Research Article

Glioblastoma Multiforme miRNA based Comprehensive Study to Validate Phytochemicals for Effective Treatment against Deadly Tumour through In Silico Evaluation

In Press, (this is not the final "Version of Record"). Available online 08 July, 2024
Author(s): Roji Begam Khan, Shikha Tiwari, Aryan Jarkharya, Archana Tiwari, Rashmi Chowdhary* and Adesh Shrivastava
Published on: 08 July, 2024

DOI: 10.2174/0122115366302365240618122812

Price: $95

Abstract

Background: Glioblastoma Multiforme (GBM) is a prevalent and deadly type of primary astrocytoma, constituting over 60% of adult brain tumors, and has a poor prognosis, with a high relapse rate within 7 months of diagnosis. Despite surgical, radiotherapy, and chemotherapy treatments, GBM remains challenging due to resistance. MicroRNA (miRNAs) control gene expression at transcriptional and post-transcriptional levels by targeting their messenger RNA (mRNA), and also contribute to the development of various neoplasms, including GBM.

Methods: The present study focuses on exploring the miRNAs-based pathogenesis of GBM and evaluating most potential plant-based therapeutic agents with in silico analysis. Gene chips were retrieved from the Gene Expression Omnibus (GEO) database, followed by the Robust- RankAggereg algorithm to determine the Differentially Expressed miRNAs (DEMs). The predicted targets were intersected with the GBM-associated genes, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the overlapping genes was performed. At the same time, five phytochemicals were selected for the Connectivity map (CMap), and the most efficient ones were those that had undergone molecular docking analysis to obtain the potential therapeutic agents.

Results: The hsa-miR-10b, hsa-miR-21, and hsa-miR-15b were obtained, and eight genes were found to be associated with glioma pathways; VSIG4, PROCR, PLAT, and ITGB2 were upregulated while, CAMK2B, PDE1A, GABRA1, and KCNJ6 were downregulated. The drugs Resveratrol and Quercetin were identified as the most prominent drugs.

Conclusion: These miRNAs-based drugs can be used as a curative agent for the treatment of GBM. However, in vivo, experimental data, and clinical trials are necessary to provide an alternative to conventional GBM cancer chemotherapy.

[1]
Aldoghachi AF, Aldoghachi AF, Breyne K, Ling KH, Cheah PS. Recent advances in the therapeutic strategies of glioblastoma multiforme. Neuroscience 2022; 491: 240-70.
[http://dx.doi.org/10.1016/j.neuroscience.2022.03.030] [PMID: 35395355]
[2]
Hanif F, Muzaffar K, Perveen K, Malhi SM, Simjee ShU. Glioblastoma multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J Cancer Prev 2017; 18(1): 3-9.
[http://dx.doi.org/10.22034/APJCP.2017.18.1.3] [PMID: 28239999]
[3]
Agnihotri S, Burrell KE, Wolf A, et al. Glioblastoma, a brief review of history, molecular genetics, animal models and novel therapeutic strategies. Arch Immunol Ther Exp 2013; 61(1): 25-41.
[http://dx.doi.org/10.1007/s00005-012-0203-0] [PMID: 23224339]
[4]
Messali A, Villacorta R, Hay JW. A review of the economic burden of glioblastoma and the cost effectiveness of pharmacologic treatments. PharmacoEconomics 2014; 32(12): 1201-12.
[http://dx.doi.org/10.1007/s40273-014-0198-y] [PMID: 25085219]
[5]
Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M. Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol 2006; 2(9): 494-503.
[http://dx.doi.org/10.1038/ncpneuro0289] [PMID: 16932614]
[6]
Thakkar JP, Dolecek TA, Horbinski C, et al. Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol Biomarkers Prev 2014; 23(10): 1985-96.
[http://dx.doi.org/10.1158/1055-9965.EPI-14-0275] [PMID: 25053711]
[7]
Hsu JF, Chu SM, Liao CC, et al. Nanotechnology and nanocarrier-based drug delivery as the potential therapeutic strategy for glioblastoma multiforme: An update. Cancers 2021; 13(2): 195.
[http://dx.doi.org/10.3390/cancers13020195] [PMID: 33430494]
[8]
Alifieris C, Trafalis DT. Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol Ther 2015; 152: 63-82.
[http://dx.doi.org/10.1016/j.pharmthera.2015.05.005] [PMID: 25944528]
[9]
Xiong DD, Xu WQ, He RQ, Dang YW, Chen G, Luo DZ. In silico analysis identified miRNA based therapeutic agents against glioblastoma multiforme. Oncol Rep 2019; 41(4): 2194-208.
[http://dx.doi.org/10.3892/or.2019.7022] [PMID: 30816530]
[10]
Jackson CM, Choi J, Lim M. Mechanisms of immunotherapy resistance: Lessons from glioblastoma. Nat Immunol 2019; 20(9): 1100-9.
[http://dx.doi.org/10.1038/s41590-019-0433-y] [PMID: 31358997]
[11]
Chen D, Le SB, Hutchinson TE, et al. Tumor treating fields dually activate STING and AIM2 inflammasomes to induce adjuvant immunity in glioblastoma. J Clin Invest 2022; 132(8): e149258.
[http://dx.doi.org/10.1172/JCI149258] [PMID: 35199647]
[12]
Erthal LCS, Gobbo OL, Ruiz-Hernandez E. Biocompatible copolymer formulations to treat glioblastoma multiforme. Acta Biomater 2021; 121: 89-102.
[http://dx.doi.org/10.1016/j.actbio.2020.11.030] [PMID: 33227487]
[13]
Cloughesy TF, Cavenee WK, Mischel PS. Glioblastoma: From molecular pathology to targeted treatment. Annu Rev Pathol 2014; 9(1): 1-25.
[http://dx.doi.org/10.1146/annurev-pathol-011110-130324] [PMID: 23937436]
[14]
Lim M, Xia Y, Bettegowda C, Weller M. Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol 2018; 15(7): 422-42.
[http://dx.doi.org/10.1038/s41571-018-0003-5] [PMID: 29643471]
[15]
Mahinfar P, Mansoori B, Rostamzadeh D, Baradaran B, Cho WC, Mansoori B. The role of micrornas in multidrug resistance of glioblastoma. Cancers 2022; 14(13): 3217.
[http://dx.doi.org/10.3390/cancers14133217] [PMID: 35804989]
[16]
Ratti M, Lampis A, Ghidini M, et al. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as new tools for cancer therapy: First steps from bench to bedside. Target Oncol 2020; 15(3): 261-78.
[http://dx.doi.org/10.1007/s11523-020-00717-x] [PMID: 32451752]
[17]
Bracken CP, Scott HS, Goodall GJ. A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet 2016; 17(12): 719-32.
[http://dx.doi.org/10.1038/nrg.2016.134] [PMID: 27795564]
[18]
Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X. MicroRNA: Function, detection, and bioanalysis. Chem Rev 2013; 113(8): 6207-33.
[http://dx.doi.org/10.1021/cr300362f] [PMID: 23697835]
[19]
Hu J, Sun T, Wang H, et al. MiR-215 is induced post-transcriptionally via hif-drosha complex and mediates glioma-initiating cell adaptation to hypoxia by targeting KDM1B. Cancer Cell 2016; 29(1): 49-60.
[http://dx.doi.org/10.1016/j.ccell.2015.12.005] [PMID: 26766590]
[20]
Berindan-Neagoe I, Monroig PC, Pasculli B, Calin GA. MicroRNAome genome: A treasure for cancer diagnosis and therapy. CA Cancer J Clin 2014; 64(5): 311-36.
[http://dx.doi.org/10.3322/caac.21244] [PMID: 25104502]
[21]
Subramanian A, Narayan R, Corsello SM, et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 2017; 171(6): 1437-1452.e17.
[http://dx.doi.org/10.1016/j.cell.2017.10.049] [PMID: 29195078]
[22]
Chien W, Sun QY, Lee KL, et al. Activation of protein phosphatase 2A tumor suppressor as potential treatment of pancreatic cancer. Mol Oncol 2015; 9(4): 889-905.
[http://dx.doi.org/10.1016/j.molonc.2015.01.002] [PMID: 25637283]
[23]
Qu XA, Rajpal DK. Applications of connectivity map in drug discovery and development. Drug Discov Today 2012; 17(23-24): 1289-98.
[http://dx.doi.org/10.1016/j.drudis.2012.07.017] [PMID: 22889966]
[24]
Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015; 43(7): e47-7.
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[25]
Kolde R, Laur S, Adler P, Vilo J. Robust rank aggregation for gene list integration and meta-analysis. Bioinformatics 2012; 28(4): 573-80.
[http://dx.doi.org/10.1093/bioinformatics/btr709] [PMID: 22247279]
[26]
Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 2017; 45(W1): W98-W102.
[http://dx.doi.org/10.1093/nar/gkx247] [PMID: 28407145]
[27]
Sticht C, De La Torre C, Parveen A, Gretz N. miRWalk: An online resource for prediction of microRNA binding sites. PLoS One 2018; 13(10): e0206239.
[http://dx.doi.org/10.1371/journal.pone.0206239] [PMID: 30335862]
[28]
Wu T, Hu E, Xu S, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2021; 2(3): 100141.
[http://dx.doi.org/10.1016/j.xinn.2021.100141] [PMID: 34557778]
[29]
Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 2021; 49(D1): D605-12.
[http://dx.doi.org/10.1093/nar/gkaa1074] [PMID: 33237311]
[30]
Musa A, Ghoraie LS, Zhang SD, et al. A review of connectivity map and computational approaches in pharmacogenomics. Brief Bioinform 2017; 18(5): 903.
[http://dx.doi.org/10.1093/bib/bbx023] [PMID: 28334173]
[31]
Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock vina 1.2.0: New docking methods, expanded force field, and python bindings. J Chem Inf Model 2021; 61(8): 3891-8.
[http://dx.doi.org/10.1021/acs.jcim.1c00203] [PMID: 34278794]
[32]
Bittrich S, Bhikadiya C, Bi C, et al. RCSB protein data bank: Efficient searching and simultaneous access to one million computed structure models alongside the pdb structures enabled by architectural advances. J Mol Biol 2023; 435(14): 167994.
[http://dx.doi.org/10.1016/j.jmb.2023.167994] [PMID: 36738985]
[33]
Kim S. Exploring chemical information in PubChem. Curr Protoc 2021; 1(8): e217.
[http://dx.doi.org/10.1002/cpz1.217] [PMID: 34370395]
[34]
Rosignoli S, Paiardini A. Boosting the full potential of PyMOL with structural biology plugins. Biomolecules 2022; 12(12): 1764.
[http://dx.doi.org/10.3390/biom12121764] [PMID: 36551192]
[35]
Zhang W, Zhang J, Hoadley K, et al. miR-181d: A predictive glioblastoma biomarker that downregulates MGMT expression. Neuro-oncol 2012; 14(6): 712-9.
[http://dx.doi.org/10.1093/neuonc/nos089] [PMID: 22570426]
[36]
Jones TA, Jeyapalan JN, Forshew T, et al. Molecular analysis of pediatric brain tumors identifies microRNAs in pilocytic astrocytomas that target the MAPK and NF-κB pathways. Acta Neuropathol Commun 2015; 3(1): 86.
[http://dx.doi.org/10.1186/s40478-015-0266-3] [PMID: 26682910]
[37]
Piwecka M, Rolle K, Belter A, et al. Comprehensive analysis of microRNA expression profile in malignant glioma tissues. Mol Oncol 2015; 9(7): 1324-40.
[http://dx.doi.org/10.1016/j.molonc.2015.03.007] [PMID: 25864039]
[38]
Wang ZQ, Zhang MY, Deng ML, Weng NQ, Wang HY, Wu SX. Low serum level of miR-485-3p predicts poor survival in patients with glioblastoma. PLoS One 2017; 12(9): e0184969.
[http://dx.doi.org/10.1371/journal.pone.0184969] [PMID: 28931080]
[39]
Kong YW, Ferland-McCollough D, Jackson TJ, Bushell M. microRNAs in cancer management. Lancet Oncol 2012; 13(6): e249-58.
[http://dx.doi.org/10.1016/S1470-2045(12)70073-6] [PMID: 22652233]
[40]
Forterre A, Komuro H, Aminova S, Harada M. A comprehensive review of cancer microrna therapeutic delivery strategies. Cancers 2020; 12(7): 1852.
[http://dx.doi.org/10.3390/cancers12071852] [PMID: 32660045]
[41]
Fu Z, Wang L, Li S, Chen F, Au-Yeung KKW, Shi C. MicroRNA as an important target for anticancer drug development. Front Pharmacol 2021; 12: 736323.
[http://dx.doi.org/10.3389/fphar.2021.736323] [PMID: 34512363]
[42]
El Fatimy R, Subramanian S, Uhlmann EJ, Krichevsky AM. Genome editing reveals glioblastoma addiction to MicroRNA-10b. Mol Ther 2017; 25(2): 368-78.
[http://dx.doi.org/10.1016/j.ymthe.2016.11.004] [PMID: 28153089]
[43]
Guessous F, Alvarado-Velez M, Marcinkiewicz L, et al. Oncogenic effects of miR-10b in glioblastoma stem cells. J Neurooncol 2013; 112(2): 153-63.
[http://dx.doi.org/10.1007/s11060-013-1047-0] [PMID: 23307328]
[44]
Aloizou AM, Pateraki G, Siokas V, et al. The role of MiRNA-21 in gliomas: Hope for a novel therapeutic intervention? Toxicol Rep 2020; 7: 1514-30.
[http://dx.doi.org/10.1016/j.toxrep.2020.11.001] [PMID: 33251119]
[45]
Yang CH, Yue J, Pfeffer SR, et al. MicroRNA-21 promotes glioblastoma tumorigenesis by down-regulating insulin-like growth factor-binding protein-3 (IGFBP3). J Biol Chem 2014; 289(36): 25079-87.
[http://dx.doi.org/10.1074/jbc.M114.593863] [PMID: 25059666]
[46]
Sun G, Yan S, Shi L, et al. Decreased expression of miR-15b in human gliomas is associated with poor prognosis. Cancer Biother Radiopharm 2015; 30(4): 169-73.
[http://dx.doi.org/10.1089/cbr.2014.1757] [PMID: 25811315]
[47]
Wang J, Liu H, Tian L, et al. miR-15b inhibits the progression of glioblastoma cells through targeting insulin-like growth factor receptor 1. Horm Cancer 2017; 8(1): 49-57.
[http://dx.doi.org/10.1007/s12672-016-0276-z] [PMID: 27896672]
[48]
Karkon-Shayan S, Aliashrafzadeh H, Dianat-Moghadam H, et al. Resveratrol as an antitumor agent for glioblastoma multiforme: Targeting resistance and promoting apoptotic cell deaths. Acta Histochem 2023; 125(6): 152058.
[http://dx.doi.org/10.1016/j.acthis.2023.152058] [PMID: 37336070]
[49]
Arabzadeh A, Mortezazadeh T, Aryafar T, Gharepapagh E, Majdaeen M, Farhood B. Therapeutic potentials of resveratrol in combination with radiotherapy and chemotherapy during glioblastoma treatment: A mechanistic review. Cancer Cell Int 2021; 21(1): 391.
[http://dx.doi.org/10.1186/s12935-021-02099-0] [PMID: 34289841]
[50]
Zhai K, Mazurakova A, Koklesova L, Kubatka P, Büsselberg D. Flavonoids synergistically enhance the anti-glioblastoma effects of chemotherapeutic drugs. Biomolecules 2021; 11(12): 1841.
[http://dx.doi.org/10.3390/biom11121841] [PMID: 34944485]
[51]
Wang W, Yuan X, Mu J, et al. Quercetin induces MGMT+ glioblastoma cells apoptosis via dual inhibition of Wnt3a/β-Catenin and Akt/NF-κB signaling pathways. Phytomedicine 2023; 118: 154933.
[http://dx.doi.org/10.1016/j.phymed.2023.154933] [PMID: 37451151]
[52]
Bappi MH, Prottay AAS, Kamli H, et al. Quercetin antagonizes the sedative effects of linalool, possibly through the GABAergic interaction pathway. Molecules 2023; 28(14): 5616.
[http://dx.doi.org/10.3390/molecules28145616] [PMID: 37513487]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy