Note! Please note that this article is currently in the "Article in Press" stage and is not the final "Version of record". While it has been accepted, copy-edited, and formatted, however, it is still undergoing proofreading and corrections by the authors. Therefore, the text may still change before the final publication. Although "Articles in Press" may not have all bibliographic details available, the DOI and the year of online publication can still be used to cite them. The article title, DOI, publication year, and author(s) should all be included in the citation format. Once the final "Version of record" becomes available the "Article in Press" will be replaced by that.
Abstract
Background: Osteosarcoma is considered as the most prevalent form of primary malignant bone cancer, prompting a pressing need for novel therapeutic options. Arnicolide D, a sesquiterpene lactone derived from the traditional Chinese herbal medicine Centipeda minima (known as E Bu Shi Cao in Chinese), showed anticancer efficacy against several kinds of cancers. However, its effect on osteosarcoma remains unclear.
Objective: This study aimed to investigate the anticancer activity of arnicolide D and the underlying molecular mechanism of its action in osteosarcoma cells, MG63 and U2OS. Methods: Cell viability and proliferation were evaluated through MTT assay and colony formation assay following 24 h and 48 h treatment with different concentrations of arnicolide D. Flow cytometry was employed to examine cell cycle progression and apoptosis after 24 h treatment of arnicolide D. Western blotting was performed to determine the expression of the PI3k, Akt and m-TOR and their phosphorylated forms. Results: Our findings revealed that arnicolide D treatment resulted in a significant reduction in cell viability, the inhibition of proliferation, and the induction of apoptosis and cell cycle arrest in the G2/M phase. Furthermore, arnicolide D could inhibit the activation of PI3K/Akt/mTOR pathway in osteosarcoma cells. Conclusion: Based on our results, arnicolide D demonstrated significant anti-osteosarcoma activity and held the potential to be considered as a therapeutic candidate for osteosarcoma in the future.[1]
Taran, S.J.; Taran, R.; Malipatil, N.B. Pediatric osteosarcoma: An updated review. Indian J. Med. Paediatr. Oncol., 2017, 38(1), 33-43.
[2]
Sim, Y.C.; Hwang, J.H.; Ahn, K.M. Overall and disease-specific survival outcomes following primary surgery for oral squamous cell carcinoma: analysis of consecutive 67 patients. J. Korean Assoc. Oral Maxillofac. Surg., 2019, 45(2), 83-90.
[http://dx.doi.org/10.5125/jkaoms.2019.45.2.83] [PMID: 31106136]
[http://dx.doi.org/10.5125/jkaoms.2019.45.2.83] [PMID: 31106136]
[3]
Zhao, X.; Wu, Q.; Gong, X.; Liu, J.; Ma, Y. Osteosarcoma: a review of current and future therapeutic approaches. Biomed. Eng. Online, 2021, 20(1), 24.
[http://dx.doi.org/10.1186/s12938-021-00860-0] [PMID: 33653371]
[http://dx.doi.org/10.1186/s12938-021-00860-0] [PMID: 33653371]
[4]
Xue, W.; Zhang, Z.; Yu, H.; Li, C.; Sun, Y.; An, J.; Qi, L.; Zhang, J.; Liu, Q. Development of nomogram and discussion of radiotherapy effect for osteosarcoma survival. Sci. Rep., 2023, 13(1), 223.
[http://dx.doi.org/10.1038/s41598-023-27476-9]
[http://dx.doi.org/10.1038/s41598-023-27476-9]
[5]
Carrle, D.; Bielack, S.S. Current strategies of chemotherapy in osteosarcoma. Int. Orthop., 2006, 30(6), 445-451.
[http://dx.doi.org/10.1007/s00264-006-0192-x] [PMID: 16896870]
[http://dx.doi.org/10.1007/s00264-006-0192-x] [PMID: 16896870]
[6]
Zhang, Y.; Yang, J.; Zhao, N.; Wang, C.; Kamar, S.; Zhou, Y.; He, Z.; Yang, J.; Sun, B.; Shi, X.; Han, L.; Yang, Z. Progress in the chemotherapeutic treatment of osteosarcoma (Review). Oncol. Lett., 2018, 16(5), 6228-6237.
[http://dx.doi.org/10.3892/ol.2018.9434] [PMID: 30405759]
[http://dx.doi.org/10.3892/ol.2018.9434] [PMID: 30405759]
[7]
Tobeiha, M.; Rajabi, A.; Raisi, A.; Mohajeri, M.; Yazdi, S.M.; Davoodvandi, A.; Aslanbeigi, F.; Vaziri, M.; Hamblin, M.R.; Mirzaei, H. Potential of natural products in osteosarcoma treatment: Focus on molecular mechanisms. Biomed. Pharmacother., 2021, 144, 112257.
[http://dx.doi.org/10.1016/j.biopha.2021.112257] [PMID: 34688081]
[http://dx.doi.org/10.1016/j.biopha.2021.112257] [PMID: 34688081]
[8]
Xu, C.; Wang, M.; Guo, W.; Sun, W.; Liu, Y. Curcumin in osteosarcoma therapy: Combining with immunotherapy, chemotherapeutics, bone tissue engineering materials and potential synergism with photodynamic therapy. Front. Oncol., 2021, 11, 672490.
[http://dx.doi.org/10.3389/fonc.2021.672490] [PMID: 34094974]
[http://dx.doi.org/10.3389/fonc.2021.672490] [PMID: 34094974]
[9]
Tan, J.; Qiao, Z.; Meng, M.; Zhang, F.; Kwan, H.Y.; Zhong, K.; Yang, C.; Wang, Y.; Zhang, M.; Liu, Z.; Su, T. Centipeda minima: An update on its phytochemistry, pharmacology and safety. J. Ethnopharmacol., 2022, 292, 115027.
[http://dx.doi.org/10.1016/j.jep.2022.115027] [PMID: 35091011]
[http://dx.doi.org/10.1016/j.jep.2022.115027] [PMID: 35091011]
[10]
Lee, M.M.L.; Chan, B.D.; Wong, W.Y.; Qu, Z.; Chan, M.S.; Leung, T.W.; Lin, Y.; Mok, D.K.W.; Chen, S.; Tai, W.C.S. Anti-cancer activity of Centipeda minima extract in triple negative breast cancer via inhibition of AKT, NF-κB, and STAT3 signaling pathways. Front. Oncol., 2020, 10, 491.
[http://dx.doi.org/10.3389/fonc.2020.00491] [PMID: 32328465]
[http://dx.doi.org/10.3389/fonc.2020.00491] [PMID: 32328465]
[11]
Chan, B.D.; Wong, W.Y.; Lee, M.M.L.; Leung, T.W.; Shum, T.Y.; Cho, W.C.S.; Chen, S.; Tai, W.C.S. Centipeda minima extract attenuates dextran sodium sulfate-induced acute colitis in mice by inhibiting macrophage activation and monocyte chemotaxis. Front. Pharmacol., 2021, 12, 738139.
[http://dx.doi.org/10.3389/fphar.2021.738139] [PMID: 34616300]
[http://dx.doi.org/10.3389/fphar.2021.738139] [PMID: 34616300]
[12]
Pu, S.; Guo, Y.; Gao, W. Chemical constituents from Centipeda minima. Zhongguo Zhong Yao Za Zhi, 2009, 34(12), 1520-1522.
[13]
Qu, Z.; Lin, Y.; Mok, D.K.W.; Bian, Q.; Tai, W.C.S.; Chen, S.; Arnicolide, D. Arnicolide D inhibits triple negative breast cancer cell proliferation by suppression of Akt/mTOR and STAT3 signaling pathways. Int. J. Med. Sci., 2020, 17(11), 1482-1490.
[http://dx.doi.org/10.7150/ijms.46925] [PMID: 32669950]
[http://dx.doi.org/10.7150/ijms.46925] [PMID: 32669950]
[14]
Liu, R.; Dow Chan, B.; Mok, D.K.W.; Lee, C.S.; Tai, W.C.S.; Chen, S. Arnicolide D, from the herb Centipeda minima, is a therapeutic candidate against nasopharyngeal carcinoma. Molecules, 2019, 24(10), 1908.
[http://dx.doi.org/10.3390/molecules24101908] [PMID: 31108969]
[http://dx.doi.org/10.3390/molecules24101908] [PMID: 31108969]
[15]
Zhu, P.; Zheng, Z.; Fu, X.; Li, J.; Yin, C.; Chou, J.; Wang, Y.; Liu, Y.; Chen, Y.; Bai, J.; Wu, J.; Chen, S.; Yu, Z.L. Arnicolide D exerts anti-melanoma effects and inhibits the NF-κB pathway. Phytomedicine, 2019, 64, 153065.
[http://dx.doi.org/10.1016/j.phymed.2019.153065] [PMID: 31408803]
[http://dx.doi.org/10.1016/j.phymed.2019.153065] [PMID: 31408803]
[16]
Huang, X.; Awano, Y.; Maeda, E.; Asada, Y.; Takemoto, H.; Watanabe, T.; Kojima-Yuasa, A.; Kobayashi, Y. Cytotoxic activity of two natural sesquiterpene lactones, isobutyroylplenolin and arnicolide D, on human colon cancer cell line HT-29. Nat. Prod. Res., 2014, 28(12), 914-916.
[http://dx.doi.org/10.1080/14786419.2014.889133] [PMID: 24588282]
[http://dx.doi.org/10.1080/14786419.2014.889133] [PMID: 24588282]
[17]
Nik Nabil, W.N.; Xi, Z.; Liu, M.; Li, Y.; Yao, M.; Liu, T.; Dong, Q.; Xu, H. Advances in therapeutic agents targeting quiescent cancer cells. Acta Materia Medica., 2022, 1(1), 56-71.
[http://dx.doi.org/10.15212/AMM-2021-0005]
[http://dx.doi.org/10.15212/AMM-2021-0005]
[18]
Matson, J.P.; Cook, J.G. Cell cycle proliferation decisions: the impact of single cell analyses. FEBS J., 2017, 284(3), 362-375.
[http://dx.doi.org/10.1111/febs.13898] [PMID: 27634578]
[http://dx.doi.org/10.1111/febs.13898] [PMID: 27634578]
[19]
Tonami, Y.; Murakami, H.; Shirahige, K.; Nakanishi, M. A checkpoint control linking meiotic S phase and recombination initiation in fission yeast. Proc. Natl. Acad. Sci. USA, 2005, 102(16), 5797-5801.
[http://dx.doi.org/10.1073/pnas.0407236102] [PMID: 15805194]
[http://dx.doi.org/10.1073/pnas.0407236102] [PMID: 15805194]
[20]
Vassilev, L.T. Cell cycle synchronization at the G2/M phase border by reversible inhibition of CDK1. Cell Cycle, 2006, 5(22), 2555-2556.
[http://dx.doi.org/10.4161/cc.5.22.3463] [PMID: 17172841]
[http://dx.doi.org/10.4161/cc.5.22.3463] [PMID: 17172841]
[21]
Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[22]
Lowe, S.W.; Lin, A.W. Apoptosis in cancer. Carcinogenesis, 2000, 21(3), 485-495.
[http://dx.doi.org/10.1093/carcin/21.3.485] [PMID: 10688869]
[http://dx.doi.org/10.1093/carcin/21.3.485] [PMID: 10688869]
[23]
Zhang, J.; Yu, X.H.; Yan, Y.G.; Wang, C.; Wang, W.J. PI3K/Akt signaling in osteosarcoma. Clin. Chim. Acta, 2015, 444, 182-192.
[24]
Czarnecka, A.M.; Synoradzki, K.; Firlej, W.; Bartnik, E.; Sobczuk, P.; Fiedorowicz, M.; Grieb, P.; Rutkowski, P. Molecular biology of osteosarcoma. Cancers (Basel), 2020, 12(8), 2130.
[http://dx.doi.org/10.3390/cancers12082130] [PMID: 32751922]
[http://dx.doi.org/10.3390/cancers12082130] [PMID: 32751922]
[25]
Hu, K.; Dai, H.B.; Qiu, Z.L. mTOR signaling in osteosarcoma: Oncogenesis and therapeutic aspects (Review). Oncol. Rep., 2016, 36(3), 1219-1225.
[http://dx.doi.org/10.3892/or.2016.4922] [PMID: 27430283]
[http://dx.doi.org/10.3892/or.2016.4922] [PMID: 27430283]
[26]
Tewari, D.; Patni, P.; Bishayee, A.; Sah, A.N.; Bishayee, A. Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: A novel therapeutic strategy. Semin. Cancer Biol., 2022, 80, 1-17.
[http://dx.doi.org/10.1016/j.semcancer.2019.12.008] [PMID: 31866476]
[http://dx.doi.org/10.1016/j.semcancer.2019.12.008] [PMID: 31866476]
[27]
Meyer, W.H.; Malawer, M.M. Osteosarcoma. Clinical features and evolving surgical and chemotherapeutic strategies. Pediatr. Clin. North Am., 1991, 38(2), 317-348.
[http://dx.doi.org/10.1016/S0031-3955(16)38080-4] [PMID: 2006080]
[http://dx.doi.org/10.1016/S0031-3955(16)38080-4] [PMID: 2006080]
[28]
Benjamin, R.S. Adjuvant and neoadjuvant chemotherapy for osteosarcoma: A historical perspective. Adv. Exp. Med. Biol., 2020, 1257, 1-10.
[http://dx.doi.org/10.1007/978-3-030-43032-0_1] [PMID: 32483726]
[http://dx.doi.org/10.1007/978-3-030-43032-0_1] [PMID: 32483726]
[29]
Lilienthal, I.; Herold, N. Targeting molecular mechanisms underlying treatment efficacy and resistance in osteosarcoma: A review of current and future strategies. Int. J. Mol. Sci., 2020, 21(18), 6885.
[http://dx.doi.org/10.3390/ijms21186885] [PMID: 32961800]
[http://dx.doi.org/10.3390/ijms21186885] [PMID: 32961800]
[30]
Dong, Z.; Liao, Z.; He, Y.; Wu, C.; Meng, Z.; Qin, B.; Xu, G.; Li, Z.; Sun, T.; Wen, Y.; Li, G. Advances in the biological functions and mechanisms of miRNAs in the development of osteosarcoma. Technol. Cancer Res. Treat., 2022, 21.
[http://dx.doi.org/10.1177/15330338221117386] [PMID: 35950243]
[http://dx.doi.org/10.1177/15330338221117386] [PMID: 35950243]
[31]
Yang, Z.; Li, X.; Yang, Y.; He, Z.; Qu, X.; Zhang, Y. Long noncoding RNAs in the progression, metastasis, and prognosis of osteosarcoma. Cell Death Dis., 2016, 7(9), e2389.
[http://dx.doi.org/10.1038/cddis.2016.272] [PMID: 27685633]
[http://dx.doi.org/10.1038/cddis.2016.272] [PMID: 27685633]
[32]
Pistritto, G.; Trisciuoglio, D.; Ceci, C.; Garufi, A.; D’Orazi, G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY), 2016, 8(4), 603-619.
[http://dx.doi.org/10.18632/aging.100934] [PMID: 27019364]
[http://dx.doi.org/10.18632/aging.100934] [PMID: 27019364]
[33]
Pang, H.; Wu, T.; Peng, Z.; Tan, Q.; Peng, X.; Zhan, Z.; Song, L.; Wei, B. Baicalin induces apoptosis and autophagy in human osteosarcoma cells by increasing ROS to inhibit PI3K/Akt/mTOR, ERK1/2 and β-catenin signaling pathways. J. Bone Oncol., 2022, 33, 100415.
[http://dx.doi.org/10.1016/j.jbo.2022.100415] [PMID: 35573641]
[http://dx.doi.org/10.1016/j.jbo.2022.100415] [PMID: 35573641]
[34]
Okagu, I.U.; Ezeorba, T.P.C.; Aguchem, R.N.; Ohanenye, I.C.; Aham, E.C.; Okafor, S.N.; Bollati, C.; Lammi, C. A Review on the molecular mechanisms of action of natural products in preventing bone diseases. Int. J. Mol. Sci., 2022, 23(15), 8468.
[http://dx.doi.org/10.3390/ijms23158468] [PMID: 35955603]
[http://dx.doi.org/10.3390/ijms23158468] [PMID: 35955603]
[35]
Zheng, C.; Tang, F.; Min, L.; Hornicek, F.; Duan, Z.; Tu, C. PTEN in osteosarcoma: Recent advances and the therapeutic potential. Biochim. Biophys. Acta Rev. Cancer, 2020, 1874(2), 188405.
[http://dx.doi.org/10.1016/j.bbcan.2020.188405] [PMID: 32827577]
[http://dx.doi.org/10.1016/j.bbcan.2020.188405] [PMID: 32827577]