Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Molecular Actions of Enicostemma hyssopifolium Whole Plant Extract on HPV18-Infected Human Cervical Cancer (HeLa) Cells

In Press, (this is not the final "Version of Record"). Available online 05 July, 2024
Author(s): Komal Parameshwarappa Koralahalli, Sardar Hussain, David Wilson Devarajan, Siddikuzzaman and Berlin Grace Viswanathan Mariammal*
Published on: 05 July, 2024

DOI: 10.2174/0118715206296375240703115848

Price: $95

Abstract

Objective: Enicostemma hyssopifolium (E. hyssopifolium) contains several bioactive compounds with anti-cancer activities. This study was performed to investigate the molecular effects of E. hyssopifolium on HPV18-containing HeLa cells.

Methods: The methanol extract of E. hyssopifolium whole plant was tested for cytotoxicity by MTT assay. A lower and higher dose (80 and 160 μg/mL) to IC50 were analyzed for colonization inhibition (Clonogenic assay), cell cycle arrest (FACS analysis), and induction of apoptosis (AO/EtBr staining fluorescent microscopy and FACS analysis) and DNA fragmentation (comet assay). The HPV 18 E6 gene expression in treated cells was analyzed using RT-PCR and qPCR.

Results: A significant dose-dependent anti-proliferative activity (IC50 - 108.25±2 μg/mL) and inhibition of colony formation cell line were observed using both treatments. Treatment with 80 μg/mL of extract was found to result in a higher percent of cell cycle arrest at G0/G1 and G2M phases with more early apoptosis, while 160 μg/mL resulted in more cell cycle arrest at SUBG0 and S phases with late apoptosis for control. The comet assay also demonstrated a highly significant increase in DNA fragmentation after treatment with 160 μg/mL of extract (tail moments-19.536 ± 17.8), while 80 μg/mL of extract treatment showed non-significant tail moment (8.152 ± 13.0) compared to control (8.038 ± 12.0). The RT-PCR and qPCR results showed a significant reduction in the expression of the HPV18 E6 gene in HeLa cells treated with 160 μg/mL of extract, while 80 μg/mL did not show a significant reduction.

Conclusion: The 160 μg/mL methanol extract of E. hyssopifolium demonstrated highly significant anti-cancer molecular effects in HeLa cells.

[1]
Martin, T.A.; Ye, L.; Sanders, A.J. Cancer invasion and metastasis: Molecular and cellular perspective. Madame Curie Bioscience Database; National Library of Medicine: Bethesda, MD, 2013.
[2]
Thun, M.J.; DeLancey, J.O.; Center, M.M.; Jemal, A.; Ward, E.M. The global burden of cancer: Priorities for prevention. Carcinogenesis, 2010, 31(1), 100-110.
[http://dx.doi.org/10.1093/carcin/bgp263] [PMID: 19934210]
[3]
Pucci, C.; Martinelli, C.; Ciofani, G. Innovative approaches for cancer treatment: Current perspectives and new challenges. Ecancermedicalscience, 2019, 13, 961.
[http://dx.doi.org/10.3332/ecancer.2019.961]
[4]
Khan, T.; Ali, M.; Khan, A.; Nisar, P.; Jan, S.A.; Afridi, S.; Shinwari, Z.K. Anticancer plants: A review of the active phytochemicals, applications in animal models, and regulatory aspects. Biomolecules, 2019, 10(1), 47.
[http://dx.doi.org/10.3390/biom10010047] [PMID: 31892257]
[5]
Park, S.H.; Kim, M.; Lee, S.; Jung, W.; Kim, B. Therapeutic potential of natural products in treatment of cervical cancer: A review. Nutrients, 2021, 13(1), 154.
[http://dx.doi.org/10.3390/nu13010154] [PMID: 33466408]
[6]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[7]
Lee, J.; Jeong, M.I.; Kim, H.R.; Park, H.; Moon, W.K.; Kim, B. Plant extracts as possible agents for Sequela of cancer therapies and cachexia. Antioxidants, 2020, 9(9), 836.
[http://dx.doi.org/10.3390/antiox9090836] [PMID: 32906727]
[8]
Dasari, S.; Bernard, T.P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-378.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.025] [PMID: 25058905]
[9]
de Jongh, F.E.; van Veen, R.N.; Veltman, S.J.; de Wit, R.; van der Burg, M.E.L.; van den Bent, M.J.; Planting, A.S.T.; Graveland, W.J.; Stoter, G.; Verweij, J. Weekly high-dose cisplatin is a feasible treatment option: Analysis on prognostic factors for toxicity in 400 patients. Br. J. Cancer, 2003, 88(8), 1199-1206.
[http://dx.doi.org/10.1038/sj.bjc.6600884] [PMID: 12698184]
[10]
Pergialiotis, V.; Bellos, I.; Thomakos, N.; Haidopoulos, D.; Perrea, D.N.; Kontzoglou, K.; Daskalakis, G.; Rodolakis, A. Survival outcomes of patients with cervical cancer and accompanying hydronephrosis: A systematic review of the literature. Oncol. Rev., 2019, 13(1), 387.
[http://dx.doi.org/10.4081/oncol.2019.387] [PMID: 30746036]
[11]
Han, R.; Yang, Y.M.; Dietrich, J.; Luebke, A.; Mayer-Pröschel, M.; Noble, M. Systemic 5-fluorouracil treatment causes a syndrome of delayed myelin destruction in the central nervous system. J. Biol., 2008, 7(4), 12.
[http://dx.doi.org/10.1186/jbiol69] [PMID: 18430259]
[12]
Kwon, S.J. Management of side effects of 5-FU based chemotherapy. Korean J. Clin. Oncol., 2005, 1(1), 51-58.
[13]
Kadoyama, K.; Miki, I.; Tamura, T.; Brown, J.B.; Sakaeda, T.; Okuno, Y. Adverse event profiles of 5-fluorouracil and capecitabine: Data mining of the public version of the FDA Adverse Event Reporting System, AERS, and reproducibility of clinical observations. Int. J. Med. Sci., 2012, 9(1), 33-39.
[http://dx.doi.org/10.7150/ijms.9.33] [PMID: 22211087]
[14]
Delano, M.J.; Ward, P.A. The immune system’s role in sepsis progression, resolution, and long‐term outcome. Immunol. Rev., 2016, 274(1), 330-353.
[http://dx.doi.org/10.1111/imr.12499] [PMID: 27782333]
[15]
Federico, C.; Sun, J.; Muz, B.; Alhallak, K.; Cosper, P.F.; Muhammad, N.; Jeske, A.; Hinger, A.; Markovina, S.; Grigsby, P.; Schwarz, J.K.; Azab, A.K. Localized delivery of cisplatin to cervical cancer improves its therapeutic efficacy and minimizes its side effect profile. Int. J. Radiat. Oncol. Biol. Phys., 2021, 109(5), 1483-1494.
[http://dx.doi.org/10.1016/j.ijrobp.2020.11.052] [PMID: 33253820]
[16]
Yin, S.Y.; Wei, W.C.; Jian, F.Y.; Yang, N.S. Therapeutic applications of herbal medicines for cancer patients. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-15.
[http://dx.doi.org/10.1155/2013/302426] [PMID: 23956768]
[17]
Sanford, N.N.; Sher, D.J.; Ahn, C.; Aizer, A.A.; Mahal, B.A. Prevalence and nondisclosure of complementary and alternative medicine use in patients with cancer and cancer survivors in the United States. JAMA Oncol., 2019, 5(5), 735-737.
[http://dx.doi.org/10.1001/jamaoncol.2019.0349] [PMID: 30973579]
[18]
Shirakami, Y.; Shimizu, M. Possible mechanisms of green tea and its constituents against cancer. Molecules, 2018, 23(9), 2284.
[http://dx.doi.org/10.3390/molecules23092284]
[19]
Liu, L.; Wang, M.; Li, X.; Yin, S.; Wang, B. An overview of novel agents for cervical cancer treatment by inducing apoptosis: Emerging drugs ongoing clinical trials and preclinical studies. Front. Med., 2021, 8, 682366.
[http://dx.doi.org/10.3389/fmed.2021.682366]
[20]
Xiong, Y.; Chen, L.; Luo, P. N ‐Benzylcinnamide induces apoptosis in HPV 16 and HPV 18 cervical cancer cells via suppression of E 6 and E 7 protein expression. IUBMB Life, 2015, 67(5), 374-379.
[http://dx.doi.org/10.1002/iub.1380] [PMID: 25914202]
[21]
Teymouri, M.; Pirro, M.; Johnston, T.P.; Sahebkar, A. Curcumin as a multifaceted compound against human papilloma virus infection and cervical cancers: A review of chemistry, cellular, molecular, and preclinical features. Biofactors, 2017, 43(3), 331-346.
[http://dx.doi.org/10.1002/biof.1344] [PMID: 27896883]
[22]
Ezzat, S.M.; Shouman, S.A.; Elkhoely, A.; Attia, Y.M.; Elsesy, M.S.; El Senousy, A.S.; Choucry, M.A.; El Gayed, S.H.; El Sayed, A.A.; Sattar, E.A.; El Tanbouly, N. Anticancer potentiality of lignan rich fraction of six Flaxseed cultivars. Sci. Rep., 2018, 8(1), 544.
[http://dx.doi.org/10.1038/s41598-017-18944-0] [PMID: 29323210]
[23]
Ng, W.K.; Yazan, L.S.; Ismail, M. Thymoquinone from Nigella sativa was more potent than cisplatin in eliminating of SiHa cells via apoptosis with down-regulation of Bcl-2 protein. Toxicol. In Vitro, 2011, 25(7), 1392-1398.
[http://dx.doi.org/10.1016/j.tiv.2011.04.030]
[24]
Jayalekshmi, C. Bioactive compounds of Calotropis gigantea for cancer treatment. Oral Oncol Reports, 2024, 10, 100336.
[http://dx.doi.org/10.1016/j.oor.2024.100336]
[25]
Ali, M.; Wani, S.U.D.; Salahuddin, M. S N, M.; K, M.; Dey, T.; Zargar, M.I.; Singh, J. Recent advance of herbal medicines in cancer- a molecular approach. Heliyon, 2023, 9(2), e13684.
[http://dx.doi.org/10.1016/j.heliyon.2023.e13684] [PMID: 36865478]
[26]
Patel, N.; Tyagi, R.K.; Tandel, N.; Garg, N.K.; Soni, N. The molecular targets of swertiamarin and its derivatives confer anti- diabetic and anti-hyperlipidemic effects. Curr. Drug Targets, 2018, 19(16), 1958-1967.
[http://dx.doi.org/10.2174/1389450119666180406113428] [PMID: 29623834]
[27]
Vaijanathappa, J.; Puttaswamygowda, J.; Bevanhalli, R.; Dixit, S.; Prabhakaran, P. Molecular docking, antiproliferative and anticonvulsant activities of swertiamarin isolated from Enicostemma axillare. Bioorg. Chem., 2020, 94, 103428.
[http://dx.doi.org/10.1016/j.bioorg.2019.103428] [PMID: 31740047]
[28]
Ravi, K.; Gunasekaran, K.; Rajagopalan, V.; Silambanan, S. Evaluation of the effect of enicostemma axillare extract on migration of MCF-7 cell line. J. Clin. Diagn. Res., 2019, 13(10), BC10-BC13.
[http://dx.doi.org/10.7860/JCDR/2019/42371.13241]
[29]
Antony, R.I.C.; Umarani, V.; Sankaranarayanan, S.; Bama, P.; Ramachandran, J. Antioxidant, antibacterial and cytotoxicity studies from flavonoid rich fraction of Enicostemma axillare (LAM.) raynal leaves. Afr. J. Pharm. Pharmacol., 2016, 10(43), 916-925.
[http://dx.doi.org/10.5897/AJPP2016.4675]
[30]
Krishna Veni, A.; Mohandass, S. In-vitro cytotoxic activity of Enicostemma axillare extract against hela cell line. Int. J. Pharmacogn. Phytochem. Res., 2014, 6(2), 320-323.
[31]
okokon, J.E.; Nwafor, P.A.; Abia, G.O.; Bankhede, H.K. Antipyretic and antimalarial activities of crude leaf extract and fractions of Enicostema littorale. Asian Pac. J. Trop. Dis., 2012, 2(6), 442-447.
[http://dx.doi.org/10.1016/S2222-1808(12)60097-8]
[32]
Vigneswaran, M.; Prem, K.G.; Subiramani, S.; Siva, G.; Nandakumaran, T.; Prabha, L.; Narayanasamy, J.A. Compendious review of Enicostemma littorale Blume. Panacea to several maladies. Int. J. Sci. Eng. Res., 2017, 8, 1817-1836.
[33]
Laxman, S.; Bala, P.; Yusuf, K.; Nancy, P. Pharmacognostical standardization of Enicostemma littorale Blume. Pharmacogn. J., 2010, 2(16), 15-23.
[http://dx.doi.org/10.1016/S0975-3575(10)80044-6]
[34]
Murali, B.; Upadhyaya, U.M.; Goyal, R.K. Effect of chronic treatment with Enicostemma littorale in non-insulin-dependent diabetic (NIDDM) rats. J. Ethnopharmacol., 2002, 81(2), 199-204.
[http://dx.doi.org/10.1016/S0378-8741(02)00077-6] [PMID: 12065151]
[35]
Rajasekaran, D.; Manoharan, S.; Prabhakar, M.M.; Manimaran, A. Enicostemma littorale prevents tumor formation in 7,12-dimethylbenz(a)anthracene-induced hamster buccal pouch carcinogenesis. Hum. Exp. Toxicol., 2015, 34(9), 911-921.
[http://dx.doi.org/10.1177/0960327114562033] [PMID: 26286523]
[36]
Kavimani, S.; Manisenthlkumar, K.T. Effect of methanolic extract of Enicostemma littorale on Dalton’s ascitic lymphoma. J. Ethnopharmacol., 2000, 71(1-2), 349-352.
[http://dx.doi.org/10.1016/S0378-8741(00)00190-2] [PMID: 10904185]
[37]
Ghosal, S.; Jaiswal, D.K. Chemical constituents of gentianaceae XXVIII: Flavonoids of Enicostemma hyssopifolium (Willd.). Verd. J. Pharm. Sci., 1980, 69(1), 53-56.
[http://dx.doi.org/10.1002/jps.2600690115] [PMID: 7354443]
[38]
Komal, K.P.; Berlin Grace, V.M.; Wilson, D.D.; Hussain, S. Phytochemical screening and in vitro antioxidant activity of Enicostemma hyssopifolium. Eur. J. Mol. Clin. Med., 2020, 7(3), 382-394.
[39]
Patel, M.B.; Mishra, S.H. Hypoglycemic activity of C-glycosyl flavonoid from Enicostemma hyssopifolium. Pharm. Biol., 2011, 49(4), 383-391.
[http://dx.doi.org/10.3109/13880209.2010.517759] [PMID: 21391839]
[40]
Raj, K.K. Dalton’s lymphoma as a murine model for understanding the progression and development of T-Cell lymphoma and its role in drug discovery. Int. J. Immunother. Cancer Res.,, 2017, 2017, 001-006.
[http://dx.doi.org/ 10.17352/2455-8591.000011]
[41]
Zhang, J.X.; Wei-Tan, H.; Hu, C.Y.; Wang, W.Q.; Chu, G.H.; Wei, L.H.; Chen, L. Anticancer activity of 23,24-dihydrocucurbitacin B against the HeLa human cervical cell line is due to apoptosis and G2/M cell cycle arrest. Exp. Ther. Med., 2018, 15(3), 2575-2582.
[http://dx.doi.org/10.3892/etm.2018.5710] [PMID: 29456661]
[42]
Lam, M.; Carmichael, A.R.; Griffiths, H.R. An aqueous extract of Fagonia cretica induces DNA damage, cell cycle arrest and apoptosis in breast cancer cells via FOXO3a and p53 expression. PLoS One, 2012, 7(6), e40152.
[http://dx.doi.org/10.1371/journal.pone.0040152] [PMID: 22761954]
[43]
Grace, V.M.B.; Shalini, J.V. lekha, T.T.S.; Devaraj, S.N.; Devaraj, H. Co-overexpression of p53 and bcl-2 proteins in HPV-induced squamous cell carcinoma of the uterine cervix. Gynecol. Oncol., 2003, 91(1), 51-58.
[http://dx.doi.org/10.1016/S0090-8258(03)00439-6] [PMID: 14529662]
[44]
Berlin Grace, V.M.; Niranjali, D.S.; Radhakrishnan, P.M.; Devaraj, H. HPV-induced carcinogenesis of the uterine cervix is associated with reduced serum ATRA level. Gynecol. Oncol., 2006, 103(1), 113-119.
[http://dx.doi.org/10.1016/j.ygyno.2006.01.057] [PMID: 16554086]
[45]
Berlin, G.V.M. HPV18 is more onco-potent than HPV16 in Uterine Cervical Carcinogenesis though HPV16 is the prevalent type in India, Chennai. Indian J. Cancer, 2009, 46, 203-207.
[http://dx.doi.org/10.4103/0019-509X.52954] [PMID: 19574671]
[46]
Franken, N.A.P.; Rodermond, H.M.; Stap, J.; Haveman, J.; van Bree, C. Clonogenic assay of cells in vitro. Nat. Protoc., 2006, 1(5), 2315-2319.
[http://dx.doi.org/10.1038/nprot.2006.339] [PMID: 17406473]
[47]
Hossein, G.; Azimian-Zavareh, V.; Janzamin, E. Effect of lithium chloride and antineoplastic drugs on survival and cell cycle of androgen-dependent prostate cancer LNCap cells. Indian J. Pharmacol., 2012, 44(6), 714-721.
[http://dx.doi.org/10.4103/0253-7613.103265] [PMID: 23248400]
[48]
Kasibhatla, S.; Amarante-Mendes, G.P.; Finucane, D.; Brunner, T.; Bossy-Wetzel, E.; Green, D.R. Acridine Orange/Ethidium Bromide (AO/EB) staining to detect apoptosis. CSH Protoc., 2006, 2006(3), pdb.prot4493.
[49]
Liu, K.; Liu, P.; Liu, R.; Wu, X. Dual AO/EB staining to detect apoptosis in osteosarcoma cells compared with flow cytometry. Med. Sci. Monit. Basic Res., 2015, 21, 15-20.
[http://dx.doi.org/10.12659/MSMBR.893327] [PMID: 25664686]
[50]
Vermes, I.; Haanen, C.; Steffens-Nakken, H.; Reutellingsperger, C. A novel assay for apoptosis Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J. Immunol. Methods, 1995, 184(1), 39-51.
[http://dx.doi.org/10.1016/0022-1759(95)00072-I] [PMID: 7622868]
[51]
Dhawan, A.; Bajpai, M.; Pandey, A.K.; Parmar, D. THE SCGE/Comet assay protocol. Protocol for the single cell gel electrophoresis/comet assay for rapid genotoxicity assessment., 2003. Available From: http://www.cometassayindia.org/protocol%20for%20comet%20assay.pdf
[52]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod., 2012, 75(3), 311-335.
[http://dx.doi.org/10.1021/np200906s] [PMID: 22316239]
[53]
Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov., 2021, 20(3), 200-216.
[http://dx.doi.org/10.1038/s41573-020-00114-z] [PMID: 33510482]
[54]
Cragg, G.M.; Newman, D.J. Nature: A vital source of leads for anticancer drug development. Phytochem. Rev., 2009, 8(2), 313-331.
[http://dx.doi.org/10.1007/s11101-009-9123-y]
[55]
Solowey, E.; Lichtenstein, M.; Sallon, S.; Paavilainen, H.; Solowey, E.; Lorberboum-Galski, H. Evaluating medicinal plants for anticancer activity. Sci World J, 2014, 2014, 1-12.
[http://dx.doi.org/10.1155/2014/721402] [PMID: 25478599]
[56]
Rates, S.M.K. Plants as source of drugs. Toxicon, 2001, 39(5), 603-613.
[http://dx.doi.org/10.1016/S0041-0101(00)00154-9] [PMID: 11072038]
[57]
Javed, I. Plant-derived anticancer agents: A green anticancer approach. Asian Pac. J. Trop. Biomed., 2017, 7(12), 1129-1150.
[http://dx.doi.org/10.1016/j.apjtb.2017.10.016]
[58]
Sreelatha, S.; Jeyachitra, A.; Padma, P.R. Antiproliferation and induction of apoptosis by Moringa oleifera leaf extract on human cancer cells. Food Chem. Toxicol., 2011, 49(6), 1270-1275.
[http://dx.doi.org/10.1016/j.fct.2011.03.006] [PMID: 21385597]
[59]
Amin, M.F.; Ariwibowo, T.; Putri, S.A.; Kurnia, D. Moringa oleifera: A review of the pharmacology, chemical constituents, and application for dental health. Pharmaceuticals, 2024, 17(1), 142.
[http://dx.doi.org/10.3390/ph17010142] [PMID: 38276015]
[60]
Prabhu, A.; Krishnamoorthy, M.; Prasad, D.J.; Naik, P. Anticancer activity of friedelin isolated from ethanolic leaf extract of Cassia tora on HeLa and HSC-1 cell lines. Indian J. Appl. Res., 2011, 3(10), 1-4.
[http://dx.doi.org/10.15373/2249555X/OCT2013/121]
[61]
Demir, S.; Turan, I.; Aliyazicioglu, R.; Yaman, S.O.; Aliyazicioglu, Y. Primula vulgaris extract induces cell cycle arrest and apoptosis in human cervix cancer cells. J. Pharm. Anal., 2018, 8(5), 307-311.
[http://dx.doi.org/10.1016/j.jpha.2018.05.003] [PMID: 30345144]
[62]
Tugce Ozkan, M.; Aliyazicioglu, R.; Demir, S.; Misir, S.; Turan, I.; Yildirmis, S.; Aliyazicioglu, Y. Phenolic characterisation and antioxidant activity of Primula vulgaris and its antigenotoxic effect on fibroblast cells. Jundishapur J. Nat. Pharm. Prod., 2016, 12(1), 395-401.
[http://dx.doi.org/10.5812/jjnpp.40073]
[63]
Demi̇r, S.; Turan, İ.; Ali̇yazicioğlu, Y. Antioxidant properties of Primula vulgaris flower extract and its cytotoxic effect on human cancer cell lines. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 2019, 22(1), 78-84.
[http://dx.doi.org/10.18016/ksutarimdoga.vi.460242]
[64]
Demir, N.; Gungor, A.A.; Nadaroglu, H.; Demir, Y. The antioxidant and radical scavenging activities of Primrose (Primula vulgaris). Eur. J. Exp. Biol., 2014, 4(2), 395-401.
[65]
Mercadante, A.A.; Kasi, A. Genetics, Cancer Cell Cycle Phases; StatPearls: Treasure Island, FL, 2024.
[66]
Luo, Y.; Wu, Y.; Peng, Y.; Liu, X.; Bie, J.; Li, S. Systematic analysis to identify a key role of CDK1 in mediating gene interaction networks in cervical cancer development. Ir. J. Med. Sci., 2016, 185(1), 231-239.
[http://dx.doi.org/10.1007/s11845-015-1283-8] [PMID: 25786624]
[67]
Kumar, S.; Mulchandani, V.; Das Sarma, J. Methanolic neem (Azadirachta indica) stem bark extract induces cell cycle arrest, apoptosis and inhibits the migration of cervical cancer cells in vitro. BMC Compl. Med. Ther., 2022, 22(1), 239.
[http://dx.doi.org/10.1186/s12906-022-03718-7] [PMID: 36088372]
[68]
Chaudhary, G.; Goyal, S.; Poonia, P. Lawsonia inermis Linnaeus: A phytopharmacological review. Int. J. Pharm. Sci. Drug Res., 2010, 2(2), 91-98.
[69]
Oulahal, N.; Degraeve, P. Phenolic-rich plant extracts with antimicrobial activity: An alternative to food preservatives and biocides? Front. Microbiol., 2022, 12, 753518.
[http://dx.doi.org/10.3389/fmicb.2021.753518] [PMID: 35058892]
[70]
Wang, X.; Wang, T. Swertiamarin exerts anticancer effects on human cervical cancer cells via induction of apoptosis, inhibition of cell migration and targeting of MEK-ERK pathway. Trop. J. Pharm. Res., 2021, 20(1), 75-81.
[http://dx.doi.org/10.4314/tjpr.v20i1.12]
[71]
Muhamad Fadzil, N.S.; Sekar, M.; Gan, S.H.; Bonam, S.R.; Wu, Y.S.; Vaijanathappa, J.; Ravi, S.; Lum, P.T.; Dhadde, S.B. Chemistry, pharmacology and therapeutic potential of swertiamarin – a promising natural lead for new drug discovery and development. Drug Des. Devel. Ther., 2021, 15, 2721-2746.
[http://dx.doi.org/10.2147/DDDT.S299753] [PMID: 34188450]
[72]
Artun, F.T.; Karagöz, A. Antiproliferative and apoptosis inducing effects of the methanolic extract of Centaurea hermannii in human cervical cancer cell line. Biotech. Histochem., 2021, 96(1), 1-10.
[http://dx.doi.org/10.1080/10520295.2020.1751288] [PMID: 32362148]
[73]
Aboul-Soud, M.A.M.; Ennaji, H.; Kumar, A.; Alfhili, M.A.; Bari, A.; Ahamed, M.; Chebaibi, M.; Bourhia, M.; Khallouki, F.; Alghamdi, K.M.; Giesy, J.P. Antioxidant, anti-proliferative activity and chemical fingerprinting of Centaurea calcitrapa against breast cancer cells and molecular docking of Caspase-3. Antioxidants, 2022, 11(8), 1514.
[http://dx.doi.org/10.3390/antiox11081514] [PMID: 36009233]
[74]
Figueroa-González, G.; Pérez-Plasencia, C. Strategies for the evaluation of DNA damage and repair mechanisms in cancer. Oncol. Lett., 2017, 13(6), 3982-3988.
[http://dx.doi.org/10.3892/ol.2017.6002] [PMID: 28588692]
[75]
Jessica, E. Cellular Senescence. The molecular basis of cancer; Elsevier Saunders: Cambridge, MA, 2015.
[http://dx.doi.org/10.1016/B978-1-4557-4066-6.00015-9]
[76]
Hall, A.H.S.; Alexander, K.A. RNA interference of human papillomavirus type 18 E6 and E7 induces senescence in HeLa cells. J. Virol., 2003, 77(10), 6066-6069.
[http://dx.doi.org/10.1128/JVI.77.10.6066-6069.2003] [PMID: 12719599]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy