Generic placeholder image

Recent Advances in Drug Delivery and Formulation

Editor-in-Chief

ISSN (Print): 2667-3878
ISSN (Online): 2667-3886

Review Article

Liposomal Drug Delivery: Progress, Clinical Outlook, and Ongoing Challenges

Author(s): Chanchal Tiwari, Jigyasa Tomer and Dharmendra Kumar*

Volume 18, Issue 3, 2024

Published on: 09 July, 2024

Page: [157 - 169] Pages: 13

DOI: 10.2174/0126673878300031240703070511

Price: $65

Abstract

The liposomal drug delivery system is considered an advanced drug delivery technology for formulating lipid core nano-structured particles using lipids from natural and synthetic sources. Liposomes play a wide role in improving drugs with less solubility and greater toxicity profile. Liposomes have numerous advantages, such as enhanced drug loading, good biocompatibility, prolonged drug release profile, and better pharmacokinetic properties. Numerous attempts have been made in this field in the last few years, and lots of liposomal formulations are currently being sold all over the world, and few are under clinical study. Liposomal delivery technology improves the challenges of encapsulating poor soluble drugs and maintains the stability of the formulation, along with improving the challenges of in-vivo outcomes of liposomes. The present review discussed the brief outline of the liposome drug delivery system, the innovations in the clinical application, and the significant challenges in liposomal technology.

Next »
[1]
Lavik EB, Kuppermann BD, Humayun MS. Randomized controlled trial of an intravitreous dexamethasone drug delivery system in patients with diabetic macular edema. Arch Ophthalmol 2010; 128(3): 289-96.
[2]
Wang H, Huang Y. Combination therapy based on nano codelivery for overcoming cancer drug resistance. Med Drug Discov 2020; 6: 100024.
[http://dx.doi.org/10.1016/j.medidd.2020.100024]
[3]
Barenholz YC. Doxil®: The first FDA-approved nano-drug: Lessons learned. J Control Release 2012; 160(2): 117-34.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.020] [PMID: 22484195]
[4]
Allen TM, Cullis PR. Liposomal drug delivery systems: From concept to clinical applications. Adv Drug Deliv Rev 2013; 65(1): 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037] [PMID: 23036225]
[5]
Barenholz Y. Liposome application: Problems and prospects. Curr Opin Colloid Interface Sci 2001; 6(1): 66-77.
[http://dx.doi.org/10.1016/S1359-0294(00)00090-X]
[6]
Kumar D, Sharma PK. Nanoparticulate system for cancer therapy: An updated review. Int J Nanomater Nanotechnol Nanomed 2018; 4(2): 022-34.
[7]
Weng Y, Li C, Yang T, et al. The challenge and prospect of mRNA therapeutics landscape. Biotechnol Adv 2020; 40: 107534.
[http://dx.doi.org/10.1016/j.biotechadv.2020.107534] [PMID: 32088327]
[8]
Chen J, Guo Z, Tian H, Chen X. Production and clinical development of nanoparticles for gene delivery. Mol Ther Methods Clin Dev 2016; 3: 16023.
[http://dx.doi.org/10.1038/mtm.2016.23] [PMID: 27088105]
[9]
Brain D, Plant-Hately A, Heaton B, et al. Drug delivery systems as immunomodulators for therapy of infectious disease: Relevance to COVID-19. Adv Drug Deliv Rev 2021; 178: 113848.
[http://dx.doi.org/10.1016/j.addr.2021.113848] [PMID: 34182016]
[10]
Zylberberg C, Gaskill K, Pasley S, Matosevic S. Engineering liposomal nanoparticles for targeted gene therapy. Gene Ther 2017; 24(8): 441-52.
[http://dx.doi.org/10.1038/gt.2017.41] [PMID: 28504657]
[11]
Large DE, Abdelmessih RG, Fink EA, Auguste DT. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv Drug Deliv Rev 2021; 176: 113851.
[http://dx.doi.org/10.1016/j.addr.2021.113851] [PMID: 34224787]
[12]
Gu Z, Da Silva C, Van der Maaden K, Ossendorp F, Cruz L. Liposome-based drug delivery systems in cancer immunotherapy. Pharmaceutics 2020; 12(11): 1054.
[http://dx.doi.org/10.3390/pharmaceutics12111054] [PMID: 33158166]
[13]
Filipczak N, Pan J, Yalamarty SSK, Torchilin VP. Recent advancements in liposome technology. Adv Drug Deliv Rev 2020; 156: 4-22.
[http://dx.doi.org/10.1016/j.addr.2020.06.022] [PMID: 32593642]
[14]
Tenchov R, Bird R, Curtze AE. Qiongqiong Z. Lipid nanoparticles—From liposomes to mRNA vaccinedelivery, a landscape of research diversity and advancement. ACS Nano 2021; 15(11): 16982-7015.
[http://dx.doi.org/10.1021/acsnano.1c04996] [PMID: 34181394]
[15]
Lim EK, Kim T. Nanomaterials for theranostics: recent advances and futurechallenges. Chem Rev 2015; 115(1): 327-94.
[http://dx.doi.org/10.1021/cr300213b] [PMID: 25423180]
[16]
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: Classification, preparation, and applications. Nanoscale Res Lett 2013; 8(1): 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[17]
Bangham AD. A correlation between surface charge and coagulant action of phospholipids. Nature 1961; 192(4808): 1197-8.
[http://dx.doi.org/10.1038/1921197a0] [PMID: 13864660]
[18]
Bangham AD, Horne RW. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol 1964; 8(5): 660-8.
[19]
Bangham AD, Hill MW, Miller NG. Methods in membrane biology. New York: By ED Korn Plenum Press 1974; p. 1.
[20]
Peng T, Xu W, Li Q, Ding Y, Huang Y. Pharmaceutical liposomal delivery—Specific considerations of innovation and challenges. Biomater Sci 2022; 11(1): 62-75.
[http://dx.doi.org/10.1039/D2BM01252A] [PMID: 36373563]
[21]
Crompton JA, Alexander D, Somerville T, Shihab FS. Lipid‐based amphotericin in pulmonary zygomycosis: Safety and efficacy of high exposure in a renal allograft recipient. Transpl Infect Dis 2004; 6(4): 183-7.
[http://dx.doi.org/10.1111/j.1399-3062.2004.00076.x] [PMID: 15762937]
[22]
Meunier F, Prentice HG, Ringdén O. Liposomal amphotericin B (AmBisome): Safety data from a phase II/III clinical trial. J Antimicrob Chemother 1991; 28 (Suppl. B): 83-91.
[23]
Chew BC, Liew FF, Tan HW, Chung I. Chemical advances in therapeutic application of exosomes and liposomes. Curr Med Chem 2022; 29(25): 4445-73.
[http://dx.doi.org/10.2174/0929867329666220221094044] [PMID: 35189798]
[24]
Gregoriadis G. Liposomes in drug delivery: How it all happened. Pharmaceutics 2016; 8(2): 19.
[http://dx.doi.org/10.3390/pharmaceutics8020019] [PMID: 27231934]
[25]
Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: An updated review. Pharmaceutics 2017; 9(2): 12.
[http://dx.doi.org/10.3390/pharmaceutics9020012] [PMID: 28346375]
[26]
Jensen GM, Hodgson DF. Opportunities and challenges in commercial pharmaceutical liposome applications. Adv Drug Deliv Rev 2020; 154-155: 2-12.
[http://dx.doi.org/10.1016/j.addr.2020.07.016] [PMID: 32707149]
[27]
Dou Y, Hynynen K, Allen C. To heat or not to heat: Challenges with clinical translation of thermosensitive liposomes. J Control Release 2017; 249: 63-73.
[http://dx.doi.org/10.1016/j.jconrel.2017.01.025] [PMID: 28122204]
[28]
Fan Y, Zhang Q. Development of liposomal formulations: From concept to clinical investigations. Asian J Pharm Sci 2013; 8(2): 81-7.
[http://dx.doi.org/10.1016/j.ajps.2013.07.010]
[29]
Ho L, Bokharaei M, Li SD. Current update of a thermosensitive liposomes composed of DPPC and Brij78. J Drug Target 2018; 26(5-6): 407-19.
[http://dx.doi.org/10.1080/1061186X.2017.1419361] [PMID: 29325469]
[30]
de Matos MBC, Beztsinna N, Heyder C, et al. Thermosensitive liposomes for triggered release of cytotoxic proteins. Eur J Pharm Biopharm 2018; 132: 211-21.
[http://dx.doi.org/10.1016/j.ejpb.2018.09.010] [PMID: 30223028]
[31]
Wu W, Li T. Unraveling the in vivo fate and cellular pharmacokinetics of drug nanocarriers. Adv Drug Deliv Rev 2019; 143: 1-2.
[http://dx.doi.org/10.1016/j.addr.2019.08.003] [PMID: 31519263]
[32]
Wang H, Zheng M, Gao J, et al. Uptake and release profiles of PEGylated liposomal doxorubicin nanoparticles: A comprehensive picture based on separate determination of encapsulated and total drug concentrations in tissues of tumor-bearing mice. Talanta 2020; 208: 120358.
[http://dx.doi.org/10.1016/j.talanta.2019.120358] [PMID: 31816795]
[33]
Meng X, Zhang Z, Tong J, Sun H, Fawcett JP, Gu J. The biological fate of the polymer nanocarrier material monomethoxy poly(ethylene glycol)-block-poly(d,l-lactic acid) in rat. Acta Pharm Sin B 2021; 11(4): 1003-9.
[http://dx.doi.org/10.1016/j.apsb.2021.02.018] [PMID: 33996412]
[34]
Wu G, Li J, Li C, et al. Long-term efficacy of no-touch radiofrequency ablation in the treatment of single small hepatocellular carcinoma: A single center long‐term follow‐up study. Cancer Med 2023; 12(6): 6571-82.
[http://dx.doi.org/10.1002/cam4.5428] [PMID: 36444873]
[35]
Stone NRH, Bicanic T, Salim R, Hope W. Liposomal amphotericin B (AmBisome®): A review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. Drugs 2016; 76(4): 485-500.
[http://dx.doi.org/10.1007/s40265-016-0538-7] [PMID: 26818726]
[36]
Berman JD, Ksionski G, Chapman WL, Waits VB, Hanson WL. Activity of amphotericin B cholesterol dispersion (Amphocil) in experimental visceral leishmaniasis. Antimicrob Agents Chemother 1992; 36(9): 1978-80.
[http://dx.doi.org/10.1128/AAC.36.9.1978] [PMID: 1416890]
[37]
Aversa F, Busca A, Candoni A, et al. Liposomal amphotericin B (AmBisome®) at beginning of its third decade of clinical use. J Chemother 2017; 29(3): 131-43.
[http://dx.doi.org/10.1080/1120009X.2017.1306183] [PMID: 28335692]
[38]
Bekersky I, Fielding RM, Dressler DE, Lee JW, Buell DN, Walsh TJ. Pharmacokinetics, excretion, and mass balance of liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate in humans. Antimicrob Agents Chemother 2002; 46(3): 828-33.
[http://dx.doi.org/10.1128/AAC.46.3.828-833.2002] [PMID: 11850268]
[39]
Jain S, Valvi PU, Swarnakar NK, Thanki K. Gelatin coated hybrid lipid nanoparticles for oral delivery of amphotericin B. Mol Pharm 2012; 9(9): 2542-53.
[http://dx.doi.org/10.1021/mp300320d] [PMID: 22845020]
[40]
Stephanie AM. Nanotheranostics for cancer applications. Prakash R. Springer Science and Business Media LLC. 2019; pp. 1-913.
[41]
Brogden RN, Goa KL, Coukell AJ. Amphotericin-B colloidal dispersion. A review of its use against systemic fungal infections and visceral leishmaniasis. Drugs 1998; 56(3): 365-83.
[http://dx.doi.org/10.2165/00003495-199856030-00008] [PMID: 9777313]
[42]
Shimizu K, Osada M, Takemoto K, Yamamoto Y, Asai T, Oku N. Temperature-dependent transfer of amphotericin B from liposomal membrane of AmBisome to fungal cell membrane. J Control Release 2010; 141(2): 208-15.
[http://dx.doi.org/10.1016/j.jconrel.2009.09.019] [PMID: 19815038]
[43]
Herrada J, Gamal A, Long L, Sanchez SP, McCormick TS, Ghannoum MA. In vitro and in vivo antifungal activity of AmBisome compared to conventional amphotericin B and fluconazole against Candida auris. Antimicrob Agents Chemother 2021; 65(6): e00306-21.
[http://dx.doi.org/10.1128/AAC.00306-21] [PMID: 33846131]
[44]
Groll AH, Rijnders BJA, Walsh TJ, Adler-Moore J, Lewis RE, Brüggemann RJM. Clinical pharmacokinetics, pharmacodynamics, safety and efficacy of liposomal amphotericin B. Clin Infect Dis 2019; 68 (Suppl. 4): S260-74.
[45]
Saravolatz LD, Ostrosky-Zeichner L, Marr KA, Rex JH, Cohen SH. Amphotericin B: Time for a new “gold standard”. Clin Infect Dis 2003; 37(3): 415-25.
[http://dx.doi.org/10.1086/376634] [PMID: 12884167]
[46]
Shaikh IM, Tan KB, Chaudhury A, et al. Liposome co-encapsulation of synergistic combination of irinotecan and doxorubicin for the treatment of intraperitoneally grown ovarian tumor xenograft. J Control Release 2013; 172(3): 852-61.
[http://dx.doi.org/10.1016/j.jconrel.2013.10.025] [PMID: 24459693]
[47]
O’Brien MER, Wigler N, Inbar M, et al. Reduced cardiotoxicity and comparable efficacy in a phase IIItrial of pegylated liposomal doxorubicin HCl(CAELYX™/Doxil®) versus conventional doxorubicin forfirst-line treatment of metastatic breast cancer. Ann Oncol 2004; 15(3): 440-9.
[http://dx.doi.org/10.1093/annonc/mdh097] [PMID: 14998846]
[48]
Nagpal S, Braner S, Modh H, et al. A physiologically-based nanocarrier biopharmaceutics model to reverse-engineer the in vivo drug release. Eur J Pharm Biopharm 2020; 153: 257-72.
[http://dx.doi.org/10.1016/j.ejpb.2020.06.004] [PMID: 32589926]
[49]
Marty M. Liposomal doxorubicin (Myocet™) and conventional anthracyclines: a comparison. Breast 2001; 10: 28-33.
[http://dx.doi.org/10.1016/S0960-9776(01)80005-9]
[50]
Kanwal U, Irfan Bukhari N, Ovais M, Abass N, Hussain K, Raza A. Advances in nano-delivery systems for doxorubicin: An updated insight. J Drug Target 2018; 26(4): 296-310.
[http://dx.doi.org/10.1080/1061186X.2017.1380655] [PMID: 28906159]
[51]
Batist G, Ramakrishnan G, Rao CS, et al. Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J Clin Oncol 2001; 19(5): 1444-54.
[http://dx.doi.org/10.1200/JCO.2001.19.5.1444] [PMID: 11230490]
[52]
Fukuda A, Tahara K, Hane Y, et al. Comparison of the adverse event profiles of conventional and liposomal formulations of doxorubicin using the FDA adverse event reporting system. PLoS One 2017; 12(9): e0185654.
[http://dx.doi.org/10.1371/journal.pone.0185654] [PMID: 28953936]
[53]
Luo R, Li Y, He M, et al. Distinct biodistribution of doxorubicin and the altered dispositions mediated by different liposomal formulations. Int J Pharm 2017; 519(1-2): 1-10.
[http://dx.doi.org/10.1016/j.ijpharm.2017.01.002] [PMID: 28063903]
[54]
Swenson CE, Perkins WR, Roberts P, Janoff AS. Liposome technology and the development of Myocet™ (liposomal doxorubicin citrate). Breast 2001; 10: 1-7.
[http://dx.doi.org/10.1016/S0960-9776(01)80001-1]
[55]
Hong RL, Huang CJ, Tseng YL, et al. Direct comparison of liposomal doxorubicin with or without polyethylene glycol coating in C-26 tumor-bearing mice: Is surface coating with polyethylene glycol beneficial? Clin Cancer Res 1999; 5(11): 3645-52.
[PMID: 10589782]
[56]
Lamb YN, Scott LJ. Liposomal irinotecan: A review in metastatic pancreatic adenocarcinoma. Drugs 2017; 77(7): 785-92.
[http://dx.doi.org/10.1007/s40265-017-0741-1] [PMID: 28401446]
[57]
Frampton JE. Liposomal irinotecan: A review in metastatic pancreatic adenocarcinoma. Drugs 2020; 80(10): 1007-18.
[http://dx.doi.org/10.1007/s40265-020-01336-6] [PMID: 32557396]
[58]
Ur Rehman SS, Lim K, Wang-Gillam A. Nanoliposomal irinotecan plus fluorouracil and folinic acid: A new treatment option in metastatic pancreatic cancer. Expert Rev Anticancer Ther 2016; 16(5): 485-92.
[http://dx.doi.org/10.1080/14737140.2016.1174581] [PMID: 27043737]
[59]
Chang TC, Shiah HS, Yang CH, et al. Phase I study of nanoliposomal irinotecan (PEP02) in advanced solid tumor patients. Cancer Chemother Pharmacol 2015; 75(3): 579-86.
[http://dx.doi.org/10.1007/s00280-014-2671-x] [PMID: 25577133]
[60]
Ickenstein LM, Garidel P. Lipid-based nanoparticle formulations for small molecules and RNA drugs. Expert Opin Drug Deliv 2019; 16(11): 1205-26.
[http://dx.doi.org/10.1080/17425247.2019.1669558] [PMID: 31530041]
[61]
Boulanger J, Boursiquot JN, Cournoyer G, et al. Management of hypersensitivity to platinum- and taxane-based chemotherapy: Cepo review and clinical recommendations. Curr Oncol 2014; 21(4): 630-41.
[http://dx.doi.org/10.3747/co.21.1966] [PMID: 25089112]
[62]
Chen Q, Zhang QZ, Liu J, et al. Multi-center prospective randomized trial on paclitaxel liposome and traditional taxol in the treatment of breast cancer and non-small-cell lung cancer. Zhonghua Zhong Liu Za Zhi 2003; 25(2): 190-2.
[PMID: 12795852]
[63]
Wang H, Cheng G, Du Y, et al. Hypersensitivity reaction studies of a polyethoxylated castor oil-free, liposome-based alternative paclitaxel formulation. Mol Med Rep 2013; 7(3): 947-52.
[http://dx.doi.org/10.3892/mmr.2013.1264] [PMID: 23291923]
[64]
Chonn A, Cullis PR. Recent advances in liposome technologies and their applications for systemic gene delivery. Adv Drug Deliv Rev 1998; 30(1-3): 73-83.
[http://dx.doi.org/10.1016/S0169-409X(97)00108-7] [PMID: 10837603]
[65]
Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 2006; 58(3): 621-81.
[http://dx.doi.org/10.1124/pr.58.3.10] [PMID: 16968952]
[66]
Yardley DA. nab-Paclitaxel mechanisms of action and delivery. J Control Release 2013; 170(3): 365-72.
[http://dx.doi.org/10.1016/j.jconrel.2013.05.041] [PMID: 23770008]
[67]
Ma L, Kohli M, Smith A. Nanoparticles for combination drug therapy. ACS Nano 2013; 7(11): 9518-25.
[http://dx.doi.org/10.1021/nn405674m] [PMID: 24274814]
[68]
Tardi P, Johnstone S, Harasym N, et al. In vivo maintenance of synergistic cytarabine: Daunorubicin ratios greatly enhances therapeutic efficacy. Leuk Res 2009; 33(1): 129-39.
[http://dx.doi.org/10.1016/j.leukres.2008.06.028] [PMID: 18676016]
[69]
Lancet JE, Uy GL, Cortes JE, et al. CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. J Clin Oncol 2018; 36(26): 2684-92.
[http://dx.doi.org/10.1200/JCO.2017.77.6112] [PMID: 30024784]
[70]
First Patient Enrolled in Phase I Clinical Trial for the First Compound Liposome Formulation in China, Medication Designed to Improve Efficacy and Safety of Combined Chemotherapy. 2022. Available from: https://www.luye.cn/lvye_en/view.php?id=1934
[71]
Dharmendra K, Pramod SK. Quercetin: A comprehensive review. Curr Nutr Food Sci 2024; 20(2): 143-66.
[72]
Dharmendra K, Pramod SK. Formulation and evaluation of quercetin-loaded banana starch nanoparticles. Nanosci Nanotechnol Asia 2023; 13(4)
[73]
Shirley M. Amikacin liposome inhalation suspension: A review in Mycobacterium avium complex lung disease. Drugs 2019; 79(5): 555-62.
[http://dx.doi.org/10.1007/s40265-019-01095-z] [PMID: 30877642]
[74]
Zhang J, Leifer F, Rose S, et al. Amikacin liposome inhalation suspension (ALIS) penetrates non-tuberculous mycobacterial biofilms and enhances amikacin uptake into macrophages. Front Microbiol 2018; 9: 915.
[http://dx.doi.org/10.3389/fmicb.2018.00915] [PMID: 29867826]
[75]
Guimarães D, Cavaco-Paulo A, Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int J Pharm 2021; 601: 120571.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120571] [PMID: 33812967]
[76]
Luhn P, Chui SY, Hsieh FC, et al. Comparative effectiveness of first-line nab-paclitaxel versus paclitaxel monotherapy in triple-negative breast cancer. J Comp Eff Res 2019; 8(14): 1173-85.
[http://dx.doi.org/10.2217/cer-2019-0077] [PMID: 31394922]
[77]
Makwana V, Karanjia J, Haselhorst T, Anoopkumar-Dukie S, Rudrawar S. Liposomal doxorubicin as targeted delivery platform: Current trends in surface functionalization. Int J Pharm 2021; 593: 120117.
[http://dx.doi.org/10.1016/j.ijpharm.2020.120117] [PMID: 33259901]
[78]
Symon Z, Peyser A, Tzemach D, et al. Selective delivery of doxorubicin to patients with breast carcinoma metastases by stealth liposomes. Cancer 1999; 86(1): 72-8.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19990701)86:1<72::AID-CNCR12>3.0.CO;2-1] [PMID: 10391566]
[79]
Liang G, Ma W, Zhao Y, et al. Risk factors for pegylated liposomal doxorubicin-induced moderate to severe hand-foot syndrome in breast cancer patients: Assessment of baseline clinical parameters. BMC Cancer 2021; 21(1): 362.
[http://dx.doi.org/10.1186/s12885-021-08028-8] [PMID: 33827689]
[80]
Lorusso D, Di Stefano A, Carone V, Fagotti A, Pisconti S, Scambia G. Pegylated liposomal doxorubicin-related palmar-plantar erythrodysesthesia (‘hand-foot’ syndrome). Ann Oncol 2007; 18(7): 1159-64.
[http://dx.doi.org/10.1093/annonc/mdl477] [PMID: 17229768]
[81]
Maeda H, Sawa T, Konno T. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release 2001; 74(1-3): 47-61.
[http://dx.doi.org/10.1016/S0168-3659(01)00309-1] [PMID: 11489482]
[82]
Tanaka T, Shiramoto S, Miyashita M, Fujishima Y, Kaneo Y. Tumor targeting based on the effect of enhanced permeability and retention (EPR) and the mechanism of receptor-mediated endocytosis (RME). Int J Pharm 2004; 277(1-2): 39-61.
[http://dx.doi.org/10.1016/j.ijpharm.2003.09.050] [PMID: 15158968]
[83]
Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 2011; 63(3): 136-51.
[http://dx.doi.org/10.1016/j.addr.2010.04.009] [PMID: 20441782]
[84]
Prabhakar U, Maeda H, Jain RK, et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res 2013; 73(8): 2412-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-4561] [PMID: 23423979]
[85]
Luan X, Yuan H, Song Y, et al. Reappraisal of anticancer nanomedicine design criteria in three types of preclinical cancer models for better clinical translation. Biomaterials 2021; 275: 120910.
[http://dx.doi.org/10.1016/j.biomaterials.2021.120910] [PMID: 34144373]
[86]
Wang AZ. Know thy cells: Improving biomedical research reproducibility. Sci Transl Med 2015; 7: 294ed7.
[PMID: 26136474]
[87]
Hansen AE, Petersen AL, Henriksen JR, et al. Positron emission tomography based elucidation of the enhanced permeability and retention effect in dogs with cancer using copper-64 liposomes. ACS Nano 2015; 9(7): 6985-95.
[http://dx.doi.org/10.1021/acsnano.5b01324] [PMID: 26022907]
[88]
Nichols JW, Bae YH. EPR: Evidence and fallacy. J Control Release 2014; 190: 451-64.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.057] [PMID: 24794900]
[89]
Belfiore L, Saunders DN, Ranson M, Thurecht KJ, Storm G, Vine KL. Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: Challenges and opportunities. J Control Release 2018; 277: 1-13.
[http://dx.doi.org/10.1016/j.jconrel.2018.02.040] [PMID: 29501721]
[90]
Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release 2008; 126(3): 187-204.
[http://dx.doi.org/10.1016/j.jconrel.2007.12.017] [PMID: 18261822]
[91]
Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 2008; 60(15): 1615-26.
[http://dx.doi.org/10.1016/j.addr.2008.08.005] [PMID: 18840489]
[92]
Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 2014; 13(11): 813-27.
[http://dx.doi.org/10.1038/nrd4333] [PMID: 25287120]
[93]
Lammers T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress. J Control Release 2012; 161(2): 175-87.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.063] [PMID: 21945285]
[94]
Dharmendra K, Rishabha M, Pramod SK, Akanksha S, Vineet B. Advancement in nano pharmaceutical formulations and their biomedical use. Nanosci Nanotechnol Asia 2021; 11(3)
[95]
Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: Progress, challenges and opportunities. Nat Rev Cancer 2017; 17(1): 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[96]
Chen T, He B, Tao J, et al. Application of förster resonance energy transfer (FRET) technique to elucidate intracellular and in vivo biofate of nanomedicines. Adv Drug Deliv Rev 2019; 143: 177-205.
[http://dx.doi.org/10.1016/j.addr.2019.04.009] [PMID: 31201837]
[97]
Shrimal P, Jadeja G, Patel S. A review on novel methodologies for drug nanoparticle preparation: Microfluidic approach. Chem Eng Res Des 2020; 153: 728-56.
[http://dx.doi.org/10.1016/j.cherd.2019.11.031]
[98]
Liu D, Zhang H, Fontana F, Hirvonen JT, Santos HA. Current developments and applications of microfluidic technology toward clinical translation of nanomedicines. Adv Drug Deliv Rev 2018; 128: 54-83.
[http://dx.doi.org/10.1016/j.addr.2017.08.003] [PMID: 28801093]
[99]
Capretto L, Carugo D, Mazzitelli S, Nastruzzi C, Zhang X. Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications. Adv Drug Deliv Rev 2013; 65(11-12): 1496-532.
[http://dx.doi.org/10.1016/j.addr.2013.08.002] [PMID: 23933616]
[100]
Valencia PM, Farokhzad OC, Karnik R, Langer R. Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat Nanotechnol 2012; 7(10): 623-9.
[http://dx.doi.org/10.1038/nnano.2012.168] [PMID: 23042546]
[101]
Forigua A, Kirsch RL, Willerth SM, Elvira KS. Recent advances in the design of microfluidic technologies for the manufacture of drug releasing particles. J Control Release 2021; 333: 258-68.
[http://dx.doi.org/10.1016/j.jconrel.2021.03.019] [PMID: 33766691]
[102]
Buschmann MD, Carrasco MJ, Alishetty S, Paige M, Alameh MG, Weissman D. Nanomaterial delivery systems for mRNA vaccines. Vaccines 2021; 9(1): 65.
[http://dx.doi.org/10.3390/vaccines9010065] [PMID: 33478109]
[103]
Kim Y, Lee Chung B, Ma M, et al. Mass production and size control of lipid-polymer hybrid nanoparticles through controlled microvortices. Nano Lett 2012; 12(7): 3587-91.
[http://dx.doi.org/10.1021/nl301253v] [PMID: 22716029]
[104]
Liu D, Cito S, Zhang Y, Wang CF, Sikanen TM, Santos HA. A versatile and robust microfluidic platform toward high throughput synthesis of homogeneous nanoparticles with tunable properties. Adv Mater 2015; 27(14): 2298-304.
[http://dx.doi.org/10.1002/adma.201405408] [PMID: 25684077]
[105]
Shepherd SJ, Warzecha CC, Yadavali S, et al. Scalable mRNA and siRNA lipid nanoparticle production using a parallelized microfluidic device. Nano Lett 2021; 21(13): 5671-80.
[http://dx.doi.org/10.1021/acs.nanolett.1c01353] [PMID: 34189917]
[106]
Tolcher AW, Mayer LD. Improving combination cancer therapy: The CombiPlex ® development platform. Future Oncol 2018; 14(13): 1317-32.
[http://dx.doi.org/10.2217/fon-2017-0607] [PMID: 29363994]
[107]
Awada A, Bondarenko IN, Bonneterre J, et al. A randomized controlled phase II trial of a novel composition of paclitaxel embedded into neutral and cationic lipids targeting tumor endothelial cells in advanced triple-negative breast cancer (TNBC). Ann Oncol 2014; 25(4): 824-31.
[http://dx.doi.org/10.1093/annonc/mdu025] [PMID: 24667715]
[108]
Su M, Chen L, Hitre E, et al. EndoTAG-1 plus gemcitabine versus gemcitabine alone in patients with measurable locally advanced and/or metastatic adenocarcinoma of the pancreas failed on FOLFIRINOX treatment. Ann Oncol 2019; 30: iv23.
[http://dx.doi.org/10.1093/annonc/mdz155.085]
[109]
Strieth S, Eichhorn ME, Sauer B, et al. Neovascular targeting chemotherapy: Encapsulation of paclitaxel in cationic liposomes impairs functional tumor microvasculature. Int J Cancer 2004; 110(1): 117-24.
[http://dx.doi.org/10.1002/ijc.20083] [PMID: 15054876]
[110]
Strieth S, Eichhorn ME, Werner A, et al. Paclitaxel encapsulated in cationic liposomes increases tumor microvessel leakiness and improves therapeutic efficacy in combination with cisplatin. Clin Cancer Res 2008; 14(14): 4603-11.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4738] [PMID: 18628475]
[111]
Strieth S, Nussbaum CF, Eichhorn ME, et al. Tumor‐selective vessel occlusions by platelets after vascular targeting chemotherapy using paclitaxel encapsulated in cationic liposomes. Int J Cancer 2008; 122(2): 452-60.
[http://dx.doi.org/10.1002/ijc.23088] [PMID: 17918179]
[112]
Eichhorn ME, Luedemann S, Strieth S, et al. Cationic lipid complexed camptothecin (EndoTAG®-2) improves antitumoral efficacy by tumor vascular targeting. Cancer Biol Ther 2007; 6(6): 920-9.
[http://dx.doi.org/10.4161/cbt.6.6.4207] [PMID: 17534143]
[113]
Mayer LD, Tardi P, Louie AC. CPX-351: A nanoscale liposomal co-formulation of daunorubicin and cytarabine with unique biodistribution and tumor cell uptake properties. Int J Nanomedicine 2019; 14: 3819-30.
[http://dx.doi.org/10.2147/IJN.S139450] [PMID: 31213803]
[114]
Zhang M, Liu E, Cui Y, Huang Y. Nanotechnology-based combination therapy for overcoming multidrug-resistant cancer. Cancer Biol Med 2017; 14(3): 212-27.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2017.0054] [PMID: 28884039]
[115]
Kang X, Wang H, Peng H, et al. Codelivery of dihydroartemisinin and doxorubicin in mannosylated liposomes for drug-resistant colon cancer therapy. Acta Pharmacol Sin 2017; 38(6): 885-96.
[http://dx.doi.org/10.1038/aps.2017.10] [PMID: 28479604]
[116]
Akinc A, Maier MA, Manoharan M, et al. The onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat Nanotechnol 2019; 14(12): 1084-7.
[http://dx.doi.org/10.1038/s41565-019-0591-y] [PMID: 31802031]
[117]
Hoy SM. Patisiran: First global approval. Drugs 2018; 78(15): 1625-31.
[http://dx.doi.org/10.1007/s40265-018-0983-6] [PMID: 30251172]
[118]
Whitehead KA, Langer R, Anderson DG. Knocking down barriers: Advances in siRNA delivery. Nat Rev Drug Discov 2009; 8(2): 129-38.
[http://dx.doi.org/10.1038/nrd2742] [PMID: 19180106]
[119]
Almeida B, Nag OK, Rogers KE, Delehanty JB. Recent progress in bioconjugation strategies for liposome-mediated drug delivery. Molecules 2020; 25(23): 5672.
[http://dx.doi.org/10.3390/molecules25235672]
[120]
Semple SC, Akinc A, Chen J, et al. Rational design of cationic lipids for siRNA delivery. Nat Biotechnol 2010; 28(2): 172-6.
[http://dx.doi.org/10.1038/nbt.1602] [PMID: 20081866]
[121]
Yanez Arteta M, Kjellman T, Bartesaghi S, et al. Successful reprogramming of cellular protein production through mRNA delivered by functionalized lipid nanoparticles. Proc Natl Acad Sci 2018; 115(15): E3351-60.
[http://dx.doi.org/10.1073/pnas.1720542115] [PMID: 29588418]
[122]
Piperno A, Sciortino MT, Giusto E, Montesi M, Panseri S, Scala A. Recent advances and challenges in gene delivery mediated by polyester-basednanoparticles. Int J Nanomedicine 2021; 16: 5981-6002.
[http://dx.doi.org/10.2147/IJN.S321329] [PMID: 34511901]
[123]
Schoenmaker L, Witzigmann D, Kulkarni JA, et al. mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability. Int J Pharm 2021; 601: 120586.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120586] [PMID: 33839230]
[124]
Muthu MS, Singh S. Targeted nanomedicines: Effective treatment modalities for cancer, AIDS and brain disorders. Nanomedicine 2009; 4(1): 105-18.
[http://dx.doi.org/10.2217/17435889.4.1.105] [PMID: 19093899]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy