Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Overview of Spanlastics: A Groundbreaking Elastic Medication Delivery Device with Versatile Prospects for Administration via Various Routes

Author(s): Lalit Kumar*, Ritesh Rana, Gauree Kukreti, Vikas Aggarwal, Himanshu Chaurasia, Puneet Sharma and Vuluchala Jyothiraditya

Volume 30, Issue 28, 2024

Published on: 04 July, 2024

Page: [2206 - 2221] Pages: 16

DOI: 10.2174/0113816128313398240613063019

Price: $65

Abstract

When compared to the challenges associated with traditional dosage forms, medication delivery systems based on nanotechnology have been a huge boon. One such candidate for medication delivery is spanlastics, an elastic nanovesicle that can transport a diverse array of medicinal compounds. The use of spanlastics has been associated with an increase in interest in alternative administration methods. The non-ionic surfactant or surfactant blend is the main component of spanlastics. The purpose of this review was primarily to examine the potential of spanlastics as a delivery system for a variety of medication classes administered via diverse routes. Science Direct, Google Scholar, and Pubmed were utilized to search the academic literature for this review. Several studies have demonstrated that spanlastics greatly improve therapeutic effectiveness, increase medication absorption, and decrease drug toxicity. This paper provides a summary of the composition and structure of spanlastics along with their utility in the delivery of various therapeutic agents by adopting different routes. Additionally, it provides an overview of the numerous disorders that may be treated using drugs that are contained in spanlastic vesicles.

[1]
Khan MS, Roberts MS. Challenges and innovations of drug delivery in older age. Adv Drug Deliv Rev 2018; 135: 3-38.
[http://dx.doi.org/10.1016/j.addr.2018.09.003] [PMID: 30217519]
[2]
Al Ragib A, Chakma R, Dewan K, Islam T, Kormoker T, Idris AM. Current advanced drug delivery systems: Challenges and potentialities. J Drug Deliv Sci Technol 2022; 76: 103727.
[http://dx.doi.org/10.1016/j.jddst.2022.103727]
[3]
Pavuluri S, Sheth RA. Overcoming biophysical barriers with innovative therapeutic delivery approaches. Cancer Gene Ther 2022; 29(12): 1847-53.
[http://dx.doi.org/10.1038/s41417-022-00529-3] [PMID: 36076063]
[4]
Chamundeeswari M, Jeslin J, Verma ML. Nanocarriers for drug delivery applications. Environ Chem Lett 2019; 17(2): 849-65.
[http://dx.doi.org/10.1007/s10311-018-00841-1]
[5]
Valent P, Groner B, Schumacher U, et al. Paul Ehrlich (1854-1915) and his contributions to the foundation and birth of translational medicine. J Innate Immun 2016; 8(2): 111-20.
[http://dx.doi.org/10.1159/000443526] [PMID: 26845587]
[6]
Akram MW, Jamshaid H, Rehman FU, Zaeem M, Khan J, Zeb A. Transfersomes: A revolutionary nanosystem for efficient transdermal drug delivery. AAPS PharmSciTech 2021; 23(1): 7.
[http://dx.doi.org/10.1208/s12249-021-02166-9] [PMID: 34853906]
[7]
Bhardwaj P, Tripathi P, Gupta R, Pandey S. Niosomes: A review on niosomal research in the last decade. J Drug Deliv Sci Technol 2020; 56: 101581.
[http://dx.doi.org/10.1016/j.jddst.2020.101581]
[8]
Alhammid SNA, Kassab HJ, Hussein LS, Haiss MA, Alkufi Hk. Spanlastics nanovesicles: An emerging and innovative approach for drug delivery. Maaen J Med Sci 2023; 2(3): 9.
[9]
Ansari MD, Saifi Z, Pandit J, et al. Spanlastics a novel nanovesicular carrier: Its potential application and emerging trends in therapeutic delivery. AAPS PharmSciTech 2022; 23(4): 112.
[http://dx.doi.org/10.1208/s12249-022-02217-9] [PMID: 35411425]
[10]
Verma S, Utreja P. Vesicular nanocarrier based treatment of skin fungal infections: Potential and emerging trends in nanoscale pharmacotherapy. Asian J Pharm Sci 2019; 14(2): 117-29.
[http://dx.doi.org/10.1016/j.ajps.2018.05.007] [PMID: 32104444]
[11]
Sharma A, Pahwa S, Bhati S, Kudeshia P. Spanlastics: A modern approach for nanovesicular drug delivery system. Int J Pharm Sci Res 2020; 11: 1057-65.
[12]
Sarolia J, Baldha R, Chakraborthy GS, Rathod S. The effect of edge activator on the evolution and application of a nonionic surfactant: The elastic vesicular system. J Surfactants Deterg 2023; 26(6): 747-59.
[http://dx.doi.org/10.1002/jsde.12694]
[13]
Ashique S, Sandhu NK, Chawla V, Chawla PA. Targeted drug delivery: Trends and perspectives. Curr Drug Deliv 2021; 18(10): 1435-55.
[http://dx.doi.org/10.2174/1567201818666210609161301] [PMID: 34151759]
[14]
Bąk U, Krupa A. Challenges and opportunities for celecoxib repurposing. Pharm Res 2023; 40(10): 2329-45.
[http://dx.doi.org/10.1007/s11095-023-03571-4] [PMID: 37552383]
[15]
Chauhan MK, Khanna G. Recent advance of nanotechnology for the treatment of ocular disease. World J Pharm Res 2018; 7(15): 239-57.
[16]
Ag Seleci D, Seleci M, Walter JG, Stahl F, Scheper T. Niosomes as nanoparticular drug carriers: Fundamentals and recent applications. J Nanomater 2016; 2016: 1-13.
[http://dx.doi.org/10.1155/2016/7372306]
[17]
Carter KC, Puig-Sellart M. Nanocarriers made from non-ionic surfactants or natural polymers for pulmonary drug delivery. Curr Pharm Des 2016; 22(22): 3324-31.
[http://dx.doi.org/10.2174/1381612822666160418121700] [PMID: 27087597]
[18]
Chauhan MK, Verma A. Spanlastics-future of drug delivery and targeting. World J Pharm Res 2017; 6(12): 429-46.
[19]
Yasamineh S, Yasamineh P, Ghafouri Kalajahi H, et al. A state-of-the-art review on the recent advances of niosomes as a targeted drug delivery system. Int J Pharm 2022; 624: 121878.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121878] [PMID: 35636629]
[20]
Morales JO, Peters JI, Williams RO III. Surfactants: Their critical role in enhancing drug delivery to the lungs. Ther Deliv 2011; 2(5): 623-41.
[http://dx.doi.org/10.4155/tde.11.15] [PMID: 22833979]
[21]
Kaur P, Garg T, Rath G, Murthy RSR, Goyal AK. Surfactant-based drug delivery systems for treating drug-resistant lung cancer. Drug Deliv 2016; 23(3): 717-28.
[http://dx.doi.org/10.3109/10717544.2014.935530] [PMID: 25013959]
[22]
Kumar GP, Rajeshwarrao P. Nonionic surfactant vesicular systems for effective drug delivery-an overview. Acta Pharm Sin B 2011; 1(4): 208-19.
[http://dx.doi.org/10.1016/j.apsb.2011.09.002]
[23]
Ge X, Wei M, He S, Yuan WE. Advances of non-ionic surfactant vesicles (Niosomes) and their application in drug delivery. Pharmaceutics 2019; 11(2): 55.
[http://dx.doi.org/10.3390/pharmaceutics11020055] [PMID: 30700021]
[24]
Rathod S, Arya S, Shukla R, et al. Investigations on the role of edge activator upon structural transitions in Span vesicles. Colloids Surf A Physicochem Eng Asp 2021; 627: 127246.
[http://dx.doi.org/10.1016/j.colsurfa.2021.127246]
[25]
Songkro S. An overview of skin penetration enhancers: penetration enhancing activity, skin irritation potential and mechanism of action. Songklanakarin J Sci Technol 2009; 31(3)
[26]
Liu L. Penetration of surfactants into skin. J Cosmet Sci 2020; 71(2): 91-109.
[PMID: 32271711]
[27]
Som I, Bhatia K, Yasir M. Status of surfactants as penetration enhancers in transdermal drug delivery. J Pharm Bioallied Sci 2012; 4(1): 2-9.
[http://dx.doi.org/10.4103/0975-7406.92724] [PMID: 22368393]
[28]
Haque T, Talukder MMU. Chemical enhancer: A simplistic way to modulate barrier function of the stratum corneum. Adv Pharm Bull 2018; 8(2): 169-79.
[http://dx.doi.org/10.15171/apb.2018.021] [PMID: 30023318]
[29]
Pilch E, Musiał W. Liposomes with an ethanol fraction as an application for drug delivery. Int J Mol Sci 2018; 19(12): 3806.
[http://dx.doi.org/10.3390/ijms19123806] [PMID: 30501085]
[30]
Parashar T, Sachan R, Singh V, et al. Ethosomes: A recent vesicle of transdermal drug delivery system. Int J Res Dev Pharm Life Sci 2013; 2(2): 285-92.
[31]
Mohanty D, Mounika A, Bakshi V, Akiful Haque M, Keshari Sahoo C. Ethosomes: A novel approach for transdermal drug delivery. Int J Chemtech Res 2018; 11(8): 219-26.
[http://dx.doi.org/10.20902/IJCTR.2018.110826]
[32]
Jain S, Tiwary AK, Sapra B, Jain NK. Formulation and evaluation of ethosomes for transdermal delivery of lamivudine. AAPS PharmSciTech 2007; 8(4): 249.
[http://dx.doi.org/10.1208/pt0804111] [PMID: 18181532]
[33]
Sudhakar K, Mishra V, Jain S, Rompicherla NC, Malviya N, Tambuwala MM. Development and evaluation of the effect of ethanol and surfactant in vesicular carriers on Lamivudine permeation through the skin. Int J Pharm 2021; 610: 121226.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121226] [PMID: 34710540]
[34]
Hmingthansanga V, Singh N, Banerjee S, Manickam S, Velayutham R, Natesan S. Improved topical drug delivery: Role of permeation enhancers and advanced approaches. Pharmaceutics 2022; 14(12): 2818.
[http://dx.doi.org/10.3390/pharmaceutics14122818] [PMID: 36559311]
[35]
Mary DCruz CE, Bhide PJ, Kumar L, Shirodkar RK. Novel nano spanlastic carrier system for buccal delivery of lacidipine. J Drug Deliv Sci Technol 2022; 68: 103061.
[http://dx.doi.org/10.1016/j.jddst.2021.103061]
[36]
ElMeshad AN, Mohsen AM. Enhanced corneal permeation and antimycotic activity of itraconazole against Candida albicans via a novel nanosystem vesicle. Drug Deliv 2016; 23(7): 2115-23.
[http://dx.doi.org/10.3109/10717544.2014.942811] [PMID: 25080226]
[37]
Tayel SA, El-Nabarawi MA, Tadros MI, Abd-Elsalam WH. Duodenum-triggered delivery of pravastatin sodium via enteric surface-coated nanovesicular spanlastic dispersions: Development, characterization and pharmacokinetic assessments. Int J Pharm 2015; 483(1-2): 77-88.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.012] [PMID: 25666025]
[38]
Abdelbari MA, El-mancy SS, Elshafeey AH, Abdelbary AA. Implementing spanlastics for improving the ocular delivery of clotrimazole: In vitro characterization, ex vivo permeability, microbiological assessment and in vivo safety study. Int J Nanomed 2021; 16: 6249-61.
[http://dx.doi.org/10.2147/IJN.S319348] [PMID: 34531656]
[39]
Abdelmonem R, el Nabarawi M, Attia A. Development of novel bioadhesive granisetron hydrochloride spanlastic gel and insert for brain targeting and study their effects on rats. Drug Deliv 2018; 25(1): 70-7.
[http://dx.doi.org/10.1080/10717544.2017.1413447] [PMID: 29228824]
[40]
Agrawal R, Sandhu SK, Sharma I, Kaur IP. Development and evaluation of curcumin-loaded elastic vesicles as an effective topical anti-inflammatory formulation. AAPS PharmSciTech 2015; 16(2): 364-74.
[http://dx.doi.org/10.1208/s12249-014-0232-6] [PMID: 25319056]
[41]
Tundisi LL, Ataide JA, Costa JSR, et al. Nanotechnology as a tool to overcome macromolecules delivery issues. Colloids Surf B Biointerfaces 2023; 222: 113043.
[http://dx.doi.org/10.1016/j.colsurfb.2022.113043] [PMID: 36455361]
[42]
Malik S, Muhammad K, Waheed Y. Emerging applications of nanotechnology in healthcare and medicine. Molecules 2023; 28(18): 6624.
[http://dx.doi.org/10.3390/molecules28186624] [PMID: 37764400]
[43]
ElShagea HN, Makar RR, Salama AH, Elkasabgy NA, Basalious EB. Ultradeformable nanocarriers for efficient transdermal drug delivery. Bull Fac Pharm Cairo Univ 2023; 61(1): 9.
[44]
Yoshida T, Kojima H. Oral drug delivery systems applied to launched products: Value for the patients and industrial considerations. Mol Pharm 2023; 20(11): 5312-31.
[http://dx.doi.org/10.1021/acs.molpharmaceut.3c00482] [PMID: 37856863]
[45]
Siafaka PI, Özcan Bülbül E, Okur ME, Karantas ID, Üstündağ Okur N. The application of nanogels as efficient drug delivery platforms for dermal/transdermal delivery. Gels 2023; 9(9): 753.
[http://dx.doi.org/10.3390/gels9090753] [PMID: 37754434]
[46]
Qushawy M, Alenzi AM, Albalawi SA, Alghamdi SG, Albalawi RF, Albalawi HS. Review on different vesicular drug delivery systems (VDDSs) and their applications. Recent Pat Nanotechnol 2023; 17(1): 18-32.
[http://dx.doi.org/10.2174/1872210516666220228150624] [PMID: 35227188]
[47]
Alaaeldin E, Mostafa M, Mansour HF, Soliman GM. Spanlastics as an efficient delivery system for the enhancement of thymoquinone anticancer efficacy: Fabrication and cytotoxic studies against breast cancer cell lines. J Drug Deliv Sci Technol 2021; 65: 102725.
[http://dx.doi.org/10.1016/j.jddst.2021.102725]
[48]
Mazyed EA, Helal DA, Elkhoudary MM, Abd Elhameed AG, Yasser M. Formulation and optimization of nanospanlastics for improving the bioavailability of green tea epigallocatechin gallate. Pharmaceuticals 2021; 14(1): 68.
[http://dx.doi.org/10.3390/ph14010068] [PMID: 33467631]
[49]
Younis MM, Fadel NAEF, Darwish AB, Mohsen AM. Nanospanlastics as a novel approach for improving the oral delivery of resveratrol in lipopolysaccharide-induced endotoxicity in mice. J Pharm Innov 2023; 18(3): 1264-78.
[http://dx.doi.org/10.1007/s12247-023-09711-y]
[50]
Fatouh AM, Elshafeey AH, Abdelbary A. Liver targeting of ledipasvir via galactosylated chitosan–coated spanlastics: Chemical synthesis, statistical optimization, in vitro, and pharmacokinetic evaluation. Drug Deliv Transl Res 2022; 12(5): 1161-74.
[http://dx.doi.org/10.1007/s13346-021-00993-8] [PMID: 33948896]
[51]
Sallam NM, Sanad RAB, Ahmed MM, Khafagy ELS, Ghorab M, Gad S. Impact of the mucoadhesive lyophilized wafer loaded with novel carvedilol nano-spanlastics on biochemical markers in the heart of spontaneously hypertensive rat models. Drug Deliv Transl Res 2021; 11(3): 1009-36.
[http://dx.doi.org/10.1007/s13346-020-00814-4] [PMID: 32607938]
[52]
Bharatha S, Srinivas P. Melphalan spanlastics for oral administration- formulation and development. World J Pharm Res 2016; 5: 430-40.
[53]
Zaid Alkilani A, Hamed R, Musleh B, Sharaire Z. Breaking boundaries: The advancements in transdermal delivery of antibiotics. Drug Deliv 2024; 31(1): 2304251.
[http://dx.doi.org/10.1080/10717544.2024.2304251] [PMID: 38241087]
[54]
Yu Z, Meng X, Zhang S, Chen Y, Zhang Z, Zhang Y. Recent progress in transdermal nanocarriers and their surface modifications. Molecules 2021; 26(11): 3093.
[http://dx.doi.org/10.3390/molecules26113093] [PMID: 34064297]
[55]
Kurmi BD, Tekchandani P, Paliwal R, Paliwal SR. Transdermal drug delivery: Opportunities and challenges for controlled delivery of therapeutic agents using nanocarriers. Curr Drug Metab 2017; 18(5): 481-95.
[http://dx.doi.org/10.2174/1389200218666170222150555] [PMID: 28228076]
[56]
Amjadi M, Mostaghaci B, Sitti M. Recent advances in skin penetration enhancers for transdermal gene and drug delivery. Curr Gene Ther 2017; 17(2): 139-46.
[PMID: 28494734]
[57]
Ansari MD, khan I, Solanki P, et al. Fabrication and optimization of raloxifene loaded spanlastics vesicle for transdermal delivery. J Drug Deliv Sci Technol 2022; 68: 103102.
[http://dx.doi.org/10.1016/j.jddst.2022.103102]
[58]
Zaki RM, Ibrahim MA, Alshora DH, El Ela AESA. Formulation and evaluation of transdermal gel containing tacrolimus-loaded spanlastics: In vitro, ex vivo and in vivo studies. Polymers 2022; 14(8): 1528.
[http://dx.doi.org/10.3390/polym14081528] [PMID: 35458277]
[59]
Elsaied EH, Dawaba HM, Ibrahim ESA, Afouna MI. Spanlastics gel-A novel drug carrier for transdermal delivery of glimepiride. J Liposome Res 2023; 33(1): 102-14.
[http://dx.doi.org/10.1080/08982104.2022.2100902] [PMID: 35862551]
[60]
Fahmy AM, El-Setouhy DA, Habib BA, Tayel SA. Enhancement of transdermal delivery of haloperidol via spanlastic dispersions: entrapment efficiency vs. particle size. AAPS PharmSciTech 2019; 20(3): 95.
[http://dx.doi.org/10.1208/s12249-019-1306-2] [PMID: 30694404]
[61]
Farghaly DA, Aboelwafa AA, Hamza MY, Mohamed MI. Topical delivery of fenoprofen calcium via elastic nano-vesicular spanlastics: Optimization using experimental design and in vivo evaluation. AAPS PharmSciTech 2017; 18(8): 2898-909.
[http://dx.doi.org/10.1208/s12249-017-0771-8] [PMID: 28429293]
[62]
El Menshawe SF, Nafady MM, Aboud HM, Kharshoum RM, Elkelawy AMMH, Hamad DS. Transdermal delivery of fluvastatin sodium via tailored spanlastic nanovesicles: Mitigated Freund’s adjuvant-induced rheumatoid arthritis in rats through suppressing p38 MAPK signaling pathway. Drug Deliv 2019; 26(1): 1140-54.
[http://dx.doi.org/10.1080/10717544.2019.1686087] [PMID: 31736366]
[63]
Elhabak M, Ibrahim S, Abouelatta SM. Topical delivery of l-ascorbic acid spanlastics for stability enhancement and treatment of UVB induced damaged skin. Drug Deliv 2021; 28(1): 445-53.
[http://dx.doi.org/10.1080/10717544.2021.1886377] [PMID: 33620008]
[64]
El Hosary R, Teaima MH, El-Nabarawi M, et al. Topical delivery of extracted curcumin as curcumin loaded spanlastics anti-aging gel: Optimization using experimental design and ex-vivo evaluation. Saudi Pharm J 2024; 32(1): 101912.
[http://dx.doi.org/10.1016/j.jsps.2023.101912] [PMID: 38178851]
[65]
Safhi AY, Naveen NR, Rolla KJ, et al. Enhancement of antifungal activity and transdermal delivery of 5-flucytosine via tailored spanlastic nanovesicles: Statistical optimization, in-vitro characterization, and in-vivo biodistribution study. Front Pharmacol 2023; 14: 1321517.
[http://dx.doi.org/10.3389/fphar.2023.1321517] [PMID: 38125883]
[66]
Bachu R, Chowdhury P, Al-Saedi Z, Karla P, Boddu S. Ocular drug delivery barriers-role of nanocarriers in the treatment of anterior segment ocular diseases. Pharmaceutics 2018; 10(1): 28.
[http://dx.doi.org/10.3390/pharmaceutics10010028] [PMID: 29495528]
[67]
Tsai CH, Wang PY, Lin IC, Huang H, Liu GS, Tseng CL. Ocular drug delivery: Role of degradable polymeric nanocarriers for ophthalmic application. Int J Mol Sci 2018; 19(9): 2830.
[http://dx.doi.org/10.3390/ijms19092830] [PMID: 30235809]
[68]
Gorantla S, Rapalli VK, Waghule T, et al. Nanocarriers for ocular drug delivery: Current status and translational opportunity. RSC Advances 2020; 10(46): 27835-55.
[http://dx.doi.org/10.1039/D0RA04971A] [PMID: 35516960]
[69]
Ahmed S, Amin MM, Sayed S. Ocular drug delivery: A comprehensive review. AAPS PharmSciTech 2023; 24(2): 66.
[http://dx.doi.org/10.1208/s12249-023-02516-9] [PMID: 36788150]
[70]
Kakkar S, Kaur IP. Spanlastics-A novel nanovesicular carrier system for ocular delivery. Int J Pharm 2011; 413(1-2): 202-10.
[http://dx.doi.org/10.1016/j.ijpharm.2011.04.027] [PMID: 21540093]
[71]
Aziz D, Mohamed SA, Tayel S, Makhlouf A. Enhanced ocular anti-aspergillus activity of tolnaftate employing novel cosolvent-modified spanlastics: Formulation, statistical optimization, kill kinetics, ex vivo trans-corneal permeation, in vivo histopathological and susceptibility study. Pharmaceutics 2022; 14(8): 1746.
[http://dx.doi.org/10.3390/pharmaceutics14081746] [PMID: 36015372]
[72]
Ibrahim SS, Abd-allah H. Spanlastic nanovesicles for enhanced ocular delivery of vanillic acid: Design, in vitro characterization, and in vivo anti-inflammatory evaluation. Int J Pharm 2022; 625: 122068.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122068] [PMID: 35926753]
[73]
Agha OA, Girgis GNS, El-Sokkary MMA, Soliman OAEA. Spanlastic-laden in situ gel as a promising approach for ocular delivery of Levofloxacin: In-vitro characterization, microbiological assessment, corneal permeability and in-vivo study. Int J Pharm X 2023; 6: 100201.
[http://dx.doi.org/10.1016/j.ijpx.2023.100201] [PMID: 37560488]
[74]
Yasser M, El Naggar EE, Elfar N, Teaima MH, El-Nabarawi MA, Elhabal SF. Formulation, optimization and evaluation of ocular gel containing nebivolol Hcl-loaded ultradeformable spanlastics nanovesicles: In vitro and in vivo studies. Int J Pharm X 2024; 7: 100228.
[http://dx.doi.org/10.1016/j.ijpx.2023.100228] [PMID: 38317829]
[75]
Liu Y, Wang Y, Yang J, Zhang H, Gan L. Cationized hyaluronic acid coated spanlastics for cyclosporine A ocular delivery: Prolonged ocular retention, enhanced corneal permeation and improved tear production. Int J Pharm 2019; 565: 133-42.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.018] [PMID: 31075435]
[76]
Aggarwal P, Chand B. Development and optimization of econazole spanlastics for fungal keratitis. World J Pharm Res 2018; 7(13): 1221-42.
[77]
Abdel-Rashid RS, Helal DA, Omar MM, El Sisi AM. Nanogel loaded with surfactant based nanovesicles for enhanced ocular delivery of acetazolamide. Int J Nanomed 2019; 14: 2973-83.
[http://dx.doi.org/10.2147/IJN.S201891] [PMID: 31118616]
[78]
Emad NA, Ahmed B, Alhalmi A, Alzobaidi N, Al-Kubati SS. Recent progress in nanocarriers for direct nose to brain drug delivery. J Drug Deliv Sci Technol 2021; 64: 102642.
[http://dx.doi.org/10.1016/j.jddst.2021.102642]
[79]
Aderibigbe BA, Naki T. Chitosan-based nanocarriers for nose to brain delivery. Appl Sci 2019; 9(11): 2219.
[http://dx.doi.org/10.3390/app9112219]
[80]
Rabiee N, Ahmadi S, Afshari R, et al. Polymeric nanoparticles for nasal drug delivery to the brain: relevance to Alzheimer’s disease. Adv Ther 2021; 4(3): 2000076.
[http://dx.doi.org/10.1002/adtp.202000076]
[81]
Kashyap K, Shukla R. Drug delivery and targeting to the brain through nasal route: Mechanisms, applications and challenges. Curr Drug Deliv 2019; 16(10): 887-901.
[http://dx.doi.org/10.2174/1567201816666191029122740] [PMID: 31660815]
[82]
Muzammil S, Mazhar A, Yeni DK, et al. Nanospanlastic as a promising nanovesicle for drug delivery. In: Systems of Nanovesicular Drug Delivery. Academic Press 2022; pp. 337-52.
[http://dx.doi.org/10.1016/B978-0-323-91864-0.00007-3]
[83]
Saleh A, Khalifa M, Shawky S, Bani-Ali A, Eassa H. Zolmitriptan intranasal spanlastics for enhanced migraine treatment; Formulation parameters optimized via quality by design approach. Sci Pharm 2021; 89(2): 24.
[http://dx.doi.org/10.3390/scipharm89020024]
[84]
Abdelmonem R, El-Enin HAA, Abdelkader G, Abdel-Hakeem M. Formulation and characterization of lamotrigine nasal insert targeted brain for enhanced epilepsy treatment. Drug Deliv 2023; 30(1): 2163321.
[http://dx.doi.org/10.1080/10717544.2022.2163321] [PMID: 36579655]
[85]
Gupta I, Adin SN, Rashid MA, Alhamhoom Y, Aqil M, Mujeeb M. Spanlastics as a potential approach for enhancing the nose-to-brain delivery of piperine: In vitro prospect and in vivo therapeutic efficacy for the management of epilepsy. Pharmaceutics 2023; 15(2): 641.
[http://dx.doi.org/10.3390/pharmaceutics15020641] [PMID: 36839963]
[86]
Ali MM, Shoukri RA, Yousry C. Thin film hydration versus modified spraying technique to fabricate intranasal spanlastic nanovesicles for rasagiline mesylate brain delivery: Characterization, statistical optimization, and in vivo pharmacokinetic evaluation. Drug Deliv Transl Res 2023; 13(4): 1153-68.
[http://dx.doi.org/10.1007/s13346-022-01285-5] [PMID: 36585559]
[87]
Priyanka S, Nithya R. Lisinopril dihydrate loaded nano-spanlastic bio-adhesive gel for intranasal delivery: 23 factorial optimization, fabrication and ex-vivo studies for enhanced mucosal permeation. J Res Pharm 2022; 26(4): 884-99.
[http://dx.doi.org/10.29228/jrp.187]
[88]
Alharbi WS, Hareeri RH, Bazuhair M, et al. Spanlastics as a potential platform for enhancing the brain delivery of flibanserin: In vitro response-surface optimization and in vivo pharmacokinetics assessment. Pharmaceutics 2022; 14(12): 2627.
[http://dx.doi.org/10.3390/pharmaceutics14122627] [PMID: 36559120]
[89]
Abdelrahman FE, Elsayed I, Gad MK, Elshafeey AH, Mohamed MI. Response surface optimization, ex vivo and in vivo investigation of nasal spanlastics for bioavailability enhancement and brain targeting of risperidone. Int J Pharm 2017; 530(1-2): 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.050] [PMID: 28733244]
[90]
Mahtab A, Anwar M, Mallick N, Naz Z, Jain GK, Ahmad FJ. Transungual delivery of ketoconazole nanoemulgel for the effective management of onychomycosis. AAPS PharmSciTech 2016; 17(6): 1477-90.
[http://dx.doi.org/10.1208/s12249-016-0488-0] [PMID: 26857516]
[91]
Gratieri T, Krawczyk-Santos AP, da Rocha PBR, et al. SLN- and NLC-encapsulating antifungal agents: Skin drug delivery and their unexplored potential for treating onychomycosis. Curr Pharm Des 2018; 23(43): 6684-95.
[http://dx.doi.org/10.2174/1381612823666171115112745] [PMID: 29141535]
[92]
Bseiso EA, Nasr M, Sammour OA, Abd El Gawad NA. Novel nail penetration enhancer containing vesicles “nPEVs” for treatment of onychomycosis. Drug Deliv 2016; 23(8): 2813-9.
[http://dx.doi.org/10.3109/10717544.2015.1099059] [PMID: 26447337]
[93]
Tampucci S, Terreni E, Zucchetti E, Burgalassi S, Chetoni P, Monti D. Formulations based on natural ingredients for the treatment of nail diseases. Curr Pharm Des 2020; 26(5): 556-65.
[http://dx.doi.org/10.2174/1381612826666200122150248] [PMID: 31969086]
[94]
Morgado LF, Trávolo ARF, Muehlmann LA, et al. Photodynamic therapy treatment of onychomycosis with aluminium-phthalocyanine chloride nanoemulsions: A proof of concept clinical trial. J Photochem Photobiol B 2017; 173: 266-70.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.06.010] [PMID: 28622558]
[95]
El-sherif NI, Shamma RN, Abdelbary G. In-situ gels and nail lacquers as potential delivery systems for treatment of onychomycosis. A comparative study. J Drug Deliv Sci Technol 2018; 43: 253-61.
[http://dx.doi.org/10.1016/j.jddst.2017.10.018]
[96]
Almuqbil RM, Sreeharsha N, Nair AB. Formulation-by-design of efinaconazole spanlastic nanovesicles for transungual delivery using statistical risk management and multivariate analytical techniques. Pharmaceutics 2022; 14(7): 1419.
[http://dx.doi.org/10.3390/pharmaceutics14071419] [PMID: 35890316]
[97]
Sheehan K, Sheth S, Mukherjea D, Rybak LP, Ramkumar V. Trans-tympanic drug delivery for the treatment of ototoxicity. J Vis Exp 2018; (133): 56564.
[PMID: 29608150]
[98]
Zhang Z, Li X, Zhang W, Kohane DS. Drug delivery across barriers to the middle and inner ear. Adv Funct Mater 2021; 31(44): 2008701.
[http://dx.doi.org/10.1002/adfm.202008701] [PMID: 34795553]
[99]
Hoskison E, Daniel M, Al-Zahid S, Shakesheff KM, Bayston R, Birchall JP. Drug delivery to the ear. Ther Deliv 2013; 4(1): 115-24.
[http://dx.doi.org/10.4155/tde.12.130] [PMID: 23323784]
[100]
Khoo X, Simons EJ, Chiang HH, et al. Formulations for trans-tympanic antibiotic delivery. Biomaterials 2013; 34(4): 1281-8.
[http://dx.doi.org/10.1016/j.biomaterials.2012.10.025] [PMID: 23146430]
[101]
Al-mahallawi AM, Khowessah OM, Shoukri RA. Enhanced non invasive trans-tympanic delivery of ciprofloxacin through encapsulation into nano-spanlastic vesicles: Fabrication, in-vitro characterization, and comparative ex-vivo permeation studies. Int J Pharm 2017; 522(1-2): 157-64.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.005] [PMID: 28279741]
[102]
Li G, Yang L, Hua Z, Yanan W, Jinlong Y. Cationic hyaluronic acid coated spanlastics and preparation and application thereof. US Patent 20220192980A1, 2022.
[103]
Kaur IP. Pharmaceutical nanoelastic vesicular systems. Indian Patent 274013, 2010.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy