Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Ischemic Stroke and Autophagy: The Roles of Long Non-Coding RNAs

In Press, (this is not the final "Version of Record"). Available online 04 July, 2024
Author(s): Longqiang Ouyang, Wenyan Xia*, Ameen Abdulhasan Al-Alwany, Reena Gupta, Ibrokhim Sapaev, Sami G. Almalki, Saud Almawash*, Rand Ali Ziyad, Ahmed Hussien Alawadi and Ali Alsalamy
Published on: 04 July, 2024

DOI: 10.2174/1570159X22666240704123701

Price: $95

Abstract

Ischemic stroke is a significant cause of morbidity and mortality worldwide. Autophagy, a process of intracellular degradation, has been shown to play a crucial role in the pathogenesis of ischemic stroke. Long non-coding RNAs (lncRNAs) have emerged as essential regulators of autophagy in various diseases, including ischemic stroke. Recent studies have identified several lncRNAs that modulate autophagy in ischemic stroke, including MALAT1, MIAT, SNHG12, H19, AC136007. 2, C2dat2, MEG3, KCNQ1OT1, SNHG3, and RMRP. These lncRNAs regulate autophagy by interacting with key proteins involved in the autophagic process, such as Beclin-1, ATG7, and LC3. Understanding the role of lncRNAs in regulating autophagy in ischemic stroke may provide new insights into the pathogenesis of this disease and identify potential therapeutic targets for its treatment.

[1]
Donkor, E.S. Stroke in the century: A snapshot of the burden, epidemiology, and quality of life. Stroke Res. Treat., 2018, 2018, 1-10.
[http://dx.doi.org/10.1155/2018/3238165] [PMID: 30598741]
[2]
O’Sullivan, T.L.; Fahim, C.; Gagnon, E. Asset literacy following stroke: implications for disaster resilience. Disaster Med. Public Health Prep., 2018, 12(3), 312-320.
[http://dx.doi.org/10.1017/dmp.2017.66] [PMID: 29039291]
[3]
Saini, V.; Guada, L.; Yavagal, D.R. Global epidemiology of stroke and access to acute ischemic stroke interventions. Neurology, 2021, 97(20_Supplement_2), S6-S16.
[http://dx.doi.org/10.1212/WNL.0000000000012781] [PMID: 34785599]
[4]
Coupland, A.P.; Thapar, A.; Qureshi, M.I.; Jenkins, H.; Davies, A.H. The definition of stroke. J. R. Soc. Med., 2017, 110(1), 9-12.
[http://dx.doi.org/10.1177/0141076816680121] [PMID: 28084167]
[5]
Yang, D.B.; Zhou, J.; Feng, L.; Xu, R.; Wang, Y.C. Value of superb micro-vascular imaging in predicting ischemic stroke in patients with carotid atherosclerotic plaques. World J. Clin. Cases, 2019, 7(7), 839-848.
[http://dx.doi.org/10.12998/wjcc.v7.i7.839] [PMID: 31024955]
[6]
Mosconi, M.G.; Paciaroni, M. Treatments in ischemic stroke: Current and future. Eur. Neurol., 2022, 85(5), 349-366.
[http://dx.doi.org/10.1159/000525822] [PMID: 35917794]
[7]
Zhou, X.; Chen, H.; Wang, L.; Lenahan, C.; Lian, L.; Ou, Y.; He, Y. Mitochondrial dynamics: A potential therapeutic target for ischemic stroke. Front. Aging Neurosci., 2021, 13, 721428.
[http://dx.doi.org/10.3389/fnagi.2021.721428] [PMID: 34557086]
[8]
Zhang, Q.; Jia, M.; Wang, Y.; Wang, Q.; Wu, J. Cell death mechanisms in cerebral ischemia-reperfusion injury. Neurochem. Res., 2022, 47(12), 3525-3542.
[http://dx.doi.org/10.1007/s11064-022-03697-8] [PMID: 35976487]
[9]
Wang, X.; Fang, Y.; Huang, Q.; Xu, P.; Lenahan, C.; Lu, J.; Zheng, J.; Dong, X.; Shao, A.; Zhang, J. An updated review of autophagy in ischemic stroke: From mechanisms to therapies. Exp. Neurol., 2021, 340, 113684.
[http://dx.doi.org/10.1016/j.expneurol.2021.113684] [PMID: 33676918]
[10]
Wang, M.; Lee, H.; Elkin, K.; Bardhi, R.; Guan, L.; Chandra, A.; Geng, X.; Ding, Y. Detrimental and beneficial effect of autophagy and a potential therapeutic target after ischemic stroke. Evid.-. Based Complement. Altern. Med., 2020, 2020, 1-10.
[11]
Goradel, N.H.; Mohammadi, N.; Haghi-Aminjan, H.; Farhood, B.; Negahdari, B.; Sahebkar, A. Regulation of tumor angiogenesis by microRNAs: State of the art. J. Cell. Physiol., 2019, 234(2), 1099-1110.
[http://dx.doi.org/10.1002/jcp.27051] [PMID: 30070704]
[12]
Ruiz-Orera, J.; Messeguer, X.; Subirana, J.A.; Alba, M.M. Long non-coding RNAs as a source of new peptides. eLife, 2014, 3, e03523.
[http://dx.doi.org/10.7554/eLife.03523] [PMID: 25233276]
[13]
Chen, J.; Liu, P.; Dong, X.; Jin, J.; Xu, Y. The role of lncRNAs in ischemic stroke. Neurochem. Int., 2021, 147, 105019.
[http://dx.doi.org/10.1016/j.neuint.2021.105019] [PMID: 33905763]
[14]
Li, X.; He, S.; Ma, B. Autophagy and autophagy-related proteins in cancer. Mol. Cancer, 2020, 19(1), 12.
[http://dx.doi.org/10.1186/s12943-020-1138-4] [PMID: 31969156]
[15]
Inoki, K. mTOR signaling in autophagy regulation in the kidney. Semin. Nephrol., 2014, 34(1), 2-8.
[16]
Tsang, C.K.; Qi, H.; Liu, L.F.; Zheng, X.F.S. Targeting mammalian target of rapamycin (mTOR) for health and diseases. Drug Discov. Today, 2007, 12(3-4), 112-124.
[http://dx.doi.org/10.1016/j.drudis.2006.12.008] [PMID: 17275731]
[17]
Liu, L.; Yan, L.; Liao, N.; Wu, W.Q.; Shi, J.L. A review of ULK1-mediated autophagy in drug resistance of cancer. Cancers, 2020, 12(2), 352.
[http://dx.doi.org/10.3390/cancers12020352] [PMID: 32033142]
[18]
Schlütermann, D. Autophagy: Molecular insights into its role and therapeutic potential in bladder cancer and neurodegeneration 2021. Available from: https://docserv.uni-duesseldorf.de/servlets/DerivateServlet/Derivate-59748/Dissertation%20David%20Schl% C3%BCtermann%20Archiv1b.pdf
[19]
Mizushima, N. The ATG conjugation systems in autophagy. Curr. Opin. Cell Biol., 2020, 63, 1-10.
[http://dx.doi.org/10.1016/j.ceb.2019.12.001] [PMID: 31901645]
[20]
Panzitt, K.; Fickert, P.; Wagner, M. Regulation of autophagy by bile acids and in cholestasis - CholestoPHAGY or CholeSTOPagy. Biochim. Biophys. Acta Mol. Basis Dis., 2021, 1867(2), 166017.
[http://dx.doi.org/10.1016/j.bbadis.2020.166017] [PMID: 33242590]
[21]
Gudenas, B.L.; Wang, J.; Kuang, S.; Wei, A.; Cogill, S.B.; Wang, L. Genomic data mining for functional annotation of human long noncoding RNAs. J. Zhejiang Univ. Sci. B, 2019, 20(6), 476-487.
[http://dx.doi.org/10.1631/jzus.B1900162] [PMID: 31090273]
[22]
Statello, L.; Guo, C.J.; Chen, L.L.; Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol., 2021, 22(2), 96-118.
[http://dx.doi.org/10.1038/s41580-020-00315-9] [PMID: 33353982]
[23]
Luzón-Toro, B.; Fernández, R.M.; Martos-Martínez, J.M.; Rubio-Manzanares-Dorado, M.; Antiñolo, G.; Borrego, S. LncRNA LUCAT1 as a novel prognostic biomarker for patients with papillary thyroid cancer. Sci. Rep., 2019, 9(1), 14374.
[http://dx.doi.org/10.1038/s41598-019-50913-7] [PMID: 31591432]
[24]
Derrien, T.; Johnson, R.; Bussotti, G.; Tanzer, A.; Djebali, S.; Tilgner, H.; Guernec, G.; Martin, D.; Merkel, A.; Knowles, D.G.; Lagarde, J.; Veeravalli, L.; Ruan, X.; Ruan, Y.; Lassmann, T.; Carninci, P.; Brown, J.B.; Lipovich, L.; Gonzalez, J.M.; Thomas, M.; Davis, C.A.; Shiekhattar, R.; Gingeras, T.R.; Hubbard, T.J.; Notredame, C.; Harrow, J.; Guigó, R. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res., 2012, 22(9), 1775-1789.
[http://dx.doi.org/10.1101/gr.132159.111] [PMID: 22955988]
[25]
Mattick, J.S.; Amaral, P.P.; Carninci, P.; Carpenter, S.; Chang, H.Y.; Chen, L.L.; Chen, R.; Dean, C.; Dinger, M.E.; Fitzgerald, K.A.; Gingeras, T.R.; Guttman, M.; Hirose, T.; Huarte, M.; Johnson, R.; Kanduri, C.; Kapranov, P.; Lawrence, J.B.; Lee, J.T.; Mendell, J.T.; Mercer, T.R.; Moore, K.J.; Nakagawa, S.; Rinn, J.L.; Spector, D.L.; Ulitsky, I.; Wan, Y.; Wilusz, J.E.; Wu, M. Long non-coding RNAs: Definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol., 2023, 24(6), 430-447.
[http://dx.doi.org/10.1038/s41580-022-00566-8] [PMID: 36596869]
[26]
Fang, Y.; Fullwood, M.J. Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genomics Proteomics Bioinformatics, 2016, 14(1), 42-54.
[http://dx.doi.org/10.1016/j.gpb.2015.09.006] [PMID: 26883671]
[27]
Lucin, K.M.; O’Brien, C.E.; Bieri, G.; Czirr, E.; Mosher, K.I.; Abbey, R.J.; Mastroeni, D.F.; Rogers, J.; Spencer, B.; Masliah, E.; Wyss-Coray, T. Microglial beclin 1 regulates retromer trafficking and phagocytosis and is impaired in Alzheimer’s disease. Neuron, 2013, 79(5), 873-886.
[http://dx.doi.org/10.1016/j.neuron.2013.06.046] [PMID: 24012002]
[28]
Esteves, A.R.; Filipe, F.; Magalhães, J.D.; Silva, D.F.; Cardoso, S.M. The role of Beclin-1 acetylation on autophagic flux in Alzheimer’s disease. Mol. Neurobiol., 2019, 56(8), 5654-5670.
[http://dx.doi.org/10.1007/s12035-019-1483-8] [PMID: 30661206]
[29]
Lonskaya, I.; Hebron, M.L.; Desforges, N.M.; Franjie, A.; Moussa, C.E.H. Tyrosine kinase inhibition increases functional parkin‐ B eclin‐1 interaction and enhances amyloid clearance and cognitive performance. EMBO Mol. Med., 2013, 5(8), 1247-1262.
[http://dx.doi.org/10.1002/emmm.201302771] [PMID: 23737459]
[30]
Goenawan, H.; Kiasati, S.; Sylviana, N.; Megantara, I.; Lesmana, R. Exercise-induced autophagy ameliorates motor symptoms progressivity in parkinson’s disease through alpha-synuclein degradation: A review. Neuropsychiatr. Dis. Treat., 2023, 19, 1253-1262.
[http://dx.doi.org/10.2147/NDT.S401416] [PMID: 37255530]
[31]
Roberts, T.C.; Morris, K.V.; Wood, M.J.A. The role of long non-coding RNAs in neurodevelopment, brain function and neurological disease. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2014, 369(1652), 20130507.
[http://dx.doi.org/10.1098/rstb.2013.0507] [PMID: 25135968]
[32]
Briggs, J.A.; Wolvetang, E.J.; Mattick, J.S.; Rinn, J.L.; Barry, G. Mechanisms of long non-coding RNAs in mammalian nervous system development, plasticity, disease, and evolution. Neuron, 2015, 88(5), 861-877.
[http://dx.doi.org/10.1016/j.neuron.2015.09.045] [PMID: 26637795]
[33]
Peng, J.; Wu, Y.; Tian, X.; Pang, J.; Kuai, L.; Cao, F.; Qin, X.; Zhong, J.; Li, X.; Li, Y.; Sun, X.; Chen, L.; Jiang, Y. High-throughput sequencing and co-expression network analysis of lncRNAs and mRNAs in early brain injury following experimental subarachnoid haemorrhage. Sci. Rep., 2017, 7(1), 46577.
[http://dx.doi.org/10.1038/srep46577] [PMID: 28417961]
[34]
Wang, X.; Zhang, M.; Liu, H. LncRNA17A regulates autophagy and apoptosis of SH-SY5Y cell line as an in vitro model for Alzheimer’s disease. Biosci. Biotechnol. Biochem., 2019, 83(4), 609-621.
[http://dx.doi.org/10.1080/09168451.2018.1562874] [PMID: 30652945]
[35]
Jia, Y.-M.; Zhu, C.-F.; She, Z.-Y.; Wu, M.-M.; Wu, Y.-Y.; Zhou, B.-Y.; Zhang, N. Effects on autophagy of moxibustion at governor vessel acupoints in app/ps1double-transgenic alzheimer’s disease mice through the lncRNA Six3os1/miR-511-3p/AKT3 molecular axis. Evid.-Based Complement. Altern. Med., , 2022, 2022.
[36]
Zhou, Y.; Ge, Y.; Liu, Q.; Li, Y.X.; Chao, X.; Guan, J.J.; Diwu, Y.C.; Zhang, Q. LncRNA BACE1-AS promotes autophagy-mediated neuronal damage through the miR-214-3p/ATG5 signalling axis in Alzheimer’s disease. Neuroscience, 2021, 455, 52-64.
[http://dx.doi.org/10.1016/j.neuroscience.2020.10.028] [PMID: 33197504]
[37]
Tang, Z.B.; Chen, H.P.; Zhong, D.; Song, J.H.; Cao, J.W.; Zhao, M.Q.; Han, B.C.; Duan, Q.; Sheng, X.M.; Yao, J.L.; Li, G.Z. LncRNA RMRP accelerates autophagy-mediated neurons apoptosis through miR-3142/TRIB3 signaling axis in alzheimer’s disease. Brain Res., 2022, 1785, 147884.
[http://dx.doi.org/10.1016/j.brainres.2022.147884] [PMID: 35304105]
[38]
Qian, C.; Ye, Y.; Mao, H.; Yao, L.; Sun, X.; Wang, B.; Zhang, H.; Xie, L.; Zhang, H.; Zhang, Y.; Zhang, S.; He, X. Downregulated lncRNA-SNHG1 enhances autophagy and prevents cell death through the miR-221/222/p27/mTOR pathway in Parkinson’s disease. Exp. Cell Res., 2019, 384(1), 111614.
[http://dx.doi.org/10.1016/j.yexcr.2019.111614] [PMID: 31499060]
[39]
Fan, Y.; Zhao, X.; Lu, K.; Cheng, G. LncRNA BDNF-AS promotes autophagy and apoptosis in MPTP-induced Parkinson’s disease via ablating microRNA-125b-5p. Brain Res. Bull., 2020, 157, 119-127.
[http://dx.doi.org/10.1016/j.brainresbull.2020.02.003] [PMID: 32057951]
[40]
Dong, L.; Zheng, Y.; Gao, L.; Luo, X. lncRNA NEAT1 prompts autophagy and apoptosis in MPTP-induced Parkinson’s disease by impairing miR-374c-5p. Acta Biochim. Biophys. Sin., 2021, 53(7), 870-882.
[http://dx.doi.org/10.1093/abbs/gmab055] [PMID: 33984130]
[41]
Jia, L.; Song, Y.; Mu, L.; Li, Q.; Tang, J.; Yang, Z.; Meng, W. Long noncoding RNA TPT1‐AS1 downregulates the microRNA‐770‐5p expression to inhibit glioma cell autophagy and promote proliferation through STMN1 upregulation. J. Cell. Physiol., 2020, 235(4), 3679-3689.
[http://dx.doi.org/10.1002/jcp.29262] [PMID: 31637705]
[42]
Fu, Z.; Luo, W.; Wang, J.; Peng, T.; Sun, G.; Shi, J.; Li, Z.; Zhang, B. Malat1 activates autophagy and promotes cell proliferation by sponging miR-101 and upregulating STMN1, RAB5A and ATG4D expression in glioma. Biochem. Biophys. Res. Commun., 2017, 492(3), 480-486.
[http://dx.doi.org/10.1016/j.bbrc.2017.08.070] [PMID: 28834690]
[43]
Jiang, C.; Shen, F.; Du, J.; Fang, X.; Li, X.; Su, J.; Wang, X.; Huang, X.; Liu, Z. Upregulation of CASC2 sensitized glioma to temozolomide cytotoxicity through autophagy inhibition by sponging miR-193a-5p and regulating mTOR expression. Biomed. Pharmacother., 2018, 97, 844-850.
[http://dx.doi.org/10.1016/j.biopha.2017.10.146] [PMID: 29136760]
[44]
Salah, S.M.M.; Matboli, M.; Nasser, H.E.T.; Abdelnaiem, I.A.; Shafei, A.E.; EL-Asmer, M.F. Dysregulation in the expression of (lncRNA-TSIX, TP53INP2 mRNA, miRNA-1283) in spinal cord injury. Genomics, 2020, 112(5), 3315-3321.
[http://dx.doi.org/10.1016/j.ygeno.2020.06.018] [PMID: 32535070]
[45]
Rodrigo, R.; Fernández-Gajardo, R.; Gutiérrez, R.; Matamala, J.; Carrasco, R.; Miranda-Merchak, A.; Feuerhake, W. Oxidative stress and pathophysiology of ischemic stroke: Novel therapeutic opportunities. CNS Neurol. Disord. Drug Targets, 2013, 12(5), 698-714.
[http://dx.doi.org/10.2174/1871527311312050015] [PMID: 23469845]
[46]
Wang, C.; Wan, H.; Wang, Q.; Sun, H.; Sun, Y.; Wang, K.; Zhang, C. Safflor yellow B attenuates ischemic brain injury via downregulation of long noncoding AK046177 and inhibition of MicroRNA-134 expression in rats. Oxid. Med. Cell. Longev., 2020, 2020, 1-20.
[http://dx.doi.org/10.1155/2020/4586839] [PMID: 32566081]
[47]
Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: Novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811.
[http://dx.doi.org/10.1089/ars.2009.3074] [PMID: 20446769]
[48]
Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Giuffrida Stella, A.M. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nat. Rev. Neurosci., 2007, 8(10), 766-775.
[http://dx.doi.org/10.1038/nrn2214] [PMID: 17882254]
[49]
Calabrese, V.; Giordano, J.; Signorile, A.; Laura Ontario, M.; Castorina, S.; De Pasquale, C.; Eckert, G.; Calabrese, E.J. Major pathogenic mechanisms in vascular dementia: Roles of cellular stress response and hormesis in neuroprotection. J. Neurosci. Res., 2016, 94(12), 1588-1603.
[http://dx.doi.org/10.1002/jnr.23925] [PMID: 27662637]
[50]
Concetta Scuto, M.; Mancuso, C.; Tomasello, B.; Laura Ontario, M.; Cavallaro, A.; Frasca, F.; Maiolino, L.; Trovato Salinaro, A.; Calabrese, E.J.; Calabrese, V. Curcumin, hormesis and the nervous system. Nutrients, 2019, 11(10), 2417.
[http://dx.doi.org/10.3390/nu11102417] [PMID: 31658697]
[51]
Chen, F.; Zhang, L.; Wang, E.; Zhang, C.; Li, X. LncRNA GAS5 regulates ischemic stroke as a competing endogenous RNA for miR-137 to regulate the Notch1 signaling pathway. Biochem. Biophys. Res. Commun., 2018, 496(1), 184-190.
[http://dx.doi.org/10.1016/j.bbrc.2018.01.022] [PMID: 29307821]
[52]
Chen, S.; Wang, M.; Yang, H.; Mao, L.; He, Q.; Jin, H.; Ye, Z.; Luo, X.; Xia, Y.; Hu, B. LncRNA TUG1 sponges microRNA-9 to promote neurons apoptosis by up-regulated Bcl2l11 under ischemia. Biochem. Biophys. Res. Commun., 2017, 485(1), 167-173.
[http://dx.doi.org/10.1016/j.bbrc.2017.02.043] [PMID: 28202414]
[53]
Chen, Z.; Fan, T.; Zhao, X.; Zhang, Z. Depleting SOX2 improves ischemic stroke via lncRNA PVT1/microRNA-24-3p/STAT3 axis. Mol. Med., 2021, 27(1), 107.
[http://dx.doi.org/10.1186/s10020-021-00346-8] [PMID: 34521353]
[54]
Li, J.; Wang, N.; Nie, H.; Wang, S.; Jiang, T.; Ma, X.; Liu, W.; Tian, K. Long non-coding RNA RMST worsens ischemic stroke via MicroRNA-221-3p/PIK3R1/TGF-β Signaling pathway. Mol. Neurobiol., 2022, 59(5), 2808-2821.
[http://dx.doi.org/10.1007/s12035-021-02632-2] [PMID: 35217983]
[55]
Zhang, S.; Zhang, Y.; Wang, N.; Wang, Y.; Nie, H.; Zhang, Y.; Han, H.; Wang, S.; Liu, W.; Bo, C. Long non-coding RNA MIAT impairs neurological function in ischemic stroke via up-regulating microRNA-874-3p-targeted IL1B. Brain Res. Bull., 2021, 175, 81-89.
[http://dx.doi.org/10.1016/j.brainresbull.2021.07.005] [PMID: 34265390]
[56]
Guo, T.; Liu, Y.; Ren, X.; Wang, W.; Liu, H. Promoting role of long non-coding RNA small nucleolar RNA host gene 15 (SNHG15) in neuronal injury following ischemic stroke via the MicroRNA-18a/CXC chemokine ligand 13 (CXCL13)/ERK/MEK Axis, Med. Med. Sci. Monit., 2020, 26, e923610-e923611.
[http://dx.doi.org/10.12659/MSM.923610] [PMID: 32862188]
[57]
Zhang, X.Q.; Song, L.H.; Feng, S.J.; Dai, X.M. LncRNA FGD5-AS1 acts as a competing endogenous RNA for miRNA-223 to lessen oxygen-glucose deprivation and simulated reperfusion (OGD/R)-induced neurons injury. Folia Neuropathol., 2019, 57(4), 357-365.
[http://dx.doi.org/10.5114/fn.2019.91194] [PMID: 32337949]
[58]
Gao, Q.; Wang, Y. LncRNA FTX regulates angiogenesis through miR-342-3p/SPI1 axis in stroke. Neuropsychiatr. Dis. Treat., 2021, 17, 3617-3625.
[http://dx.doi.org/10.2147/NDT.S337774] [PMID: 34924755]
[59]
Sui, S.; Sun, L.; Zhang, W.; Li, J.; Han, J.; Zheng, J.; Xin, H. LncRNA MEG8 attenuates cerebral ischemia after ischemic stroke through targeting miR-130a-5p/VEGFA signaling. Cell. Mol. Neurobiol., 2021, 41(6), 1311-1324.
[http://dx.doi.org/10.1007/s10571-020-00904-4] [PMID: 32627090]
[60]
Zhao, M.; Wang, J.; Xi, X.; Tan, N.; Zhang, L. SNHG12 promotes angiogenesis following ischemic stroke via regulating miR-150/] VEGF pathway. Neuroscience, 2018, 390, 231-240.
[http://dx.doi.org/10.1016/j.neuroscience.2018.08.029] [PMID: 30193860]
[61]
Yu, Z.; Zhu, M.; Shu, D.; Zhang, R.; Xiang, Z.; Jiang, A.; Liu, S.; Zhang, C.; Yuan, Q.; Hu, X. LncRNA PEG11as aggravates cerebral ischemia/reperfusion injury after ischemic stroke through miR-342-5p/PFN1 axis. Life Sci., 2023, 313, 121276.
[http://dx.doi.org/10.1016/j.lfs.2022.121276] [PMID: 36496032]
[62]
Deng, L.; Jiang, J.; Chen, S.; Lin, X.; Zuo, T.; Hu, Q.; Wu, Y.; Fan, X.; Dong, Z. Long non-coding RNA ANRIL downregulation alleviates neuroinflammation in an ischemia stroke model via modulation of the miR-671-5p/NF-κB pathway. Neurochem. Res., 2022, 47(7), 2002-2015.
[http://dx.doi.org/10.1007/s11064-022-03585-1] [PMID: 35359242]
[63]
Zhang, X.; Hamblin, M.H.; Yin, K.J. The long noncoding RNA Malat1: Its physiological and pathophysiological functions. RNA Biol., 2017, 14(12), 1705-1714.
[http://dx.doi.org/10.1080/15476286.2017.1358347] [PMID: 28837398]
[64]
Li, L.; Xu, Y.; Zhao, M.; Gao, Z. Neuro-protective roles of long non-coding RNA MALAT1 in Alzheimer’s disease with the involvement of the microRNA-30b/CNR1 network and the following PI3K/AKT activation. Exp. Mol. Pathol., 2020, 117, 104545.
[http://dx.doi.org/10.1016/j.yexmp.2020.104545] [PMID: 32976819]
[65]
Li, Z.; Li, J.; Tang, N. Long noncoding RNA Malat1 is a potent autophagy inducer protecting brain microvascular endothelial cells against oxygen-glucose deprivation/reoxygenation-induced injury by sponging miR-26b and upregulating ULK2 expression. Neuroscience, 2017, 354, 1-10.
[http://dx.doi.org/10.1016/j.neuroscience.2017.04.017] [PMID: 28433650]
[66]
Wang, S.; Han, X.; Mao, Z.; Xin, Y.; Maharjan, S.; Zhang, B. MALAT1 lncRNA induces autophagy and protects brain microvascular endothelial cells against oxygen–glucose deprivation by binding to miR-200c-3p and upregulating SIRT1 expression. Neuroscience, 2019, 397, 116-126.
[http://dx.doi.org/10.1016/j.neuroscience.2018.11.024] [PMID: 30496821]
[67]
Yang, Y.; Duan, W.; Li, Y.; Yan, J.; Yi, W.; Liang, Z.; Wang, N.; Yi, D.; Jin, Z. New role of silent information regulator 1 in cerebral ischemia. Neurobiol. Aging, 2013, 34(12), 2879-2888.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.06.008] [PMID: 23855981]
[68]
Qiu, R.; Li, W.; Liu, Y. MicroRNA-204 protects H9C2 cells against hypoxia/reoxygenation-induced injury through regulating SIRT1-mediated autophagy. Biomed. Pharmacother., 2018, 100, 15-19.
[http://dx.doi.org/10.1016/j.biopha.2018.01.165] [PMID: 29421577]
[69]
Guo, D.; Ma, J.; Yan, L.; Li, T.; Li, Z.; Han, X.; Shui, S. Down-regulation of Lncrna MALAT1 attenuates neuronal cell death through suppressing Beclin1-dependent autophagy by regulating Mir-30a in cerebral ischemic stroke. Cell. Physiol. Biochem., 2017, 43(1), 182-194.
[http://dx.doi.org/10.1159/000480337] [PMID: 28854438]
[70]
Tan, J.; Liu, S.; Jiang, Q.; Yu, T.; Huang, K. LncRNA-MIAT increased in patients with coronary atherosclerotic heart disease. Cardiol. Res. Pract., 2019, 2019, 1-5.
[http://dx.doi.org/10.1155/2019/6280194] [PMID: 31143478]
[71]
Shen, Y.; Cui, X.; Hu, Y.; Zhang, Z.; Zhang, Z. LncRNA-MIAT regulates the growth of SHSY5Y cells by regulating the miR-34-5p-SYT1 axis and exerts a neuroprotective effect in a mouse model of Parkinson’s disease. Am. J. Transl. Res., 2021, 13(9), 9993-10013.
[PMID: 34650678]
[72]
Zhu, M.; Li, N.; Luo, P.; Jing, W.; Wen, X.; Liang, C.; Tu, J. Peripheral blood leukocyte expression of lncRNA MIAT and its diagnostic and prognostic value in ischemic stroke. J. Stroke Cerebrovasc. Dis., 2018, 27(2), 326-337.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2017.09.009] [PMID: 29030044]
[73]
Guo, X.; Wang, Y.; Zheng, D.; Cheng, X.; Sun, Y. LncRNA-MIAT promotes neural cell autophagy and apoptosis in ischemic stroke by up-regulating REDD1. Brain Res., 2021, 1763, 147436.
[http://dx.doi.org/10.1016/j.brainres.2021.147436] [PMID: 33745924]
[74]
Alvarez-Garcia, O.; Matsuzaki, T.; Olmer, M.; Plate, L.; Kelly, J.W.; Lotz, M.K. Regulated in development and DNA damage response 1 deficiency impairs autophagy and mitochondrial biogenesis in articular cartilage and increases the severity of experimental osteoarthritis. Arthritis Rheumatol., 2017, 69(7), 1418-1428.
[http://dx.doi.org/10.1002/art.40104] [PMID: 28334504]
[75]
Tamang, S.; Acharya, V.; Roy, D.; Sharma, R.; Aryaa, A.; Sharma, U.; Khandelwal, A.; Prakash, H.; Vasquez, K.M.; Jain, A. SNHG12: An LncRNA as a potential therapeutic target and biomarker for human cancer. Front. Oncol., 2019, 9, 901.
[http://dx.doi.org/10.3389/fonc.2019.00901] [PMID: 31620362]
[76]
Cheng, Y.; Jiang, Y.; Sun, Y.; Jiang, H. The role of long non-coding RNA SNHG12 in neuroprotection following cerebral ischemic injury. Neuroreport, 2019, 30(14), 945-952.
[http://dx.doi.org/10.1097/WNR.0000000000001308] [PMID: 31469718]
[77]
Cai, Y.; Long, F-Q.; Su, Q-J.; Zhou, J-X.; Wang, D-S.; Li, P-X.; Zeng, C-S. LncRNA SNHG12 ameliorates brain microvascular endothelial cell injury by targeting miR-199a. Neural Regen. Res., 2018, 13(11), 1919-1926.
[http://dx.doi.org/10.4103/1673-5374.238717] [PMID: 30233065]
[78]
Yao, X.; Yao, R.; Huang, F.; Yi, J. LncRNA SNHG12 as a potent autophagy inducer exerts neuroprotective effects against cerebral ischemia/reperfusion injury. Biochem. Biophys. Res. Commun., 2019, 514(2), 490-496.
[http://dx.doi.org/10.1016/j.bbrc.2019.04.158] [PMID: 31056262]
[79]
Li, Y.; Guo, S.; Liu, W.; Jin, T.; Li, X.; He, X.; Zhang, X.; Su, H.; Zhang, N.; Duan, C. Silencing of SNHG12 enhanced the effectiveness of MSCs in alleviating ischemia/reperfusion injuries via the PI3K/AKT/mTOR signaling pathway. Front. Neurosci., 2019, 13, 645.
[http://dx.doi.org/10.3389/fnins.2019.00645] [PMID: 31293373]
[80]
Gabory, A.; Ripoche, M.A.; Yoshimizu, T.; Dandolo, L. The H19 gene: Regulation and function of a non-coding RNA. Cytogenet. Genome Res., 2006, 113(1-4), 188-193.
[http://dx.doi.org/10.1159/000090831] [PMID: 16575179]
[81]
Wang, J.; Zhao, H.; Fan, Z.; Li, G.; Ma, Q.; Tao, Z.; Wang, R.; Feng, J.; Luo, Y. Long noncoding RNA H19 promotes neuroinflammation in ischemic stroke by driving histone deacetylase 1-dependent M1 microglial polarization. Stroke, 2017, 48(8), 2211-2221.
[http://dx.doi.org/10.1161/STROKEAHA.117.017387] [PMID: 28630232]
[82]
Li, G.; Ma, X.; Zhao, H.; Fan, J.; Liu, T.; Luo, Y.; Guo, Y. Long non‐coding RNA H19 promotes leukocyte inflammation in ischemic stroke by targeting the miR‐29b/C1QTNF6 axis. CNS Neurosci. Ther., 2022, 28(6), 953-963.
[http://dx.doi.org/10.1111/cns.13829] [PMID: 35322553]
[83]
Rezaei, M.; Mokhtari, M.J.; Bayat, M.; Safari, A.; Dianatpuor, M.; Tabrizi, R.; Asadabadi, T.; Borhani-Haghighi, A. Long non-coding RNA H19 expression and functional polymorphism rs217727 are linked to increased ischemic stroke risk. BMC Neurol., 2021, 21(1), 54.
[http://dx.doi.org/10.1186/s12883-021-02081-3] [PMID: 33541284]
[84]
Wang, J.; Cao, B.; Han, D.; Sun, M.; Feng, J. Long non-coding RNA H19 induces cerebral ischemia reperfusion injury via activation of autophagy. Aging Dis., 2017, 8(1), 71-84.
[http://dx.doi.org/10.14336/AD.2016.0530] [PMID: 28203482]
[85]
Han, W.; Fu, X.; Xie, J.; Meng, Z.; Gu, Y.; Wang, X.; Li, L.; Pan, H.; Huang, W. miR-26a enhances autophagy to protect against ethanol-induced acute liver injury. J. Mol. Med., 2015, 93(9), 1045-1055.
[http://dx.doi.org/10.1007/s00109-015-1282-2] [PMID: 25877859]
[86]
Li, S.; Zheng, H.; Chen, L.; Xu, C.; Qu, X.; Qin, Z.; Gao, J.; Li, J.; Liu, J. Expression profile and potential functions of circulating long noncoding RNAs in acute ischemic stroke in the southern Chinese Han population. Front. Mol. Neurosci., 2019, 12, 290.
[http://dx.doi.org/10.3389/fnmol.2019.00290] [PMID: 31849604]
[87]
Liu, N.; Peng, A.; Sun, H.; Zhuang, Y.; Yu, M.; Wang, Q.; Wang, J. LncRNA AC136007.2 alleviates cerebral ischemic-reperfusion injury by suppressing autophagy. Aging, 2021, 13(15), 19587-19597.
[http://dx.doi.org/10.18632/aging.203369] [PMID: 34419936]
[88]
Zhang, X.; Connelly, J.; Levitan, E.S.; Sun, D.; Wang, J.Q. Calcium/calmodulin–dependent protein kinase II in cerebrovascular diseases. Transl. Stroke Res., 2021, 12(4), 513-529.
[http://dx.doi.org/10.1007/s12975-021-00901-9] [PMID: 33713030]
[89]
Ye, J.; Das, S.; Roy, A.; Wei, W.; Huang, H.; Lorenz-Guertin, J.M.; Xu, Q.; Jacob, T.C.; Wang, B.; Sun, D.; Wang, Q.J. Ischemic injury-induced CaMKIIδ and CaMKIIγ confer neuroprotection through the NF-κB signaling pathway. Mol. Neurobiol., 2019, 56(3), 2123-2136.
[http://dx.doi.org/10.1007/s12035-018-1198-2] [PMID: 29992531]
[90]
Xu, Q.; Guohui, M.; Li, D.; Bai, F.; Fang, J.; Zhang, G.; Xing, Y.; Zhou, J.; Guo, Y.; Kan, Y. lncRNA C2dat2 facilitates autophagy and apoptosis via the miR-30d-5p/DDIT4/mTOR axis in cerebral ischemia-reperfusion injury. Aging, 2021, 13(8), 11315-11335.
[http://dx.doi.org/10.18632/aging.202824] [PMID: 33833132]
[91]
Zhang, Y.; Liu, L.; Hou, X.; Zhang, Z.; Zhou, X.; Gao, W. Role of autophagy mediated by AMPK/DDiT4/mTOR Axis in HT22 cells under oxygen and glucose deprivation/reoxygenation. ACS Omega, 2023, 8(10), 9221-9229.
[http://dx.doi.org/10.1021/acsomega.2c07280] [PMID: 36936290]
[92]
Zhou, Y.; Zhang, X.; Klibanski, A. MEG3 noncoding RNA: A tumor suppressor. J. Mol. Endocrinol., 2012, 48(3), R45-R53.
[http://dx.doi.org/10.1530/JME-12-0008] [PMID: 22393162]
[93]
Zhao, F.; Xing, Y.; Jiang, P.; Hu, L.; Deng, S. LncRNA MEG3 inhibits the proliferation of neural stem cells after ischemic stroke via the miR-493-5P/MIF axis. Biochem. Biophys. Res. Commun., 2021, 568, 186-192.
[http://dx.doi.org/10.1016/j.bbrc.2021.06.033] [PMID: 34273844]
[94]
Wang, M.; Chen, W.; Geng, Y.; Xu, C.; Tao, X.; Zhang, Y. Long non-coding RNA MEG3 promotes apoptosis of vascular cells and is associated with poor prognosis in ischemic stroke. J. Atheroscler. Thromb., 2020, 27(7), 718-726.
[http://dx.doi.org/10.5551/jat.50674] [PMID: 31656272]
[95]
Xiang, Y.; Zhang, Y.; Xia, Y.; Zhao, H.; Liu, A.; Chen, Y. LncRNA MEG3 targeting miR-424-5p via MAPK signaling pathway mediates neuronal apoptosis in ischemic stroke. Aging, 2020, 12(4), 3156-3174.
[http://dx.doi.org/10.18632/aging.102790] [PMID: 32065781]
[96]
Luo, H.C.; Yi, T.Z.; Huang, F.G.; Wei, Y.; Luo, X.P.; Luo, Q.S. Role of long noncoding RNA MEG3/miR-378/GRB2 axis in neuronal autophagy and neurological functional impairment in ischemic stroke. J. Biol. Chem., 2020, 295(41), 14125-14139.
[http://dx.doi.org/10.1074/jbc.RA119.010946] [PMID: 32605923]
[97]
Li, T.H.; Sun, H.W.; Song, L.J.; Yang, B.; Zhang, P.; Yan, D.M.; Liu, X.Z.; Luo, Y.R. Long non-coding RNA MEG3 regulates autophagy after cerebral ischemia/reperfusion injury. Neural Regen. Res., 2022, 17(4), 824-831.
[http://dx.doi.org/10.4103/1673-5374.322466] [PMID: 34472482]
[98]
Cagle, P.; Qi, Q.; Niture, S.; Kumar, D. KCNQ1OT1: An oncogenic long noncoding RNA. Biomolecules, 2021, 11(11), 1602.
[http://dx.doi.org/10.3390/biom11111602] [PMID: 34827600]
[99]
Song, A.; Yang, Y.; He, H.; Sun, J.; Chang, Q.; Xue, Q. Inhibition of long non-coding RNA KCNQ1OT1 attenuates neuroinflammation and neuronal apoptosis through regulating NLRP3 expression via sponging miR-30e-3p. J. Inflamm. Res., 2021, 14, 1731-1742.
[http://dx.doi.org/10.2147/JIR.S291274] [PMID: 33981152]
[100]
Ren, Y.; Gao, X.P.; Liang, H.; Zhang, H.; Hu, C.Y. LncRNA KCNQ1OT1 contributes to oxygen-glucose-deprivation/] reoxygenation-induced injury via sponging miR-9 in cultured neurons to regulate MMP8. Exp. Mol. Pathol., 2020, 112, 104356.
[http://dx.doi.org/10.1016/j.yexmp.2019.104356] [PMID: 31837324]
[101]
Zhao, Y.; Zhang, Q.; Zhang, X.; Zhang, Y.; Lu, Y.; Ma, X.; Li, W.; Niu, X.; Zhang, G.; Chang, M.; Shi, W.; Tian, Y. The roles of MMP8/MMP10 polymorphisms in ischemic stroke susceptibility. Brain Behav., 2022, 12(12), e2797.
[http://dx.doi.org/10.1002/brb3.2797] [PMID: 36282475]
[102]
Wang, H.J.; Tang, X.L.; Huang, G.; Li, Y.B.; Pan, R.H.; Zhan, J.; Wu, Y.K.; Liang, J.F.; Bai, X.; Cai, J. Long non-coding KCNQ1OT1 promotes oxygen-glucose-deprivation/reoxygenation-induced neurons injury through regulating MIR-153-3p/FOXO3 axis. J. Stroke Cerebrovasc. Dis., 2020, 29(10), 105126.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2020.105126] [PMID: 32912499]
[103]
Yu, S.; Yu, M.; He, X.; Wen, L.; Bu, Z.; Feng, J. KCNQ1OT1 promotes autophagy by regulating miR‐200a/FOXO3/ATG7 pathway in cerebral ischemic stroke. Aging Cell, 2019, 18(3), e12940.
[http://dx.doi.org/10.1111/acel.12940] [PMID: 30945454]
[104]
Chen, L.; Liu, H.; Sun, C.; Pei, J.; Li, J.; Li, Y.; Wei, K.; Wang, X.; Wang, P.; Li, F.; Gai, S.; Zhao, Y.; Zheng, Z. A novel LncRNA SNHG3 promotes osteoblast differentiation through BMP2 upregulation in aortic valve calcification. JACC Basic Transl. Sci., 2022, 7(9), 899-914.
[http://dx.doi.org/10.1016/j.jacbts.2022.06.009] [PMID: 36317131]
[105]
Yang, Q.; Wu, M.F.; Zhu, L.H.; Qiao, L.X.; Zhao, R.B.; Xia, Z.K. Long non-coding RNA Snhg3 protects against hypoxia/ischemia-induced neonatal brain injury. Exp. Mol. Pathol., 2020, 112, 104343.
[http://dx.doi.org/10.1016/j.yexmp.2019.104343] [PMID: 31751562]
[106]
Huang, D.; Cao, Y.; Zu, T.; Ju, J. Interference with long noncoding RNA SNHG3 alleviates cerebral ischemia-reperfusion injury by inhibiting microglial activation. J. Leukoc. Biol., 2022, 111(4), 759-769.
[http://dx.doi.org/10.1002/JLB.1A0421-190R] [PMID: 34411323]
[107]
Liao, Y.; Cheng, J.; Kong, X.; Li, S.; Li, X.; Zhang, M.; Zhang, H.; Yang, T.; Dong, Y.; Li, J.; Xu, Y.; Yuan, Z. HDAC3 inhibition ameliorates ischemia/reperfusion-induced brain injury by regulating the microglial cGAS-STING pathway. Theranostics, 2020, 10(21), 9644-9662.
[http://dx.doi.org/10.7150/thno.47651] [PMID: 32863951]
[108]
Sun, X.; Wang, L.; Huang, X.; Zhou, S.; Jiang, T. Regulatory mechanism miR-302a-3p/E2F1/SNHG3 axis in nerve repair post cerebral ischemic stroke. Curr. Neurovasc. Res., 2021, 18(5), 515-524.
[PMID: 34895123]
[109]
Cao, Y.; Pan, L.; Zhang, X.; Guo, W.; Huang, D. LncRNA SNHG3 promotes autophagy-induced neuronal cell apoptosis by acting as a ceRNA for miR-485 to up-regulate ATG7 expression. Metab. Brain Dis., 2020, 35(8), 1361-1369.
[http://dx.doi.org/10.1007/s11011-020-00607-1] [PMID: 32860611]
[110]
Hongfeng, Z.; Andong, J.; Liwen, S.; Mingping, B.; Xiaowei, Y.; Mingyong, L.; Aimin, Y. lncRNA RMRP knockdown suppress hepatocellular carcinoma biological activities via regulation miRNA‐206/TACR1. J. Cell. Biochem., 2020, 121(2), 1690-1702.
[http://dx.doi.org/10.1002/jcb.29404] [PMID: 31579977]
[111]
Li, X.; Sui, Y. Valproate improves middle cerebral artery occlusion-induced ischemic cerebral disorders in mice and oxygen-glucose deprivation-induced injuries in microglia by modulating RMRP/PI3K/Akt axis. Brain Res., 2020, 1747, 147039.
[http://dx.doi.org/10.1016/j.brainres.2020.147039] [PMID: 32745656]
[112]
Zhou, L.; Yu, X.; Guo, Y.; Liu, X. LncRNA RMRP knockdown promotes proliferation and migration of Schwann cells by mediating the miR-766-5p/CAND1 axis. Neurosci. Lett., 2022, 770, 136440.
[http://dx.doi.org/10.1016/j.neulet.2021.136440] [PMID: 34974108]
[113]
Zhou, Z.; Xu, H.; Liu, B.; Dun, L.; Lu, C.; Cai, Y.; Wang, H. Suppression of lncRNA RMRP ameliorates oxygen-glucose deprivation/re-oxygenation-induced neural cells injury by inhibiting autophagy and PI3K/Akt/mTOR-mediated apoptosis. Biosci. Rep., 2019, 39(6), BSR20181367.
[http://dx.doi.org/10.1042/BSR20181367] [PMID: 30926681]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy