keeley, T.P.; Mastronicola, D.; Arno, M.; Vizcay-Barrena, G.; Fleck, R.; Siow, R.C.M.; Mann, G.E. Bach1 differentially regulates distinct Nrf2-dependent genes in human venous and coronary artery endothelial cells adapted to physiological oxygen levels. Free Radic. Biol. Med., 2016, 92, 152-162.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.12.013] [PMID: 26698668]
[13]
Ogawa, K.; Sun, J.; Taketani, S.; Nakajima, O.; Nishitani, C.; Sassa, S.; Hayashi, N.; Yamamoto, M.; Shibahara, S.; Fujita, H.; Igarashi, K. Heme mediates derepression of Maf recognition element through direct binding to transcription repressor Bach1. EMBO J., 2001, 20(11), 2835-2843.
[http://dx.doi.org/10.1093/emboj/20.11.2835] [PMID: 11387216]
[14]
Schultz, M.A.; Abdel-Mageed, A.B.; Mondal, D. The nrf1 and nrf2 balance in oxidative stress regulation and androgen signaling in prostate cancer cells. Cancers, 2010, 2(2), 1354-1378.
[http://dx.doi.org/10.3390/cancers2021354] [PMID: 24281119]
[15]
Gueron, G.; Giudice, J.; Valacco, P.; Paez, A.; Elguero, B.; Toscani, M.; Jaworski, F.; Leskow, F.C.; Cotignola, J.; Marti, M.; Binaghi, M.; Navone, N.; Vazquez, E. Heme-oxygenase-1 implications in cell morphology and the adhesive behavior of prostate cancer cells. Oncotarget, 2014, 5(12), 4087-4102.
[http://dx.doi.org/10.18632/oncotarget.1826] [PMID: 24961479]
[16]
Leonardi, D.B.; Anselmino, N.; Brandani, J.N.; Jaworski, F.M.; Páez, A.V.; Mazaira, G.; Meiss, R.P.; Nuñez, M.; Nemirovsky, S.I.; Giudice, J.; Galigniana, M.; Pecci, A.; Gueron, G.; Vazquez, E.; Cotignola, J. Heme oxygenase 1 impairs glucocorticoid receptor activity in prostate cancer. Int. J. Mol. Sci., 2019, 20(5), 1006.
[http://dx.doi.org/10.3390/ijms20051006] [PMID: 30813528]
[17]
Shajari, N.; Davudian, S.; Kazemi, T.; Mansoori, B.; Salehi, S.; Khaze Shahgoli, V.; Shanehbandi, D.; Mohammadi, A.; Duijf, P.H.G.; Baradaran, B. Silencing of BACH1 inhibits invasion and migration of prostate cancer cells by altering metastasis-related gene expression. Artif. Cells Nanomed. Biotechnol., 2018, 46(7), 1495-1504.
[http://dx.doi.org/10.1080/21691401.2017.1374284] [PMID: 28889753]
[18]
Samare-Najaf, M.; Zal, F.; Safari, S. Primary and secondary markers of doxorubicin-induced female infertility and the alleviative properties of quercetin and vitamin E in a rat model. Reprod. Toxicol., 2020, 96, 316-326.
[http://dx.doi.org/10.1016/j.reprotox.2020.07.015] [PMID: 32810592]
[19]
Jang, Y.G.; Go, R.E.; Hwang, K.A.; Choi, K.C. Resveratrol inhibits DHT-induced progression of prostate cancer cell line through interfering with the AR and CXCR4 pathway. J. Steroid Biochem. Mol. Biol., 2019, 192, 105406.
[http://dx.doi.org/10.1016/j.jsbmb.2019.105406] [PMID: 31185279]
[20]
Kahkeshani, N.; Farzaei, F.; Fotouhi, M.; Alavi, S.S.; Bahramsoltani, R.; Naseri, R.; Momtaz, S.; Abbasabadi, Z.; Rahimi, R.; Farzaei, M.H.; Bishayee, A. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran. J. Basic Med. Sci., 2019, 22(3), 225-237.
[PMID: 31156781]
[21]
Sagdicoglu Celep, A.G.; Demirkaya, A.; Solak, E.K. Antioxidant and anticancer activities of gallic acid loaded sodium alginate microspheres on colon cancer. Curr. Appl. Phys., 2022, 40, 30-42.
[http://dx.doi.org/10.1016/j.cap.2020.06.002]
[22]
Aruoma, O.; Murcia, A.; Butler, J.; Halliwell, B. Evaluation of the antioxidant and prooxidant actions of gallic acid and its derivatives. J AGR. Food Chem., 2008, 2008, 41.
[23]
Iqbal, M.J.; Kabeer, A.; Abbas, Z.; Siddiqui, H.A.; Calina, D.; Sharifi-Rad, J.; Cho, W.C. Interplay of oxidative stress, cellular communication and signaling pathways in cancer. Cell Commun. Signal., 2024, 22(1), 7.
[http://dx.doi.org/10.1186/s12964-023-01398-5] [PMID: 38167159]
[24]
Bouyahya, A.; Bakrim, S.; Aboulaghras, S.; El Kadri, K.; Aanniz, T.; Khalid, A.; Abdalla, A.N.; Abdallah, A.A.; Ardianto, C.; Ming, L.C.; El Omari, N. Bioactive compounds from nature: Antioxidants targeting cellular transformation in response to epigenetic perturbations induced by oxidative stress. Biomed. Pharmacother., 2024, 174, 116432.
[http://dx.doi.org/10.1016/j.biopha.2024.116432] [PMID: 38520868]
[25]
Tossetta, G.; Fantone, S.; Marzioni, D.; Mazzucchelli, R. Role of natural and synthetic compounds in modulating NRF2/KEAP1 signaling pathway in prostate cancer. Cancers, 2023, 15(11), 3037.
[http://dx.doi.org/10.3390/cancers15113037] [PMID: 37296999]
[26]
Ashrafizadeh, M.; Zarrabi, A.; Mirzaei, S.; Hashemi, F.; Samarghandian, S.; Zabolian, A.; Hushmandi, K.; Ang, H.L.; Sethi, G.; Kumar, A.P.; Ahn, K.S.; Nabavi, N.; Khan, H.; Makvandi, P.; Varma, R.S. Gallic acid for cancer therapy: Molecular mechanisms and boosting efficacy by nanoscopical delivery. Food Chem. Toxicol., 2021, 157, 112576.
[http://dx.doi.org/10.1016/j.fct.2021.112576] [PMID: 34571052]
[27]
Kaur, M.; Velmurugan, B.; Rajamanickam, S.; Agarwal, R.; Agarwal, C. Gallic acid, an active constituent of grape seed extract, exhibits anti-proliferative, pro-apoptotic and anti-tumorigenic effects against prostate carcinoma xenograft growth in nude mice. Pharm. Res., 2009, 26(9), 2133-2140.
[http://dx.doi.org/10.1007/s11095-009-9926-y] [PMID: 19543955]
[28]
Reddivari, L.; Vanamala, J.; Safe, S.H.; Miller, J.C., Jr The bioactive compounds α-chaconine and gallic acid in potato extracts decrease survival and induce apoptosis in LNCaP and PC3 prostate cancer cells. Nutr. Cancer, 2010, 62(5), 601-610.
[http://dx.doi.org/10.1080/01635580903532358] [PMID: 20574921]
[29]
Saffari-Chaleshtori, J.; Heidari-Sureshjani, E.; Moradi, F.; Jazi, H.M.; Heidarian, E. The study of apoptosis-inducing effects of three pre-apoptotic factors by gallic acid, using simulation analysis and the comet assay technique on the prostatic cancer cell line PC3. Malays. J. Med. Sci., 2017, 24(4), 18-29.
[http://dx.doi.org/10.21315/mjms2017.24.4.3] [PMID: 28951686]
[30]
Kuwajerwala, N.; Cifuentes, E.; Gautam, S.; Menon, M.; Barrack, E.R.; Reddy, G.P. Resveratrol induces prostate cancer cell entry into s phase and inhibits DNA synthesis. Cancer Res., 2002, 62(9), 2488-2492.
[PMID: 11980638]
[31]
Rashid, A.; Liu, C.; Sanli, T.; Tsiani, E.; Singh, G.; Bristow, R.G.; Dayes, I.; Lukka, H.; Wright, J.; Tsakiridis, T. Resveratrol enhances prostate cancer cell response to ionizing radiation. Modulation of the AMPK, Akt and mTOR pathways. Radiat. Oncol., 2011, 6(1), 144.
[http://dx.doi.org/10.1186/1748-717X-6-144] [PMID: 22029423]
[32]
Zal, F.; Khademi, F.; Taheri, R.; Mostafavi-Pour, Z. Antioxidant ameliorating effects against H2O2-induced cytotoxicity in primary endometrial cells. Toxicol. Mech. Methods, 2018, 28(2), 122-129.
[http://dx.doi.org/10.1080/15376516.2017.1372540] [PMID: 28849685]
[33]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[34]
Moghadam, D.; Zarei, R.; Vakili, S.; Ghojoghi, R.; Zarezade, V.; Veisi, A.; Sabaghan, M.; Azadbakht, O.; Behrouj, H. The effect of natural polyphenols Resveratrol, Gallic acid, and Kuromanin chloride on human telomerase reverse transcriptase (hTERT) expression in HepG2 hepatocellular carcinoma: role of SIRT1/Nrf2 signaling pathway and oxidative stress. Mol. Biol. Rep., 2023, 50(1), 77-84.
[http://dx.doi.org/10.1007/s11033-022-08031-7] [PMID: 36307623]
[35]
Aebi, H. Catalase in vitro. Methods in enzymology; Elsevier, 1984, pp. 121-126.
[36]
Maiani, G.; Mobarhan, S.; Nicastro, A.; Virgili, F.; Scaccini, C.; Ferro-Luzzi, A. Determination of glutathione reductase activity in erythrocytes and whole blood as an indicator of riboflavin nutrition. Acta Vitaminol. Enzymol., 1983, 5(3), 171-178.
[PMID: 6650303]
[37]
Zal, F.; Mostafavi-Pour, Z.; Amini, F.; Heidari, A. Effect of vitamin E and C supplements on lipid peroxidation and GSH-dependent antioxidant enzyme status in the blood of women consuming oral contraceptives. Contraception, 2012, 86(1), 62-66.
[http://dx.doi.org/10.1016/j.contraception.2011.11.006] [PMID: 22494786]
[38]
Gupta-Elera, G.; Garrett, A.R.; Robison, R.A.; O’Neill, K.L. The role of oxidative stress in prostate cancer. Eur. J. Cancer Prev., 2012, 21(2), 155-162.
[http://dx.doi.org/10.1097/CEJ.0b013e32834a8002] [PMID: 21857523]
[39]
Khandrika, L.; Kumar, B.; Koul, S.; Maroni, P.; Koul, H.K. Oxidative stress in prostate cancer. Cancer Lett., 2009, 282(2), 125-136.
[http://dx.doi.org/10.1016/j.canlet.2008.12.011] [PMID: 19185987]
[40]
Abbasi, A.; Movahedpour, A.; Amiri, A.; Najaf, M.S.; Mostafavi-Pour, Z. Darolutamide as a second-generation androgen receptor inhibitor in the treatment of prostate cancer. Curr. Mol. Med., 2020, 21(4), 332-346.
[41]
Saikolappan, S.; Kumar, B.; Shishodia, G.; Koul, S.; Koul, H.K. Reactive oxygen species and cancer: A complex interaction. Cancer Lett., 2019, 452, 132-143.
[http://dx.doi.org/10.1016/j.canlet.2019.03.020] [PMID: 30905813]
[42]
Hayes, J.D.; Dinkova-Kostova, A.T.; Tew, K.D. Oxidative stress in cancer. Cancer Cell, 2020, 38(2), 167-197.
[http://dx.doi.org/10.1016/j.ccell.2020.06.001] [PMID: 32649885]
[43]
Kumar, B.; Koul, S.; Khandrika, L.; Meacham, R.B.; Koul, H.K. Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res., 2008, 68(6), 1777-1785.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5259] [PMID: 18339858]
[44]
Russell, L.H., Jr; Mazzio, E.; Badisa, R.B.; Zhu, Z.P.; Agharahimi, M.; Oriaku, E.T.; Goodman, C.B. Autoxidation of gallic acid induces ROS-dependent death in human prostate cancer LNCaP cells. Anticancer Res., 2012, 32(5), 1595-1602.
[PMID: 22593437]
[45]
Zheng, X.; Jia, B.; Tian, X.T.; Song, X.; Wu, M.L.; Kong, Q.Y.; Li, H.; Liu, J. Correlation of reactive oxygen species levels with resveratrol sensitivities of anaplastic thyroid cancer cells. Oxid. Med. Cell. Longev., 2018, 2018, 1-12.
[http://dx.doi.org/10.1155/2018/6235417] [PMID: 30116486]
[46]
Song, J.; Huang, Y.; Zheng, W.; Yan, J.; Cheng, M.; Zhao, R.; Chen, L.; Hu, C.; Jia, W. Resveratrol reduces intracellular reactive oxygen species levels by inducing autophagy through the AMPK-mTOR pathway. Front. Med., 2018, 12(6), 697-706.
[http://dx.doi.org/10.1007/s11684-018-0655-7] [PMID: 30421395]
[47]
Rodríguez-Enríquez, S.; Pacheco-Velázquez, S.C.; Marín-Hernández, Á.; Gallardo-Pérez, J.C.; Robledo-Cadena, D.X.; Hernández-Reséndiz, I.; García-García, J.D.; Belmont-Díaz, J.; López-Marure, R.; Hernández-Esquivel, L.; Sánchez-Thomas, R.; Moreno-Sánchez, R. Resveratrol inhibits cancer cell proliferation by impairing oxidative phosphorylation and inducing oxidative stress. Toxicol. Appl. Pharmacol., 2019, 370, 65-77.
[http://dx.doi.org/10.1016/j.taap.2019.03.008] [PMID: 30878505]
[48]
Aggarwal, V.; Tuli, H.; Varol, A.; Thakral, F.; Yerer, M.; Sak, K.; Varol, M.; Jain, A.; Khan, M.; Sethi, G. Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules, 2019, 9(11), 735.
[http://dx.doi.org/10.3390/biom9110735] [PMID: 31766246]
[49]
Valenti, G.E.; Tasso, B.; Traverso, N.; Domenicotti, C.; Marengo, B. Glutathione in cancer progression and chemoresistance: An update. Redox. Experim. Med., 2023, 2023(1), e220023.
[50]
Traverso, N.; Ricciarelli, R.; Nitti, M.; Marengo, B.; Furfaro, A.L.; Pronzato, M.A.; Marinari, U.M.; Domenicotti, C. Role of glutathione in cancer progression and chemoresistance. Oxid. Med. Cell. Longev., 2013, 2013, 1-10.
[http://dx.doi.org/10.1155/2013/972913] [PMID: 23766865]
[51]
Sharmila, G.; Bhat, F.A.; Arunkumar, R.; Elumalai, P.; Raja, S.P.; Senthilkumar, K.; Arunakaran, J. Chemopreventive effect of quercetin, a natural dietary flavonoid on prostate cancer in in vivo model. Clin. Nutr., 2014, 33(4), 718-726.
[http://dx.doi.org/10.1016/j.clnu.2013.08.011] [PMID: 24080313]
[52]
Tang, X.; Ding, H.; Liang, M.; Chen, X.; Yan, Y.; Wan, N.; Chen, Q.; Zhang, J.; Cao, J. Curcumin induces ferroptosis in non‐small‐cell lung cancer via activating autophagy. Thorac. Cancer, 2021, 12(8), 1219-1230.
[http://dx.doi.org/10.1111/1759-7714.13904] [PMID: 33656766]
[53]
Lee, J.; Jang, C.H.; Kim, Y.; Oh, J.; Kim, J.S. Quercetin-induced glutathione depletion sensitizes colorectal cancer cells to oxaliplatin. Foods, 2023, 12(8), 1733.
[http://dx.doi.org/10.3390/foods12081733] [PMID: 37107528]
[54]
Guha, P.; Dey, A.; Sen, R.; Chatterjee, M.; Chattopadhyay, S.; Bandyopadhyay, S.K. Intracellular GSH depletion triggered mitochondrial Bax translocation to accomplish resveratrol-induced apoptosis in the U937 cell line. J. Pharmacol. Exp. Ther., 2011, 336(1), 206-214.
[http://dx.doi.org/10.1124/jpet.110.171983] [PMID: 20876229]
[55]
Na, H.K.; Surh, Y.J. Oncogenic potential of Nrf2 and its principal target protein heme oxygenase-1. Free Radic. Biol. Med., 2014, 67, 353-365.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.10.819] [PMID: 24200599]
[56]
Chiang, S.K.; Chen, S.E.; Chang, L.C. The Role of HO-1 and its crosstalk with oxidative stress in cancer cell survival. Cells, 2021, 10(9), 2401.
[http://dx.doi.org/10.3390/cells10092401] [PMID: 34572050]
[57]
Schultz, M.A.; Hagan, S.S.; Datta, A.; Zhang, Y.; Freeman, M.L.; Sikka, S.C.; Abdel-Mageed, A.B.; Mondal, D. Nrf1 and Nrf2 transcription factors regulate androgen receptor transactivation in prostate cancer cells. PLoS One, 2014, 9(1), e87204.
[http://dx.doi.org/10.1371/journal.pone.0087204] [PMID: 24466341]
[58]
Khurana, N.; Sikka, S. Targeting crosstalk between Nrf-2, NF-κB and androgen receptor signaling in prostate cancer. Cancers, 2018, 10(10), 352.
[http://dx.doi.org/10.3390/cancers10100352] [PMID: 30257470]
[59]
Tian, X.; Cong, F.; Guo, H.; Fan, J.; Chao, G.; Song, T. Downregulation of Bach1 protects osteoblasts against hydrogen peroxide-induced oxidative damage in vitro by enhancing the activation of Nrf2/ARE signaling. Chem. Biol. Interact., 2019, 309, 108706.
[http://dx.doi.org/10.1016/j.cbi.2019.06.019] [PMID: 31194955]
[60]
Davudian, S.; Shajari, N.; Kazemi, T.; Mansoori, B.; Salehi, S.; Mohammadi, A.; Shanehbandi, D.; Shahgoli, V.K.; Asadi, M.; Baradaran, B. BACH1 silencing by siRNA inhibits migration of HT-29 colon cancer cells through reduction of metastasis-related genes. Biomed. Pharmacother., 2016, 84, 191-198.
[http://dx.doi.org/10.1016/j.biopha.2016.09.021] [PMID: 27657827]
[61]
Liang, Y.; Wu, H.; Lei, R.; Chong, R.A.; Wei, Y.; Lu, X.; Tagkopoulos, I.; Kung, S.Y.; Yang, Q.; Hu, G.; Kang, Y. Transcriptional network analysis identifies BACH1 as a master regulator of breast cancer bone metastasis. J. Biol. Chem., 2012, 287(40), 33533-33544.
[http://dx.doi.org/10.1074/jbc.M112.392332] [PMID: 22875853]
[62]
Zhu, G.D.; Liu, F.; OuYang, S.; Zhou, R.; Jiang, F.N.; Zhang, B.; Liao, W.J. BACH1 promotes the progression of human colorectal cancer through BACH1/CXCR4 pathway. Biochem. Biophys. Res. Commun., 2018, 499(2), 120-127.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.178] [PMID: 29481800]
[63]
Yun, J.; Frankenberger, C.A.; Kuo, W.L.; Boelens, M.C.; Eves, E.M.; Cheng, N.; Liang, H.; Li, W.H.; Ishwaran, H.; Minn, A.J.; Rosner, M.R. Signalling pathway for RKIP and Let-7 regulates and predicts metastatic breast cancer. EMBO J., 2011, 30(21), 4500-4514.
[http://dx.doi.org/10.1038/emboj.2011.312] [PMID: 21873975]
[64]
Kaspar, J.W.; Jaiswal, A.K. Antioxidant-induced phosphorylation of tyrosine 486 leads to rapid nuclear export of Bach1 that allows Nrf2 to bind to the antioxidant response element and activate defensive gene expression. J. Biol. Chem., 2010, 285(1), 153-162.
[http://dx.doi.org/10.1074/jbc.M109.040022] [PMID: 19897490]
[65]
Glorieux, C.; Enríquez, C.; González, C.; Aguirre-Martínez, G.; Buc Calderon, P. The multifaceted roles of NRF2 in Cancer: friend or foe? Antioxidants, 2024, 13(1), 70.
[http://dx.doi.org/10.3390/antiox13010070] [PMID: 38247494]
[66]
Wiel, C.; Le Gal, K.; Ibrahim, M.X.; Jahangir, C.A.; Kashif, M.; Yao, H.; Ziegler, D.V.; Xu, X.; Ghosh, T.; Mondal, T.; Kanduri, C.; Lindahl, P.; Sayin, V.I.; Bergo, M.O. BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell, 2019, 178(2), 330-345.e22.
[http://dx.doi.org/10.1016/j.cell.2019.06.005] [PMID: 31257027]
[67]
Reczek, C.R.; Chandel, N.S. The two faces of reactive oxygen species in cancer. Annu. Rev. Cancer Biol., 2017, 1(1), 79-98.
[http://dx.doi.org/10.1146/annurev-cancerbio-041916-065808]
[68]
Piskounova, E.; Agathocleous, M.; Murphy, M.M.; Hu, Z.; Huddlestun, S.E.; Zhao, Z.; Leitch, A.M.; Johnson, T.M.; DeBerardinis, R.J.; Morrison, S.J. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature, 2015, 527(7577), 186-191.
[http://dx.doi.org/10.1038/nature15726] [PMID: 26466563]
[69]
Schafer, Z.T.; Grassian, A.R.; Song, L.; Jiang, Z.; Gerhart-Hines, Z.; Irie, H.Y.; Gao, S.; Puigserver, P.; Brugge, J.S. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature, 2009, 461(7260), 109-113.
[http://dx.doi.org/10.1038/nature08268] [PMID: 19693011]
[70]
Galadari, S.; Rahman, A.; Pallichankandy, S.; Thayyullathil, F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic. Biol. Med., 2017, 104, 144-164.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.01.004] [PMID: 28088622]
[71]
Khan, F.; Khan, I.; Farooqui, A.; Ansari, I.A. Carvacrol induces reactive oxygen species (ROS)-mediated apoptosis along with cell cycle arrest at G0/G1 in human prostate cancer cells. Nutr. Cancer, 2017, 69(7), 1075-1087.
[http://dx.doi.org/10.1080/01635581.2017.1359321] [PMID: 28872904]
[72]
Wang, D.; Gao, Z.; Zhang, X. Resveratrol induces apoptosis in murine prostate cancer cells via hypoxia-inducible factor 1-alpha (HIF-1α)/reactive oxygen species (ROS)/P53 signaling. Med. Sci. Monit., 2018, 24, 8970-8976.
[http://dx.doi.org/10.12659/MSM.913290] [PMID: 30531685]
[73]
Kim, U.; Kim, C.Y.; Lee, J.M.; Oh, H.; Ryu, B.; Kim, J.; Park, J.H. Phloretin inhibits the human prostate cancer cells through the generation of reactive oxygen species. Pathol. Oncol. Res., 2020, 26(2), 977-984.
[http://dx.doi.org/10.1007/s12253-019-00643-y] [PMID: 30937835]
[74]
Kandoth, C.; McLellan, M.D.; Vandin, F.; Ye, K.; Niu, B.; Lu, C.; Xie, M.; Zhang, Q.; McMichael, J.F.; Wyczalkowski, M.A.; Leiserson, M.D.M.; Miller, C.A.; Welch, J.S.; Walter, M.J.; Wendl, M.C.; Ley, T.J.; Wilson, R.K.; Raphael, B.J.; Ding, L. Mutational landscape and significance across 12 major cancer types. Nature, 2013, 502(7471), 333-339.
[http://dx.doi.org/10.1038/nature12634] [PMID: 24132290]
[75]
Goldstein, L.D.; Lee, J.; Gnad, F.; Klijn, C.; Schaub, A.; Reeder, J.; Daemen, A.; Bakalarski, C.E.; Holcomb, T.; Shames, D.S.; Hartmaier, R.J.; Chmielecki, J.; Seshagiri, S.; Gentleman, R.; Stokoe, D. Recurrent loss of NFE2L2 exon 2 is a mechanism for Nrf2 pathway activation in human cancers. Cell Rep., 2016, 16(10), 2605-2617.
[http://dx.doi.org/10.1016/j.celrep.2016.08.010] [PMID: 27568559]
[76]
Fabrizio, F.P.; Costantini, M.; Copetti, M.; la Torre, A.; Sparaneo, A.; Fontana, A.; Poeta, L.; Gallucci, M.; Sentinelli, S.; Graziano, P.; Parente, P.; Pompeo, V.; Salvo, L.D.; Simone, G.; Papalia, R.; Picardo, F.; Balsamo, T.; Flammia, G.P.; Trombetta, D.; Pantalone, A.; Kok, K.; Paranita, F.; Muscarella, L.A.; Fazio, V.M. Keap1/Nrf2 pathway in kidney cancer: frequent methylation of KEAP1 gene promoter in clear renal cell carcinoma. Oncotarget, 2017, 8(7), 11187-11198.
[http://dx.doi.org/10.18632/oncotarget.14492] [PMID: 28061437]
[77]
Inami, Y.; Waguri, S.; Sakamoto, A.; Kouno, T.; Nakada, K.; Hino, O.; Watanabe, S.; Ando, J.; Iwadate, M.; Yamamoto, M.; Lee, M.S.; Tanaka, K.; Komatsu, M. Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J. Cell Biol., 2011, 193(2), 275-284.
[http://dx.doi.org/10.1083/jcb.201102031] [PMID: 21482715]
[78]
Komatsu, M.; Kurokawa, H.; Waguri, S.; Taguchi, K.; Kobayashi, A.; Ichimura, Y.; Sou, Y.S.; Ueno, I.; Sakamoto, A.; Tong, K.I.; Kim, M.; Nishito, Y.; Iemura, S.; Natsume, T.; Ueno, T.; Kominami, E.; Motohashi, H.; Tanaka, K.; Yamamoto, M. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol., 2010, 12(3), 213-223.
[http://dx.doi.org/10.1038/ncb2021] [PMID: 20173742]
[79]
DeNicola, G.M.; Karreth, F.A.; Humpton, T.J.; Gopinathan, A.; Wei, C.; Frese, K.; Mangal, D.; Yu, K.H.; Yeo, C.J.; Calhoun, E.S.; Scrimieri, F.; Winter, J.M.; Hruban, R.H.; Iacobuzio-Donahue, C.; Kern, S.E.; Blair, I.A.; Tuveson, D.A. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature, 2011, 475(7354), 106-109.
[http://dx.doi.org/10.1038/nature10189] [PMID: 21734707]
[80]
Okazaki, K.; Papagiannakopoulos, T.; Motohashi, H. Metabolic features of cancer cells in NRF2 addiction status. Biophys. Rev., 2020, 12(2), 435-441.
[http://dx.doi.org/10.1007/s12551-020-00659-8] [PMID: 32112372]
[81]
Zhang, P.; Singh, A.; Yegnasubramanian, S.; Esopi, D.; Kombairaju, P.; Bodas, M.; Wu, H.; Bova, S.G.; Biswal, S. Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth. Mol. Cancer Ther., 2010, 9(2), 336-346.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0589] [PMID: 20124447]
[82]
Lu, D.Y.; Yeh, W.L.; Huang, S.M.; Tang, C.H.; Lin, H.Y.; Chou, S.J. Osteopontin increases heme oxygenase–1 expression and subsequently induces cell migration and invasion in glioma cells. Neuro-oncol., 2012, 14(11), 1367-1378.
[http://dx.doi.org/10.1093/neuonc/nos262] [PMID: 23074199]
[83]
Zhu, J.; Wang, H.; Sun, Q.; Ji, X.; Zhu, L.; Cong, Z.; Zhou, Y.; Liu, H.; Zhou, M. Nrf2 is required to maintain the self-renewal of glioma stem cells. BMC Cancer, 2013, 13(1), 380.
[http://dx.doi.org/10.1186/1471-2407-13-380] [PMID: 23937621]
[84]
Shen, H.; Yang, Y.; Xia, S.; Rao, B.; Zhang, J.; Wang, J. Blockage of Nrf2 suppresses the migration and invasion of esophageal squamous cell carcinoma cells in hypoxic microenvironment. Dis. Esophagus, 2014, 27(7), 685-692.
[http://dx.doi.org/10.1111/dote.12124] [PMID: 24028437]
[85]
Do, M.T.; Kim, H.G.; Khanal, T.; Choi, J.H.; Kim, D.H.; Jeong, T.C.; Jeong, H.G. Metformin inhibits heme oxygenase-1 expression in cancer cells through inactivation of Raf-ERK-Nrf2 signaling and AMPK-independent pathways. Toxicol. Appl. Pharmacol., 2013, 271(2), 229-238.
[http://dx.doi.org/10.1016/j.taap.2013.05.010] [PMID: 23707609]
[86]
Ma, D.; Fang, Q.; Wang, P.; Gao, R.; Wu, W.; Lu, T.; Cao, L.; Hu, X.; Wang, J. Induction of heme oxygenase-1 by Na+-H+ exchanger 1 protein plays a crucial role in imatinib-resistant chronic myeloid leukemia cells. J. Biol. Chem., 2015, 290(20), 12558-12571.
[http://dx.doi.org/10.1074/jbc.M114.626960] [PMID: 25802333]
[87]
Zhong, Y.; Zhang, F.; Sun, Z.; Zhou, W.; Li, Z.Y.; You, Q.D.; Guo, Q.L.; Hu, R. Drug resistance associates with activation of Nrf2 in MCF ‐7/DOX cells, and wogonin reverses it by down‐regulating Nrf2‐mediated cellular defense response. Mol. Carcinog., 2013, 52(10), 824-834.
[http://dx.doi.org/10.1002/mc.21921] [PMID: 22593043]
[88]
Bao, L-J.; Jaramillo, M.C.; Zhang, Z-B.; Zheng, Y-X.; Yao, M.; Zhang, D.D.; Yi, X-F. Nrf2 induces cisplatin resistance through activation of autophagy in ovarian carcinoma. Int. J. Clin. Exp. Pathol., 2014, 7(4), 1502-1513.
[PMID: 24817946]
[89]
Jayakumar, S.; Kunwar, A.; Sandur, S.K.; Pandey, B.N.; Chaubey, R.C. Differential response of DU145 and PC3 prostate cancer cells to ionizing radiation: Role of reactive oxygen species, GSH and Nrf2 in radiosensitivity. Biochim. Biophys. Acta, Gen. Subj., 2014, 1840(1), 485-494.
[http://dx.doi.org/10.1016/j.bbagen.2013.10.006] [PMID: 24121106]
[90]
Furfaro, A.L.; Traverso, N.; Domenicotti, C.; Piras, S.; Moretta, L.; Marinari, U.M.; Pronzato, M.A.; Nitti, M. The Nrf2/HO-1 axis in cancer cell growth and chemoresistance. Oxid. Med. Cell. Longev., 2016, 2016, 1-14.
[http://dx.doi.org/10.1155/2016/1958174] [PMID: 26697129]
[91]
Gorrini, C.; Harris, I.S.; Mak, T.W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov., 2013, 12(12), 931-947.
[http://dx.doi.org/10.1038/nrd4002] [PMID: 24287781]
[92]
Singh, C.K.; Chhabra, G.; Ndiaye, M.A.; Siddiqui, I.A.; Panackal, J.E.; Mintie, C.A.; Ahmad, N. Quercetin–resveratrol combination for prostate cancer management in TRAMP mice. Cancers , 2020, 12(8), 2141.
[http://dx.doi.org/10.3390/cancers12082141] [PMID: 32748838]
[93]
Fonseca, J.; Moradi, F.; Maddalena, L.A.; Ferreira-Tollstadius, B.; Selim, S.; Stuart, J.A. Resveratrol integrates metabolic and growth effects in PC3 prostate cancer cells-involvement of prolyl hydroxylase and hypoxia inducible factor-1. Oncol. Lett., 2019, 17(1), 697-705.
[PMID: 30655819]
[94]
Zhang, J.; Wang, X.; Vikash, V.; Ye, Q.; Wu, D.; Liu, Y.; Dong, W. ROS and ROS-mediated cellular signaling. Oxid. Med. Cell. Longev., 2016, 2016, 1-18.
[http://dx.doi.org/10.1155/2016/4350965] [PMID: 26998193]
[95]
Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary polyphenols and their role in oxidative stress-induced human diseases: Insights into protective effects, antioxidant potentials and mechanism (s) of action. Front. Pharmacol., 2022, 13, 806470.
[http://dx.doi.org/10.3389/fphar.2022.806470] [PMID: 35237163]
[96]
Buttari, B.; Arese, M.; Oberley-Deegan, R.E.; Saso, L.; Chatterjee, A. NRF2: A crucial regulator for mitochondrial metabolic shift and prostate cancer progression. Front. Physiol., 2022, 13, 989793.
[http://dx.doi.org/10.3389/fphys.2022.989793] [PMID: 36213236]
[97]
Shiota, M. Oxidative stress and prostate cancer. Cancer; 2nd ed; Preedy, V.R.; Patel, V.B., Eds.; Academic Press: San Diego, 2021, pp. 15-26.
[http://dx.doi.org/10.1016/B978-0-12-819547-5.00002-X]
[98]
Oh, B.; Figtree, G.; Costa, D.; Eade, T.; Hruby, G.; Lim, S.; Elfiky, A.; Martine, N.; Rosenthal, D.; Clarke, S.; Back, M. Oxidative stress in prostate cancer patients: A systematic review of case control studies. Prostate Int., 2016, 4(3), 71-87.
[http://dx.doi.org/10.1016/j.prnil.2016.05.002] [PMID: 27689064]
[99]
Shukla, S.; Srivastava, J.K.; Shankar, E.; Kanwal, R.; Nawab, A.; Sharma, H.; Bhaskaran, N.; Ponsky, L.E.; Fu, P.; MacLennan, G.T.; Gupta, S. Oxidative stress and antioxidant status in high-risk prostate cancer subjects. Diagnostics, 2020, 10(3), 126.
[http://dx.doi.org/10.3390/diagnostics10030126] [PMID: 32120827]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy