Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Research Article

Time- and Region-specific Effect of Vortioxetine on Central LPS-induced Transcriptional Regulation of NLRP3 Inflammasome

In Press, (this is not the final "Version of Record"). Available online 12 July, 2024
Author(s): Miriam Ciani, Giovanna Rigillo, Cristina Benatti, Luca Pani, Johanna M.C. Blom, Nicoletta Brunello, Fabio Tascedda and Silvia Alboni*
Published on: 12 July, 2024

DOI: 10.2174/1570159X22666240705143649

Price: $95

Abstract

Background: Inflammasome overactivation, multiprotein complexes that trigger inflammatory responses, plays a critical role in Major Depressive Disorder (MDD) pathogenesis and treatment responses. Indeed, different antidepressants alleviate depression-related behaviours by specifically counteracting the NLRP3 inflammasome signalling pathway. The immunomodulatory effects of vortioxetine (VTX), a multimodal antidepressant with cognitive benefits, were recently revealed to counter memory impairment induced by a peripheral lipopolysaccharide (LPS) injection 24 hours (h) postchallenge.

Methods: The potential link between VTX and NLRP3, along with other inflammasomes, remains unexplored. Hence, adult C57BL/6J male mice (n = 73) were fed with a standard or VTX-enriched diet (600 mg/kg of food, 28 days), injected with LPS (830 μg/kg) or saline, and sacrificed 6/24 h post-LPS. At these time-points, transcriptional effects of LPS and VTX’s on NLRP3, NLRP1, NLRC4, AIM2 (inflammasomes), ASC and CASP1 (related subunits) and NEK7 mediator (NLRP3 regulator) were assessed in dorsal and ventral hippocampal subregions, frontal-prefrontal cortex and hypothalamus, brain regions serving behavioural-cognitive functions impaired in MDD.

Results: Varied expression patterns of inflammasomes were revealed, with long-term NLRP3 and ASC transcriptional changes observed in response to LPS. It was discovered that VTX counteracted the LPS-mediated NLRP3 and ASC upregulation in memory-related brain areas like the dorsal hippocampus at 24 h time-point, potentially via regulating NEK7 expression. No VTX-mediated transcriptional effects were observed on other inflammasomes, reinforcing a potentially specific modulation on the NLRP3 inflammasome signalling pathway.

Conclusion: Thus, a novel VTX’s molecular mechanism in modulating the NLRP3 inflammasome in a time- and area-specific manner in the brain was highlighted, with significant clinical implications in treating depression and cognitive impairments.

[1]
Liu, Q.; He, H.; Yang, J.; Feng, X.; Zhao, F.; Lyu, J. Changes in the global burden of depression from 1990 to 2017: Findings from the Global Burden of Disease study. J. Psychiatr. Res., 2020, 126, 134-140.
[http://dx.doi.org/10.1016/j.jpsychires.2019.08.002] [PMID: 31439359]
[2]
Shorey, S.; Ng, E.D.; Wong, C.H.J. Global prevalence of depression and elevated depressive symptoms among adolescents: A systematic review and meta‐analysis. Br. J. Clin. Psychol., 2022, 61(2), 287-305.
[http://dx.doi.org/10.1111/bjc.12333] [PMID: 34569066]
[3]
Culpepper, L.; Lam, R.W.; McIntyre, R.S. Cognitive impairment in patients with depression: Awareness, assessment, and management. J. Clin. Psychiatry, 2017, 78(9), 1383-1394.
[http://dx.doi.org/10.4088/JCP.tk16043ah5c] [PMID: 29345866]
[4]
Pan, Z.; Park, C.; Brietzke, E.; Zuckerman, H.; Rong, C.; Mansur, R.B.; Fus, D.; Subramaniapillai, M.; Lee, Y.; McIntyre, R.S. Cognitive impairment in major depressive disorder. CNS Spectr., 2019, 24(1), 22-29.
[http://dx.doi.org/10.1017/S1092852918001207] [PMID: 30468135]
[5]
Varghese, S.; Frey, B.N.; Schneider, M.A.; Kapczinski, F.; de Azevedo Cardoso, T. Functional and cognitive impairment in the first episode of depression: A systematic review. Acta Psychiatr. Scand., 2022, 145(2), 156-185.
[http://dx.doi.org/10.1111/acps.13385] [PMID: 34758106]
[6]
Rosenblat, J.D.; Kakar, R.; McIntyre, R.S. The cognitive effects of antidepressants in major depressive disorder: A systematic review and meta-analysis of randomized clinical trials. Int. J. Neuropsychopharmacol., 2016, 19(2), pyv082.
[http://dx.doi.org/10.1093/ijnp/pyv082] [PMID: 26209859]
[7]
Kopschina Feltes, P.; Doorduin, J.; Klein, H.C.; Juárez-Orozco, L.E.; Dierckx, R.A.J.O.; Moriguchi-Jeckel, C.M.; de Vries, E.F.J. Anti-inflammatory treatment for major depressive disorder: implications for patients with an elevated immune profile and non-responders to standard antidepressant therapy. J. Psychopharmacol., 2017, 31(9), 1149-1165.
[http://dx.doi.org/10.1177/0269881117711708] [PMID: 28653857]
[8]
Xia, C.Y.; Guo, Y.X.; Lian, W.W.; Yan, Y.; Ma, B.Z.; Cheng, Y.C.; Xu, J.K.; He, J.; Zhang, W.K. The NLRP3 inflammasome in depression: Potential mechanisms and therapies. Pharmacol. Res., 2023, 187, 106625.
[http://dx.doi.org/10.1016/j.phrs.2022.106625] [PMID: 36563870]
[9]
Roy, S.; Arif Ansari, M.; Choudhary, K.; Singh, S. NLRP3 inflammasome in depression: A review. Int. Immunopharmacol., 2023, 117, 109916.
[http://dx.doi.org/10.1016/j.intimp.2023.109916] [PMID: 36827927]
[10]
Alcocer-Gómez, E.; de Miguel, M.; Casas-Barquero, N.; Núñez-Vasco, J.; Sánchez-Alcazar, J.A.; Fernández-Rodríguez, A.; Cordero, M.D. NLRP3 inflammasome is activated in mononuclear blood cells from patients with major depressive disorder. Brain Behav. Immun., 2014, 36, 111-117.
[http://dx.doi.org/10.1016/j.bbi.2013.10.017] [PMID: 24513871]
[11]
Alcocer-Gómez, E.; Casas-Barquero, N.; Williams, M.R.; Romero-Guillena, S.L.; Cañadas-Lozano, D.; Bullón, P.; Sánchez-Alcazar, J.A.; Navarro-Pando, J.M.; Cordero, M.D. Antidepressants induce autophagy dependent-NLRP3-inflammasome inhibition in Major depressive disorder. Pharmacol. Res., 2017, 121, 114-121.
[http://dx.doi.org/10.1016/j.phrs.2017.04.028] [PMID: 28465217]
[12]
Guo, H.; Callaway, J.B.; Ting, J.P.Y. Inflammasomes: Mechanism of action, role in disease, and therapeutics. Nat. Med., 2015, 21(7), 677-687.
[http://dx.doi.org/10.1038/nm.3893] [PMID: 26121197]
[13]
Du, R.H.; Tan, J.; Sun, X.Y.; Lu, M.; Ding, J.H.; Hu, G. Fluoxetine inhibits NLRP3 inflammasome activation: Implication in depression. Int. J. Neuropsychopharmacol., 2016, 19(9), pyw037.
[http://dx.doi.org/10.1093/ijnp/pyw037] [PMID: 27207922]
[14]
Arioz, B.I.; Tastan, B.; Tarakcioglu, E.; Tufekci, K.U.; Olcum, M.; Ersoy, N.; Bagriyanik, A.; Genc, K.; Genc, S. Melatonin attenuates LPS-induced acute depressive-like behaviors and microglial NLRP3 inflammasome activation through the SIRT1/Nrf2 pathway. Front. Immunol., 2019, 10, 1511.
[http://dx.doi.org/10.3389/fimmu.2019.01511] [PMID: 31327964]
[15]
Tsai, S.J. Effects of interleukin-1beta polymorphisms on brain function and behavior in healthy and psychiatric disease conditions. Cytokine Growth Factor Rev., 2017, 37, 89-97.
[http://dx.doi.org/10.1016/j.cytogfr.2017.06.001] [PMID: 28599834]
[16]
Alboni, S.; Cervia, D.; Sugama, S.; Conti, B. Interleukin 18 in the CNS. J. Neuroinflammation, 2010, 7(1), 9.
[http://dx.doi.org/10.1186/1742-2094-7-9] [PMID: 20113500]
[17]
Milner, M.T.; Maddugoda, M.; Götz, J.; Burgener, S.S.; Schroder, K. The NLRP3 inflammasome triggers sterile neuroinflammation and Alzheimer’s disease. Curr. Opin. Immunol., 2021, 68, 116-124.
[http://dx.doi.org/10.1016/j.coi.2020.10.011] [PMID: 33181351]
[18]
Panicker, N.; Kam, T.I.; Wang, H.; Neifert, S.; Chou, S.C.; Kumar, M.; Brahmachari, S.; Jhaldiyal, A.; Hinkle, J.T.; Akkentli, F.; Mao, X.; Xu, E.; Karuppagounder, S.S.; Hsu, E.T.; Kang, S.U.; Pletnikova, O.; Troncoso, J.; Dawson, V.L.; Dawson, T.M. Neuronal NLRP3 is a parkin substrate that drives neurodegeneration in Parkinson’s disease. Neuron, 2022, 110(15), 2422-2437.e9.
[http://dx.doi.org/10.1016/j.neuron.2022.05.009] [PMID: 35654037]
[19]
Voet, S.; Srinivasan, S.; Lamkanfi, M.; van Loo, G. Inflammasomes in neuroinflammatory and neurodegenerative diseases. EMBO Mol. Med., 2019, 11(6), e10248.
[http://dx.doi.org/10.15252/emmm.201810248] [PMID: 31015277]
[20]
Song, A.Q.; Gao, B.; Fan, J.J.; Zhu, Y.J.; Zhou, J.; Wang, Y.L.; Xu, L.Z.; Wu, W.N.; Wu, W.N. NLRP1 inflammasome contributes to chronic stress-induced depressive-like behaviors in mice. J. Neuroinflammation, 2020, 17(1), 178.
[http://dx.doi.org/10.1186/s12974-020-01848-8] [PMID: 32513185]
[21]
Li, Y.K.; Chen, J.G.; Wang, F. The emerging roles of absent in melanoma 2 (AIM2) inflammasome in central nervous system disorders. Neurochem. Int., 2021, 149, 105122.
[http://dx.doi.org/10.1016/j.neuint.2021.105122] [PMID: 34284076]
[22]
Iban-Arias, R.; Sebastian-Valverde, M.; Wu, H.; Lyu, W.; Wu, Q.; Simon, J.; Pasinetti, G.M. Role of polyphenol-derived phenolic acid in mitigation of inflammasome-mediated anxiety and depression. Biomedicines, 2022, 10(6), 1264.
[http://dx.doi.org/10.3390/biomedicines10061264] [PMID: 35740286]
[23]
Flores, J.; Noël, A.; Fillion, M.L.; LeBlanc, A.C. Therapeutic potential of Nlrp1 inflammasome, caspase-1, or caspase-6 against alzheimer disease cognitive impairment. Cell Death Differ., 2022, 29(3), 657-669.
[http://dx.doi.org/10.1038/s41418-021-00881-1] [PMID: 34625662]
[24]
Li, J.M.; Liu, L.L.; Su, W.J.; Wang, B.; Zhang, T.; Zhang, Y.; Jiang, C.L. Ketamine may exert antidepressant effects via suppressing NLRP3 inflammasome to upregulate AMPA receptors. Neuropharmacology, 2019, 146, 149-153.
[http://dx.doi.org/10.1016/j.neuropharm.2018.11.022] [PMID: 30496753]
[25]
Lee, H.; Park, J.H.; Hoe, H.S. Idebenone regulates Aβ and LPS-induced neurogliosis and cognitive function through inhibition of NLRP3 Inflammasome/IL-1β axis activation. Front. Immunol., 2022, 13, 749336.
[http://dx.doi.org/10.3389/fimmu.2022.749336] [PMID: 35222363]
[26]
Lonnemann, N.; Hosseini, S.; Marchetti, C.; Skouras, D.B.; Stefanoni, D.; Dinarello, C.A.; Korte, M. The NLRP3 inflammasome inhibitor OLT1177 rescues cognitive impairment in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci, 2020, 117(50), 32145-32154.
[http://dx.doi.org/10.1073/pnas.2009680117]
[27]
Wu, X.L.; Deng, M.Z.; Gao, Z.J.; Dang, Y.Y.; Li, Y.C.; Li, C.W. Neferine alleviates memory and cognitive dysfunction in diabetic mice through modulation of the NLRP3 inflammasome pathway and alleviation of endoplasmic-reticulum stress. Int. Immunopharmacol., 2020, 84, 106559.
[http://dx.doi.org/10.1016/j.intimp.2020.106559] [PMID: 32402951]
[28]
Li, P.; He, Y.; Yang, Q.; Guo, H.; Li, N.; Zhang, D. NEK7 inhibition attenuates Aβ42-induced cognitive impairment by regulating TLR4/NF-κB and the NLRP3 inflammasome in mice. J. Clin. Biochem. Nutr., 2023, 73(2), 145-153.
[http://dx.doi.org/10.3164/jcbn.22-105] [PMID: 37700846]
[29]
Xu, Y.; Yang, Y.; Chen, X.; Jiang, D.; Zhang, F.; Guo, Y.; Hu, B.; Xu, G.; Peng, S.; Wu, L.; Hu, J. NLRP3 inflammasome in cognitive impairment and pharmacological properties of its inhibitors. Transl. Neurodegener., 2023, 12(1), 49.
[http://dx.doi.org/10.1186/s40035-023-00381-x] [PMID: 37915104]
[30]
Bruno, A.; Zoccali, R.A.; Troili, G.M.; Scala, L.; Pandolfo, G.; Cedro, C.; Mento, C.; Santoro, V.; Spina, E.; Muscatello, M.R.A. Vortioxetine on cognition in schizophrenia. J. Clin. Psychopharmacol., 2020, 40(4), 381-385.
[http://dx.doi.org/10.1097/JCP.0000000000001242] [PMID: 32639291]
[31]
Jeong, H.W.; Yoon, K.H.; Lee, C.H.; Moon, Y.S.; Kim, D.H. Vortioxetine treatment for depression in alzheimer’s disease: A randomized, double-blind, placebo-controlled study. Clin. Psychopharmacol. Neurosci., 2022, 20(2), 311-319.
[http://dx.doi.org/10.9758/cpn.2022.20.2.311] [PMID: 35466102]
[32]
Nemutlu Samur, D.; Akçay, G.; Yıldırım, S.; Özkan, A.; Çeker, T.; Derin, N.; Tanrıöver, G.; Aslan, M.; Ağar, A.; Özbey, G. Vortioxetine ameliorates motor and cognitive impairments in the rotenone-induced Parkinson’s disease via targeting TLR-2 mediated neuroinflammation. Neuropharmacology, 2022, 208, 108977.
[http://dx.doi.org/10.1016/j.neuropharm.2022.108977] [PMID: 35092748]
[33]
Bennabi, D.; Haffen, E.; Van Waes, V. Vortioxetine for cognitive enhancement in major depression: From animal models to clinical research. Front. Psychiatry, 2019, 10, 771.
[http://dx.doi.org/10.3389/fpsyt.2019.00771] [PMID: 31780961]
[34]
Santos García, D.; Alonso Losada, M.G.; Cimas Hernando, I.; Cabo López, I.; Yáñez Baña, R.; Alonso Redondo, R.; Paz González, J.M.; Cores Bartolomé, C.; Feal Painceiras, M.J.; Íñiguez Alvarado, M.C.; Labandeira, C.; García Díaz, I. Vortioxetine improves depressive symptoms and cognition in parkinson’s disease patients with major depression: An open-label prospective study. Brain Sci., 2022, 12(11), 1466.
[http://dx.doi.org/10.3390/brainsci12111466] [PMID: 36358393]
[35]
Alboni, S.; Benatti, C.; Colliva, C.; Radighieri, G.; Blom, J.M.C.; Brunello, N.; Tascedda, F. Vortioxetine prevents lipopolysaccharide-induced memory impairment without inhibiting the initial inflammatory cascade. Front. Pharmacol., 2021, 11, 603979.
[http://dx.doi.org/10.3389/fphar.2020.603979] [PMID: 33613281]
[36]
Liu, G.; Chen, X.; Wang, Q.; Yuan, L. NEK7: A potential therapy target for NLRP3-related diseases. Biosci. Trends, 2020, 14(2), 74-82.
[http://dx.doi.org/10.5582/bst.2020.01029] [PMID: 32295992]
[37]
Li, Y.; Abdourahman, A.; Tamm, J.A.; Pehrson, A.L.; Sánchez, C.; Gulinello, M. Reversal of age-associated cognitive deficits is accompanied by increased plasticity-related gene expression after chronic antidepressant administration in middle-aged mice. Pharmacol. Biochem. Behav., 2015, 135, 70-82.
[http://dx.doi.org/10.1016/j.pbb.2015.05.013] [PMID: 26046533]
[38]
Rigillo, G.; Vilella, A.; Benatti, C.; Schaeffer, L.; Brunello, N.; Blom, J.M.C.; Zoli, M.; Tascedda, F. LPS-induced histone H3 phospho(Ser10)-acetylation(Lys14) regulates neuronal and microglial neuroinflammatory response. Brain Behav. Immun., 2018, 74, 277-290.
[http://dx.doi.org/10.1016/j.bbi.2018.09.019] [PMID: 30244035]
[39]
Zakaria, R.; Wan Yaacob, W.M.H.; Othman, Z.; Long, I.; Ahmad, A.H.; Al-Rahbi, B. Lipopolysaccharide-induced memory impairment in rats: A model of Alzheimer’s disease. Physiol. Res., 2017, 66(4), 553-565.
[http://dx.doi.org/10.33549/physiolres.933480] [PMID: 28406691]
[40]
Cunningham, C.; Wilcockson, D.C.; Campion, S.; Lunnon, K.; Perry, V.H. Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J. Neurosci., 2005, 25(40), 9275-9284.
[http://dx.doi.org/10.1523/JNEUROSCI.2614-05.2005] [PMID: 16207887]
[41]
Tarr, A.J.; McLinden, K.A.; Kranjac, D.; Kohman, R.A.; Amaral, W.; Boehm, G.W. The effects of age on lipopolysaccharide-induced cognitive deficits and interleukin-1β expression. Behav. Brain Res., 2011, 217(2), 481-485.
[http://dx.doi.org/10.1016/j.bbr.2010.10.036] [PMID: 21055422]
[42]
Zhao, J.; Bi, W.; Xiao, S.; Lan, X.; Cheng, X.; Zhang, J.; Lu, D.; Wei, W.; Wang, Y.; Li, H.; Fu, Y.; Zhu, L. Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice. Sci. Rep., 2019, 9(1), 5790.
[http://dx.doi.org/10.1038/s41598-019-42286-8] [PMID: 30962497]
[43]
Jacewicz, M.; Czapski, G.A.; Katkowska, I.; Strosznajder, R.P. Systemic administration of lipopolysaccharide impairs glutathione redox state and object recognition in male mice. Folia Neuropathol., 2009, 47(4), 321-328.
[44]
Valero, J.; Mastrella, G.; Neiva, I.; Sánchez, S.; Malva, J.O. Long-term effects of an acute and systemic administration of LPS on adult neurogenesis and spatial memory. Front. Neurosci., 2014, 8, 83.
[http://dx.doi.org/10.3389/fnins.2014.00083] [PMID: 24795557]
[45]
Frenois, F.; Moreau, M.; O’ Connor, J.; Lawson, M.; Micon, C.; Lestage, J.; Kelley, K.W.; Dantzer, R.; Castanon, N. Lipopolysaccharide induces delayed FosB/DeltaFosB immunostaining within the mouse extended amygdala, hippocampus and hypothalamus, that parallel the expression of depressive-like behavior. Psychoneuroendocrinology, 2007, 32(5), 516-531.
[46]
O’Connor, J.C.; Lawson, M.A.; André, C.; Moreau, M.; Lestage, J.; Castanon, N.; Kelley, K.W.; Dantzer, R. Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol. Psychiatry, 2009, 14(5), 511-522.
[http://dx.doi.org/10.1038/sj.mp.4002148] [PMID: 18195714]
[47]
Zhao, L.R.; Xing, R.L.; Wang, P.M.; Zhang, N.S.; Yin, S.J.; Li, X.C.; Zhang, L. NLRP1 and NLRP3 inflammasomes mediate LPS/ATP induced pyroptosis in knee osteoarthritis. Mol. Med. Rep., 2018, 17(4), 5463-5469.
[http://dx.doi.org/10.3892/mmr.2018.8520] [PMID: 29393464]
[48]
Xie, L.; Gu, Z.; Liu, H.; Jia, B.; Wang, Y.; Cao, M.; Song, R.; Zhang, Z.; Bian, Y. The anti-depressive effects of hesperidin and the relative mechanisms based on the NLRP3 inflammatory signaling pathway. Front. Pharmacol., 2020, 11, 01251.
[http://dx.doi.org/10.3389/fphar.2020.01251]
[49]
Li, M.M.; Wang, X.; Chen, X.D.; Yang, H.L.; Xu, H.S.; Zhou, P.; Gao, R.; Zhang, N.; Wang, J.; Jiang, L.; Liu, N. Lysosomal dysfunction is associated with NLRP3 inflammasome activation in chronic unpredictable mild stress-induced depressive mice. Behav. Brain Res., 2022, 432, 113987.
[http://dx.doi.org/10.1016/j.bbr.2022.113987] [PMID: 35780959]
[50]
Silverman, H.A.; Dancho, M.; Regnier-Golanov, A.; Nasim, M.; Ochani, M.; Olofsson, P.S.; Ahmed, M.; Miller, E.J.; Chavan, S.S.; Golanov, E.; Metz, C.N.; Tracey, K.J.; Pavlov, V.A. Brain region-specific alterations in the gene expression of cytokines, immune cell markers and cholinergic system components during peripheral endotoxin-induced inflammation. Mol. Med., 2014, 20(1), 601-611.
[http://dx.doi.org/10.2119/molmed.2014.00147] [PMID: 25299421]
[51]
Jung, H.; Lee, H.; Kim, D.; Cheong, E.; Hyun, Y.M.; Yu, J.W.; Um, J.W. Differential regional vulnerability of the brain to mild neuroinflammation induced by systemic LPS treatment in mice. J. Inflamm. Res., 2022, 15, 3053-3063.
[http://dx.doi.org/10.2147/JIR.S362006] [PMID: 35645573]
[52]
de Haas, A.H.; Boddeke, H.W.G.M.; Biber, K. Region‐specific expression of immunoregulatory proteins on microglia in the healthy CNS. Glia, 2008, 56(8), 888-894.
[http://dx.doi.org/10.1002/glia.20663] [PMID: 18338796]
[53]
Grabert, K.; Michoel, T.; Karavolos, M.H.; Clohisey, S.; Baillie, J.K.; Stevens, M.P.; Freeman, T.C.; Summers, K.M.; McColl, B.W. Microglial brain region−dependent diversity and selective regional sensitivities to aging. Nat. Neurosci., 2016, 19(3), 504-516.
[http://dx.doi.org/10.1038/nn.4222] [PMID: 26780511]
[54]
De Biase, L.M.; Schuebel, K.E.; Fusfeld, Z.H.; Jair, K.; Hawes, I.A.; Cimbro, R.; Zhang, H.Y.; Liu, Q.R.; Shen, H.; Xi, Z.X.; Goldman, D.; Bonci, A. Local cues establish and maintain region-specific phenotypes of basal ganglia microglia. Neuron, 2017, 95(2), 341-356.e6.
[http://dx.doi.org/10.1016/j.neuron.2017.06.020] [PMID: 28689984]
[55]
Ayata, P.; Badimon, A.; Strasburger, H.J.; Duff, M.K.; Montgomery, S.E.; Loh, Y.H.E.; Ebert, A.; Pimenova, A.A.; Ramirez, B.R.; Chan, A.T.; Sullivan, J.M.; Purushothaman, I.; Scarpa, J.R.; Goate, A.M.; Busslinger, M.; Shen, L.; Losic, B.; Schaefer, A. Epigenetic regulation of brain region-specific microglia clearance activity. Nat. Neurosci., 2018, 21(8), 1049-1060.
[http://dx.doi.org/10.1038/s41593-018-0192-3] [PMID: 30038282]
[56]
Furube, E.; Kawai, S.; Inagaki, H.; Takagi, S.; Miyata, S. Brain region-dependent heterogeneity and dose-dependent difference in transient microglia population increase during lipopolysaccharide-induced inflammation. Sci. Rep., 2018, 8(1), 2203.
[http://dx.doi.org/10.1038/s41598-018-20643-3] [PMID: 29396567]
[57]
Masuda, T.; Sankowski, R.; Staszewski, O.; Prinz, M. Microglia heterogeneity in the single-cell era. Cell Rep., 2020, 30(5), 1271-1281.
[http://dx.doi.org/10.1016/j.celrep.2020.01.010] [PMID: 32023447]
[58]
Brandi, E.; Torres-Garcia, L.; Svanbergsson, A.; Haikal, C.; Liu, D.; Li, W.; Li, J.Y. Brain region-specific microglial and astrocytic activation in response to systemic lipopolysaccharides exposure. Front. Aging Neurosci., 2022, 14, 910988.
[http://dx.doi.org/10.3389/fnagi.2022.910988] [PMID: 36092814]
[59]
Stutz, A.; Kolbe, C.C.; Stahl, R.; Horvath, G.L.; Franklin, B.S.; van Ray, O.; Brinkschulte, R.; Geyer, M.; Meissner, F.; Latz, E. NLRP3 inflammasome assembly is regulated by phosphorylation of the pyrin domain. J. Exp. Med., 2017, 214(6), 1725-1736.
[http://dx.doi.org/10.1084/jem.20160933] [PMID: 28465465]
[60]
Franklin, B.S.; Bossaller, L.; De Nardo, D.; Ratter, J.M.; Stutz, A.; Engels, G.; Brenker, C.; Nordhoff, M.; Mirandola, S.R.; Al-Amoudi, A.; Mangan, M.S.; Zimmer, S.; Monks, B.G.; Fricke, M.; Schmidt, R.E.; Espevik, T.; Jones, B.; Jarnicki, A.G.; Hansbro, P.M.; Busto, P.; Marshak-Rothstein, A.; Hornemann, S.; Aguzzi, A.; Kastenmüller, W.; Latz, E. The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat. Immunol., 2014, 15(8), 727-737.
[http://dx.doi.org/10.1038/ni.2913] [PMID: 24952505]
[61]
Dick, M.S.; Sborgi, L.; Rühl, S.; Hiller, S.; Broz, P. ASC filament formation serves as a signal amplification mechanism for inflammasomes. Nat. Commun., 2016, 7(1), 11929.
[http://dx.doi.org/10.1038/ncomms11929] [PMID: 27329339]
[62]
Nagar, A.; Rahman, T.; Harton, J.A. The ASC speck and NLRP3 inflammasome function are spatially and temporally distinct. Front. Immunol., 2021, 12, 752482.
[http://dx.doi.org/10.3389/fimmu.2021.752482]
[63]
Lyu, D.; Wang, F.; Zhang, M.; Yang, W.; Huang, H.; Huang, Q.; Wu, C.; Qian, N.; Wang, M.; Zhang, H.; Zheng, S.; Chen, J.; Fu, Y.; Zhang, C.; Li, Z.; Hong, W. Ketamine induces rapid antidepressant effects via the autophagy-NLRP3 inflammasome pathway. Psychopharmacology, 2022, 239(10), 3201-3212.
[http://dx.doi.org/10.1007/s00213-022-06201-w] [PMID: 35925279]
[64]
Lee, I.; Kesner, R.P. Time-dependent relationship between the dorsal hippocampus and the prefrontal cortex in spatial memory. J. Neurosci., 2003, 23(4), 1517-1523.
[http://dx.doi.org/10.1523/JNEUROSCI.23-04-01517.2003]
[65]
Yavas, E.; Gonzalez, S.; Fanselow, M.S. Interactions between the hippocampus, prefrontal cortex, and amygdala support complex learning and memory. F1000 Res., 2019, F1000, Rev-1292.
[http://dx.doi.org/10.12688/f1000research.19317.1]
[66]
Jimenez, J.C.; Su, K.; Goldberg, A.R.; Luna, V.M.; Biane, J.S.; Ordek, G.; Zhou, P.; Ong, S.K.; Wright, M.A.; Zweifel, L.; Paninski, L.; Hen, R.; Kheirbek, M.A. Anxiety cells in a hippocampal-hypothalamic circuit. Neuron, 2018, 97(3), 670-683.e6.
[http://dx.doi.org/10.1016/j.neuron.2018.01.016] [PMID: 29397273]
[67]
Moser, M-B.; Moser, E.I. Functional differentiation in the hippocampus. Hippocampus, 1998, 8(6), 608-619.
[68]
Sannino, S.; Russo, F.; Torromino, G.; Pendolino, V.; Calabresi, P.; De Leonibus, E. Role of the dorsal hippocampus in object memory load. Learn. Mem., 2012, 19(5), 211-218.
[http://dx.doi.org/10.1101/lm.025213.111] [PMID: 22523415]
[69]
Gálvez-Márquez, D.K.; Salgado-Ménez, M.; Moreno-Castilla, P.; Rodríguez-Durán, L.; Escobar, M.L.; Tecuapetla, F.; Bermudez-Rattoni, F. Spatial contextual recognition memory updating is modulated by dopamine release in the dorsal hippocampus from the locus coeruleus. Proc. Natl. Acad. Sci., 2022, 119(49), e2208254119.
[http://dx.doi.org/10.1073/pnas.2208254119] [PMID: 36442129]
[70]
Trojan, E.; Chamera, K.; Bryniarska, N.; Kotarska, K.; Leśkiewicz, M.; Regulska, M.; Basta-Kaim, A. Role of chronic administration of antidepressant drugs in the prenatal stress-evoked inflammatory response in the brain of adult offspring rats: Involvement of the NLRP3 inflammasome-related pathway. Mol. Neurobiol., 2019, 56(8), 5365-5380.
[http://dx.doi.org/10.1007/s12035-018-1458-1] [PMID: 30610610]
[71]
Zhao, N.; Li, C.; Di, B.; Xu, L. Recent advances in the NEK7-licensed NLRP3 inflammasome activation: Mechanisms, role in diseases and related inhibitors. J. Autoimmun., 2020, 113, 102515.
[http://dx.doi.org/10.1016/j.jaut.2020.102515] [PMID: 32703754]
[72]
Schmacke, N.A.; Gaidt, M.M.; Szymanska, I.; O’duill, F.; Stafford, C.A.; Chauhan, D.; Fröhlich, A.L.; Nagl, D.; Pinci, F.; Schmid-Burgk, J.L.; Hornung, V. Priming enables a NEK7-independent route of NLRP3 activation. bioRxiv, 2019.
[http://dx.doi.org/10.1101/799320]
[73]
Liang, L.; Wang, H.; Hu, Y.; Bian, H.; Xiao, L.; Wang, G. Oridonin relieves depressive‐like behaviors by inhibiting neuroinflammation and autophagy impairment in rats subjected to chronic unpredictable mild stress. Phytother. Res., 2022, 36(8), 3335-3351.
[http://dx.doi.org/10.1002/ptr.7518] [PMID: 35686337]
[74]
Fang, Z.E.; Wang, Y.; Bian, S.; Qin, S.; Zhao, H.; Wen, J.; Liu, T.; Ren, L.; Li, Q.; Shi, W.; Zhao, J.; Yang, H.; Peng, R.; Wang, Q.; Bai, Z.; Xu, G. Helenine blocks NLRP3 activation by disrupting the NEK7-NLRP3 interaction and ameliorates inflammatory diseases. Phytomedicine, 2024, 122, 155159.
[http://dx.doi.org/10.1016/j.phymed.2023.155159] [PMID: 37931457]
[75]
Rigillo, G.; Ciani, M.; Benatti, C.; Blom, J.M.C.; Tascedda, F.; Pani, L.; Alboni, S.; Brunello, N. Vortioxetine attenuates neuroinflammation by modulating the NOD-like receptor family pyrin domain containing 3 inflammasome activation in microglia: implications for cognitive function. Neurosci. Appl., 2023, 2, 103728.
[http://dx.doi.org/10.1016/j.nsa.2023.103728]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy