Note! Please note that this article is currently in the "Article in Press" stage and is not the final "Version of record". While it has been accepted, copy-edited, and formatted, however, it is still undergoing proofreading and corrections by the authors. Therefore, the text may still change before the final publication. Although "Articles in Press" may not have all bibliographic details available, the DOI and the year of online publication can still be used to cite them. The article title, DOI, publication year, and author(s) should all be included in the citation format. Once the final "Version of record" becomes available the "Article in Press" will be replaced by that.
Abstract
Introduction: The wide application of artificial intelligence in various fields has shown its potential to aid medical diagnosis. Ultrasound is an important tool used to evaluate fetal development and diagnose fetal diseases.
Method: However, traditional diagnostic methods are time-consuming and laborious. Therefore, we constructed an end-to-end automatic diagnosis system based on convolutional neural networks using ensemble learning to improve the robustness and accuracy of the system. Results: The system classifies the ultrasound image dataset into six categories, namely, abdomen, brain, femur, thorax, maternal cervix, and other planes. Conclusion: After experiments, the results showed that the proposed end-to-end system can considerably improve the detection accuracy of the standard plane.