Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

PROTAC Beyond Cancer- Exploring the New Therapeutic Potential of Proteolysis Targeting Chimeras

In Press, (this is not the final "Version of Record"). Available online 03 July, 2024
Author(s): Ritesh P. Bhole*, Sapana Patil, Harshad S. Kapare, Rupesh V. Chikhale and Shailendra S. Gurav
Published on: 03 July, 2024

DOI: 10.2174/0115680266309968240621072550

Price: $95

Abstract

In the realm of oncology, the transformative impact of PROTAC (PROteolysis TAget-ing Chimeras) technology has been particularly pronounced since its introduction in the 21st cen-tury. Initially conceived for cancer treatment, PROTACs have evolved beyond their primary scope, attracting increasing interest in addressing a diverse array of medical conditions. This ex-panded focus includes not only oncological disorders but also viral infections, bacterial ailments, immune dysregulation, neurodegenerative conditions, and metabolic disorders. This comprehensive review explores the broadening landscape of PROTAC application, high-lighting ongoing developments and innovations aimed at deploying these molecules across a spectrum of diseases. Careful consideration of the design challenges associated with PROTACs reveals that, when appropriately addressed, these compounds present significant advantages over traditional therapeutic approaches, positioning them as promising alternatives. To evaluate the efficacy of PROTAC molecules, a diverse array of assays is employed, ranging from High-Throughput Imaging (HTI) assays to Cell Painting assays, CRBN engagement assays, Fluorescence Polarization assays, amplified luminescent proximity homogeneous assays, Time-resolved fluorescence energy transfer assays, and Isothermal Titration Calorimetry assays. These assessments collectively contribute to a nuanced understanding of PROTAC performance. Looking ahead, the trajectory of PROTAC technology suggests its potential recognition as a ver-satile therapeutic strategy for an expansive range of medical conditions. Ongoing progress in this field sets the stage for PROTACs to emerge as valuable tools in the multifaceted landscape of medical treatments.

[1]
Hanzl, A.; Winter, G.E. Targeted protein degradation: Current and future challenges. Curr. Opin. Chem. Biol., 2020, 56, 35-41.
[http://dx.doi.org/10.1016/j.cbpa.2019.11.012] [PMID: 31901786]
[2]
Caine, E.A.; Mahan, S.D.; Johnson, R.L.; Nieman, A.N.; Lam, N.; Warren, C.R.; Riching, K.M.; Urh, M.; Daniels, D.L. Targeted protein degradation phenotypic studies using HaloTag CRISPR/] Cas9 endogenous tagging coupled with HaloPROTAC3. Curr. Protocols Pharmacol., 2020, 91(1), e81.
[http://dx.doi.org/10.1002/cpph.81] [PMID: 33332748]
[3]
PROTACdb Server., Available from:http://cadd.zju.edu.cn/protacdb/ [accessed on 9 November2023].
[4]
Békés, M.; Langley, D.R.; Crews, C.M. PROTAC targeted protein degraders: The past is prologue. Nat. Rev. Drug Discov., 2022, 21(3), 181-200.
[http://dx.doi.org/10.1038/s41573-021-00371-6] [PMID: 35042991]
[5]
Bhole, R.P.; Kute, P.R.; Chikhale, R.V.; Bonde, C.G.; Pant, A.; Gurav, S.S. Unlocking the potential of PROTACs: A comprehensive review of protein degradation strategies in disease therapy. Bioorg. Chem., 2023, 139, 106720.
[http://dx.doi.org/10.1016/j.bioorg.2023.106720] [PMID: 37480814]
[6]
Gopal, P.; Dick, T. Targeted protein degradation in antibacterial drug discovery? Prog. Biophys. Mol. Biol., 2020, 152, 10-14.
[http://dx.doi.org/10.1016/j.pbiomolbio.2019.11.005] [PMID: 31738980]
[7]
Sakamoto, K.M.K.K.; Kumagai, A.; Mercurio, F.; Crews, C.M.; Deshaies, R.J. Protacs: Chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc Natl Acad Sci USA, 2001, 98(15), 8554-8559.
[http://dx.doi.org/10.1073/pnas.141230798]
[8]
Samarasinghe, K.T.G.; Crews, C.M. Targeted protein degradation: A promise for undruggable proteins. Cell Chem. Biol., 2021, 28(7), 934-951.
[http://dx.doi.org/10.1016/j.chembiol.2021.04.011] [PMID: 34004187]
[9]
Liu, Z.; Hu, M.; Yang, Y.; Du, C.; Zhou, H.; Liu, C.; Chen, Y.; Fan, L.; Ma, H.; Gong, Y.; Xie, Y. An overview of PROTACs: A promising drug discovery paradigm. Molecular Biomedicine, 2022, 3(1), 46.
[http://dx.doi.org/10.1186/s43556-022-00112-0] [PMID: 36536188]
[10]
Mullard, A. First targeted protein degrader hits the clinic. Nat. Rev. Drug Discov., 2022.
[11]
Snyder, L.B.; Neklesa, T.K.; Chen, X.; Dong, H.; Ferraro, C.; Gordon, D.A.; Macaluso, J.; Pizzano, J.; Wang, J.; Willard, R.R.; Vitale, N.; Peck, R.; Moore, M.D.; Crews, C.M.; Houston, J.; Crew, A.P.; Taylor, I. Abstract 43: Discovery of ARV-110, a first in class androgen receptor degrading PROTAC for the treatment of men with metastatic castration resistant prostate cancer. Cancer Res., 2021, 81(13_Supplement), 43.
[http://dx.doi.org/10.1158/1538-7445.AM2021-43]
[12]
Flanagan, J.; Qian, Y.; Gough, S.; Andreoli, M.; Bookbinder, M.; Cadelina, G. ARV‐471, an oral estrogen receptor PROTAC™ protein degrader for breast cancer. Arv, 2018, 1000(3)
[13]
Snyder, L.B.; Flanagan, J.J.; Qian, Y.; Gough, S.M.; Andreoli, M.; Bookbinder, M.; Cadelina, G.; Bradley, J.; Rousseau, E.; Chandler, J.; Willard, R.; Pizzano, J.; Crews, C.M.; Crew, A.P.; Houston, J.; Moore, M.D.; Peck, R.; Taylor, I. Abstract 44: The discovery of ARV-471, an orally bioavailable estrogen receptor degrading PROTAC for the treatment of patients with breast cancer. Cancer Res., 2021, 81(13_Supplement), 44.
[http://dx.doi.org/10.1158/1538-7445.AM2021-44]
[14]
Pedrucci, F.; Pappalardo, C.; Marzaro, G.; Ferri, N.; Ferlin, A.; De Toni, L. Proteolysis targeting chimeric molecules: Tuning molecular strategies for a clinically sound listening. Int. J. Mol. Sci., 2022, 23(12), 6630.
[http://dx.doi.org/10.3390/ijms23126630] [PMID: 35743070]
[15]
Sun, X.; Gao, H.; Yang, Y.; He, M.; Wu, Y.; Song, Y.; Tong, Y.; Rao, Y. PROTACs: Great opportunities for academia and industry. Signal Transduct. Target. Ther., 2019, 4(1), 64.
[http://dx.doi.org/10.1038/s41392-019-0101-6] [PMID: 31885879]
[16]
Qin, A.; Jin, H.; Song, Y.; Gao, Y.; Chen, Y.F.; Zhou, L.; Wang, S.; Lu, X. The therapeutic effect of the BRD4-degrading PROTAC A1874 in human colon cancer cells. Cell Death Dis., 2020, 11(9), 805.
[http://dx.doi.org/10.1038/s41419-020-03015-6] [PMID: 32978368]
[17]
Ohoka, N.; Morita, Y.; Nagai, K.; Shimokawa, K.; Ujikawa, O.; Fujimori, I.; Ito, M.; Hayase, Y.; Okuhira, K.; Shibata, N.; Hattori, T.; Sameshima, T.; Sano, O.; Koyama, R.; Imaeda, Y.; Nara, H.; Cho, N.; Naito, M. Derivatization of inhibitor of apoptosis protein (IAP) ligands yields improved inducers of estrogen receptor α degradation. J. Biol. Chem., 2018, 293(18), 6776-6790.
[http://dx.doi.org/10.1074/jbc.RA117.001091] [PMID: 29545311]
[18]
Sun, R.; Ge, L.; Cao, Y.; Wu, W.; Wu, Y.; Zhu, H.; Li, J.; Yu, D. Corrigendum to MiR-429 regulates blood-spinal cord barrier permeability by targeting Krüppel-like factor 6. Biochem. Biophys. Res. Commun., 2020, 527(3), 845.
[http://dx.doi.org/10.1016/j.bbrc.2020.04.110] [PMID: 32439166]
[19]
Zhao, Q.; Ren, C.; Liu, L.; Chen, J.; Shao, Y.; Sun, N.; Sun, R.; Kong, Y.; Ding, X.; Zhang, X.; Xu, Y.; Yang, B.; Yin, Q.; Yang, X.; Jiang, B. Discovery of SIAIS178 as an effective BCR-ABL degrader by recruiting von Hippel–Lindau (VHL) E3 ubiquitin ligase. J. Med. Chem., 2019, 62(20), 9281-9298.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01264] [PMID: 31539241]
[20]
Ma, D.; Zou, Y.; Chu, Y.; Liu, Z.; Liu, G.; Chu, J.; Li, M.; Wang, J.; Sun, S.; Chang, Z. A cell-permeable peptide-based PROTAC against the oncoprotein CREPT proficiently inhibits pancreatic cancer. Theranostics, 2020, 10(8), 3708-3721.
[http://dx.doi.org/10.7150/thno.41677] [PMID: 32206117]
[21]
Kim, CS; Li, J-H; Barco, B; Park, HB; Gatsios, A Damania, A Cellular stress upregulates indole signaling metabolites in Escherichia coli. Cell Chem. Biol., 2020, 27(6), 698-707.
[http://dx.doi.org/10.1016/j.chembiol.2020.03.003]
[22]
Buhimschi, A.D.; Armstrong, H.A.; Toure, M.; Jaime-Figueroa, S.; Chen, T.L.; Lehman, A.M.; Woyach, J.A.; Johnson, A.J.; Byrd, J.C.; Crews, C.M. Targeting the C481S ibrutinib-resistance mutation in Bruton’s tyrosine kinase using PROTAC-mediated degradation. Biochemistry, 2018, 57(26), 3564-3575.
[http://dx.doi.org/10.1021/acs.biochem.8b00391] [PMID: 29851337]
[23]
Salami, J.; Alabi, S.; Willard, R.R.; Vitale, N.J.; Wang, J.; Dong, H.; Jin, M.; McDonnell, D.P.; Crew, A.P.; Neklesa, T.K.; Crews, C.M. Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. Commun. Biol., 2018, 1(1), 100.
[http://dx.doi.org/10.1038/s42003-018-0105-8] [PMID: 30271980]
[24]
Zhang, H.; Zhao, H.Y.; Xi, X.X.; Liu, Y.J.; Xin, M.; Mao, S.; Zhang, J.J.; Lu, A.X.; Zhang, S.Q. Discovery of potent epidermal growth factor receptor (EGFR) degraders by proteolysis targeting chimera (PROTAC). Eur. J. Med. Chem., 2020, 189, 112061.
[http://dx.doi.org/10.1016/j.ejmech.2020.112061] [PMID: 31951960]
[25]
He, L.; Chen, C.; Gao, G.; Xu, K.; Ma, Z. ARV-825-induced BRD4 protein degradation as a therapy for thyroid carcinoma. Aging, 2020, 12(5), 4547-4557.
[http://dx.doi.org/10.18632/aging.102910] [PMID: 32163373]
[26]
Zhao, B.; Burgess, K. PROTACs suppression of CDK4/6, crucial kinases for cell cycle regulation in cancer. Chem. Commun., 2019, 55(18), 2704-2707.
[http://dx.doi.org/10.1039/C9CC00163H] [PMID: 30758029]
[27]
Burslem, G.M.; Smith, B.E.; Lai, A.C.; Jaime-Figueroa, S.; McQuaid, D.C.; Bondeson, D.P. The advantages of targeted protein degradation over inhibition: an RTK case study. Cell Chem. Biol., 2018, 25(1), 67-77.
[http://dx.doi.org/10.1016/j.chembiol.2017.09.009]
[28]
Zoppi, V.; Hughes, S.J.; Maniaci, C.; Testa, A.; Gmaschitz, T.; Wieshofer, C.; Koegl, M.; Riching, K.M.; Daniels, D.L.; Spallarossa, A.; Ciulli, A. Iterative design and optimization of initially inactive proteolysis targeting chimeras (PROTACs) identify VZ185 as a potent, fast, and selective von Hippel–Lindau (VHL) based dual degrader probe of BRD9 and BRD7. J. Med. Chem., 2019, 62(2), 699-726.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01413] [PMID: 30540463]
[29]
Honigberg, L.A.; Smith, A.M.; Sirisawad, M.; Verner, E.; Loury, D.; Chang, B.; Li, S.; Pan, Z.; Thamm, D.H.; Miller, R.A.; Buggy, J.J. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc. Natl. Acad. Sci. USA, 2010, 107(29), 13075-13080.
[http://dx.doi.org/10.1073/pnas.1004594107] [PMID: 20615965]
[30]
Troup, R.I.; Fallan, C.; Baud, M.G.J. Current strategies for the design of PROTAC linkers: A critical review. Exploration of Targeted Anti-tumor Therapy, 2020, 1(5), 273-312.
[http://dx.doi.org/10.37349/etat.2020.00018] [PMID: 36046485]
[31]
Bemis, T.A.; La Clair, J.J.; Burkart, M.D. Unraveling the role of linker design in proteolysis targeting chimeras. Miniperspective. J. Med. Chem., 2021, 64(12), 8042-8052.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00482] [PMID: 34106704]
[32]
Borsari, C.; Trader, D.J.; Tait, A.; Costi, M.P. Designing chimeric molecules for drug discovery by leveraging chemical biology. J. Med. Chem., 2020, 63(5), 1908-1928.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01456] [PMID: 32023055]
[33]
Cyrus, K.; Wehenkel, M.; Choi, E.Y.; Han, H.J.; Lee, H.; Swanson, H.; Kim, K.B. Impact of linker length on the activity of PROTACs. Mol. Biosyst., 2011, 7(2), 359-364.
[http://dx.doi.org/10.1039/C0MB00074D] [PMID: 20922213]
[34]
Martín-Acosta, P.; Xiao, X. PROTACs to address the challenges facing small molecule inhibitors. Eur. J. Med. Chem., 2021, 210, 112993.
[http://dx.doi.org/10.1016/j.ejmech.2020.112993] [PMID: 33189436]
[35]
Tanaka, M.; Roberts, J.M.; Seo, H.S.; Souza, A.; Paulk, J.; Scott, T.G.; DeAngelo, S.L.; Dhe-Paganon, S.; Bradner, J.E. Design and characterization of bivalent BET inhibitors. Nat. Chem. Biol., 2016, 12(12), 1089-1096.
[http://dx.doi.org/10.1038/nchembio.2209] [PMID: 27775715]
[36]
Douglass, E.F., Jr; Miller, C.J.; Sparer, G.; Shapiro, H.; Spiegel, D.A. A comprehensive mathematical model for three-body binding equilibria. J. Am. Chem. Soc., 2013, 135(16), 6092-6099.
[http://dx.doi.org/10.1021/ja311795d] [PMID: 23544844]
[37]
Zhang, Y.; Loh, C.; Chen, J.; Mainolfi, N. Targeted protein degradation mechanisms. Drug Discov. Today. Technol., 2019, 31, 53-60.
[http://dx.doi.org/10.1016/j.ddtec.2019.01.001] [PMID: 31200860]
[38]
Yang, K.; Song, Y.; Xie, H.; Wu, H.; Wu, Y.T.; Leisten, E.D.; Tang, W. Development of the first small molecule histone deacetylase 6 (HDAC6) degraders. Bioorg. Med. Chem. Lett., 2018, 28(14), 2493-2497.
[http://dx.doi.org/10.1016/j.bmcl.2018.05.057] [PMID: 29871848]
[39]
Sun, Y.; Zhao, X.; Ding, N.; Gao, H.; Wu, Y.; Yang, Y.; Zhao, M.; Hwang, J.; Song, Y.; Liu, W.; Rao, Y. PROTAC-induced BTK degradation as a novel therapy for mutated BTK C481S induced ibrutinib-resistant B-cell malignancies. Cell Res., 2018, 28(7), 779-781.
[http://dx.doi.org/10.1038/s41422-018-0055-1] [PMID: 29875397]
[40]
Chen, H.; Chen, F.; Liu, N.; Wang, X.; Gou, S. Chemically induced degradation of CK2 by proteolysis targeting chimeras based on a ubiquitin–proteasome pathway. Bioorg. Chem., 2018, 81, 536-544.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.005] [PMID: 30245235]
[41]
Lebraud, H.; Wright, D.J.; Johnson, C.N.; Heightman, T.D. Protein degradation by in-cell self-assembly of proteolysis targeting chimeras. ACS Cent. Sci., 2016, 2(12), 927-934.
[http://dx.doi.org/10.1021/acscentsci.6b00280] [PMID: 28058282]
[42]
Xia, L.W.; Ba, M.Y.; Liu, W.; Cheng, W.; Hu, C.P.; Zhao, Q.; Yao, Y.F.; Sun, M.R.; Duan, Y.T. Triazol: A privileged scaffold for proteolysis targeting chimeras. Future Med. Chem., 2019, 11(22), 2919-2973.
[http://dx.doi.org/10.4155/fmc-2019-0159] [PMID: 31702389]
[43]
Bian, J.; Ren, J.; Li, Y.; Wang, J.; Xu, X.; Feng, Y.; Tang, H.; Wang, Y.; Li, Z. Discovery of Wogonin-based PROTACs against CDK9 and capable of achieving antitumor activity. Bioorg. Chem., 2018, 81, 373-381.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.028] [PMID: 30196207]
[44]
Zagidullin, A.; Milyukov, V.; Rizvanov, A.; Bulatov, E. Novel approaches for the rational design of PROTAC linkers. Explor. Target. Antitumor Ther., 2020, 1(5), 381.
[http://dx.doi.org/10.37349/etat.2020.00023]
[45]
Han, X.; Sun, Y. PROTACs: A novel strategy for cancer drug discovery and development. MedComm, 2023, 4(3), e290.
[http://dx.doi.org/10.1002/mco2.290] [PMID: 37261210]
[46]
Buckley, D.L.; Van Molle, I.; Gareiss, P.C.; Tae, H.S.; Michel, J.; Noblin, D.J.; Jorgensen, W.L.; Ciulli, A.; Crews, C.M. Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1α interaction. J. Am. Chem. Soc., 2012, 134(10), 4465-4468.
[http://dx.doi.org/10.1021/ja209924v] [PMID: 22369643]
[47]
Ito, T.; Ando, H.; Suzuki, T.; Ogura, T.; Hotta, K.; Imamura, Y. Identification of a primary target of thalidomide teratogenicity. Science, 2010, 327(5971), 1345-1350.
[48]
Levine, A.J. P53, the cellular gatekeeper for growth and division. Cell, 1997, 88(3), 323-331.
[49]
Schneekloth, A.R.; Pucheault, M.; Tae, H.S.; Crews, C.M. Targeted intracellular protein degradation induced by a small molecule: En route to chemical proteomics. Bioorg. Med. Chem. Lett., 2008, 18(22), 5904-5908.
[http://dx.doi.org/10.1016/j.bmcl.2008.07.114] [PMID: 18752944]
[50]
Fang, Y.; Liao, G.; Yu, B. Small-molecule MDM2/X inhibitors and PROTAC degraders for cancer therapy: Advances and perspectives. Acta Pharm. Sin. B, 2020, 10(7), 1253-1278.
[http://dx.doi.org/10.1016/j.apsb.2020.01.003] [PMID: 32874827]
[51]
Fulda, S.; Vucic, D. Targeting IAP proteins for therapeutic intervention in cancer. Nat. Rev. Drug Discov., 2012, 11(2), 109-124.
[http://dx.doi.org/10.1038/nrd3627] [PMID: 22293567]
[52]
Shibata, N.; Nagai, K.; Morita, Y.; Ujikawa, O.; Ohoka, N.; Hattori, T.; Koyama, R.; Sano, O.; Imaeda, Y.; Nara, H.; Cho, N.; Naito, M. Development of protein degradation inducers of androgen receptor by conjugation of androgen receptor ligands and inhibitor of apoptosis protein ligands. J. Med. Chem., 2018, 61(2), 543-575.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00168] [PMID: 28594553]
[53]
Gao, H.; Sun, X.; Rao, Y. PROTAC technology: Opportunities and challenges. ACS Med. Chem. Lett., 2020, 11(3), 237-240.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00597] [PMID: 32184950]
[54]
Liang, J.; Wu, Y.; Lan, K.; Dong, C.; Wu, S.; Li, S.; Zhou, H.B. Antiviral PROTACs: Opportunity borne with challenge. Cell Insight, 2023, 2(3), 100092.
[http://dx.doi.org/10.1016/j.cellin.2023.100092] [PMID: 37398636]
[55]
Alexopoulou, A.; Vasilieva, L.; Karayiannis, P. New approaches to the treatment of chronic hepatitis B. J. Clin. Med., 2020, 9(10), 3187.
[http://dx.doi.org/10.3390/jcm9103187] [PMID: 33019573]
[56]
Lee, H.M.; Banini, B.A. Updates on chronic HBV: Current challenges and future goals. Curr. Treat. Options Gastroenterol., 2019, 17(2), 271-291.
[http://dx.doi.org/10.1007/s11938-019-00236-3] [PMID: 31077059]
[57]
Montrose, K.; Krissansen, G.W. Design of a PROTAC that antagonizes and destroys the cancer-forming X-protein of the hepatitis B virus. Biochem. Biophys. Res. Commun., 2014, 453(4), 735-740.
[http://dx.doi.org/10.1016/j.bbrc.2014.10.006] [PMID: 25305486]
[58]
Rodriguez-Gonzalez, A.; Cyrus, K.; Salcius, M.; Kim, K.; Crews, C.M.; Deshaies, R.J.; Sakamoto, K.M. Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer. Oncogene, 2008, 27(57), 7201-7211.
[http://dx.doi.org/10.1038/onc.2008.320] [PMID: 18794799]
[59]
Chen, J.; Wang, J.; Zhang, J.; Ly, H. Advances in development and application of influenza vaccines. Front. Immunol., 2021, 12, 711997.
[http://dx.doi.org/10.3389/fimmu.2021.711997] [PMID: 34326849]
[60]
Ma, Y.; Frutos-Beltrán, E.; Kang, D.; Pannecouque, C.; De Clercq, E.; Menéndez-Arias, L.; Liu, X.; Zhan, P. Medicinal chemistry strategies for discovering antivirals effective against drug-resistant viruses. Chem. Soc. Rev., 2021, 50(7), 4514-4540.
[http://dx.doi.org/10.1039/D0CS01084G] [PMID: 33595031]
[61]
Hussain, A.I.; Cordeiro, M.; Sevilla, E.; Liu, J. Comparison of egg and high yielding MDCK cell-derived live attenuated influenza virus for commercial production of trivalent influenza vaccine: In vitro cell susceptibility and influenza virus replication kinetics in permissive and semi-permissive cells. Vaccine, 2010, 28(22), 3848-3855.
[http://dx.doi.org/10.1016/j.vaccine.2010.03.005] [PMID: 20307595]
[62]
Mueller, S.; Coleman, J.R.; Papamichail, D.; Ward, C.B.; Nimnual, A.; Futcher, B.; Skiena, S.; Wimmer, E. Live attenuated influenza virus vaccines by computer-aided rational design. Nat. Biotechnol., 2010, 28(7), 723-726.
[http://dx.doi.org/10.1038/nbt.1636] [PMID: 20543832]
[63]
Li, Z.; Bai, H.; Xi, X.; Tian, W.; Zhang, J.Z.H.; Zhou, D.; Si, L. PROTAC vaccine: A new way to live attenuated vaccines. Clin. Transl. Med., 2022, 12(10), e1081.
[http://dx.doi.org/10.1002/ctm2.1081] [PMID: 36281705]
[64]
Si, L.; Shen, Q.; Li, J.; Chen, L.; Shen, J.; Xiao, X.; Bai, H.; Feng, T.; Ye, A.Y.; Li, L.; Zhang, C.; Li, Z.; Wang, P.; Oh, C.Y.; Nurani, A.; Niu, S.; Zhang, C.; Wei, X.; Yuan, W.; Liao, H.; Huang, X.; Wang, N.; Tian, W.; Tian, H.; Li, L.; Liu, X.; Plebani, R. Generation of a live attenuated influenza A vaccine by proteolysis targeting. Nat. Biotechnol., 2022, 40(9), 1370-1377.
[http://dx.doi.org/10.1038/s41587-022-01381-4] [PMID: 35788567]
[65]
Roizman, B. Fields Virology; Lippincott Williams & Wilkins: Lincoln, United Kingdom, 1996, p. 2.
[66]
Britt, W.J.; Prichard, M.N. New therapies for human cytomegalovirus infections. Antiviral Res., 2018, 159, 153-174.
[http://dx.doi.org/10.1016/j.antiviral.2018.09.003] [PMID: 30227153]
[67]
Sonntag, E.; Hahn, F.; Bertzbach, L.D.; Seyler, L.; Wangen, C.; Müller, R.; Tannig, P.; Grau, B.; Baumann, M.; Zent, E.; Zischinsky, G.; Eickhoff, J.; Kaufer, B.B.; Bäuerle, T.; Tsogoeva, S.B.; Marschall, M. In vivo proof-of-concept for two experimental antiviral drugs, both directed to cellular targets, using a murine cytomegalovirus model. Antiviral Res., 2019, 161, 63-69.
[http://dx.doi.org/10.1016/j.antiviral.2018.11.008] [PMID: 30452929]
[68]
Sonntag, E.; Milbradt, J.; Svrlanska, A.; Strojan, H.; Häge, S.; Kraut, A.; Hesse, A.M.; Amin, B.; Sonnewald, U.; Couté, Y.; Marschall, M. Protein kinases responsible for the phosphorylation of the nuclear egress core complex of human cytomegalovirus. J. Gen. Virol., 2017, 98(10), 2569-2581.
[http://dx.doi.org/10.1099/jgv.0.000931] [PMID: 28949903]
[69]
Hutterer, C.; Hamilton, S.; Steingruber, M.; Zeitträger, I.; Bahsi, H.; Thuma, N.; Naing, Z.; Örfi, Z.; Örfi, L.; Socher, E.; Sticht, H.; Rawlinson, W.; Chou, S.; Haupt, V.J.; Marschall, M. The chemical class of quinazoline compounds provides a core structure for the design of anticytomegaloviral kinase inhibitors. Antiviral Res., 2016, 134, 130-143.
[http://dx.doi.org/10.1016/j.antiviral.2016.08.005] [PMID: 27515131]
[70]
Hahn, F.; Hamilton, S.T.; Wangen, C.; Wild, M.; Kicuntod, J.; Brückner, N.; Follett, J.E.L.; Herrmann, L.; Kheimar, A.; Kaufer, B.B.; Rawlinson, W.D.; Tsogoeva, S.B.; Marschall, M. Development of a PROTAC-based targeting strategy provides a mechanistically unique mode of anti-cytomegalovirus activity. Int. J. Mol. Sci., 2021, 22(23), 12858.
[http://dx.doi.org/10.3390/ijms222312858] [PMID: 34884662]
[71]
Örgütü, D.S. WHO coronavirus (COVID-19) dashboard. 2021. Available from: https://covid19
[72]
Batalha, P.N.; Forezi, L.S.M.; Lima, C.G.S.; Pauli, F.P.; Boechat, F.C.S.; de Souza, M.C.B.V.; Cunha, A.C.; Ferreira, V.F.; da Silva, F.C. Drug repurposing for the treatment of COVID-19: Pharmacological aspects and synthetic approaches. Bioorg. Chem., 2021, 106, 104488.
[http://dx.doi.org/10.1016/j.bioorg.2020.104488] [PMID: 33261844]
[73]
Chakraborty, R.; Bhattacharje, G.; Baral, J.; Manna, B.; Mullick, J.; Mathapati, B.S.; Abraham, P.J.M.; Hasija, Y.; Ghosh, A.; Das, A.K. In-silico screening and in-vitro assay show the antiviral effect of Indomethacin against SARS-CoV-2. Comput. Biol. Med., 2022, 147, 105788.
[http://dx.doi.org/10.1016/j.compbiomed.2022.105788] [PMID: 35809412]
[74]
Amici, C.; Caro, A.D.; Ciucci, A.; Chiappa, L.; Castilletti, C.; Martella, V.; Decaro, N.; Buonavoglia, C.; Capobianchi, M.R.; Santoro, M.G. Indomethacin has a potent antiviral activity against SARS coronavirus. Antivir. Ther., 2006, 11(8), 1021-1030.
[http://dx.doi.org/10.1177/135965350601100803] [PMID: 17302372]
[75]
Desantis, J.; Mercorelli, B.; Celegato, M.; Croci, F.; Bazzacco, A.; Baroni, M.; Siragusa, L.; Cruciani, G.; Loregian, A.; Goracci, L. Indomethacin-based PROTACs as pan-coronavirus antiviral agents. Eur. J. Med. Chem., 2021, 226, 113814.
[http://dx.doi.org/10.1016/j.ejmech.2021.113814] [PMID: 34534839]
[76]
Trentini, D.B.; Suskiewicz, M.J.; Heuck, A.; Kurzbauer, R.; Deszcz, L.; Mechtler, K.; Clausen, T. Arginine phosphorylation marks proteins for degradation by a Clp protease. Nature, 2016, 539(7627), 48-53.
[http://dx.doi.org/10.1038/nature20122] [PMID: 27749819]
[77]
DeJesus, M.A.; Gerrick, E.R.; Xu, W.; Park, S.W.; Long, J.E.; Boutte, C.C.; Rubin, E.J.; Schnappinger, D.; Ehrt, S.; Fortune, S.M.; Sassetti, C.M.; Ioerger, T.R. Comprehensive essentiality analysis of the Mycobacterium tuberculosis genome via saturating transposon mutagenesis. MBio, 2017, 8(1), e02133-e16.
[http://dx.doi.org/10.1128/mBio.02133-16] [PMID: 28096490]
[78]
Venkatesan, J.; Murugan, D.; Rangasamy, L. A perspective on newly emerging proteolysis-targeting strategies in antimicrobial drug discovery. Antibiotics, 2022, 11(12), 1717.
[http://dx.doi.org/10.3390/antibiotics11121717] [PMID: 36551374]
[79]
Morreale, F.E.; Kleine, S.; Leodolter, J.; Junker, S.; Hoi, D.M.; Ovchinnikov, S. BacPROTACs mediate targeted protein degradation in bacteria. Cell, 2022, 185(13), 2338-2353.
[http://dx.doi.org/10.1016/j.cell.2022.05.009]
[80]
Vasudevan, D.; Rao, S.P.S.; Noble, C.G. Structural basis of mycobacterial inhibition by cyclomarin A. J. Biol. Chem., 2013, 288(43), 30883-30891.
[http://dx.doi.org/10.1074/jbc.M113.493767] [PMID: 24022489]
[81]
Filippakopoulos, P.; Qi, J.; Picaud, S.; Shen, Y.; Smith, W.B.; Fedorov, O.; Morse, E.M.; Keates, T.; Hickman, T.T.; Felletar, I.; Philpott, M.; Munro, S.; McKeown, M.R.; Wang, Y.; Christie, A.L.; West, N.; Cameron, M.J.; Schwartz, B.; Heightman, T.D.; La Thangue, N.; French, C.A.; Wiest, O.; Kung, A.L.; Knapp, S.; Bradner, J.E. Selective inhibition of BET bromodomains. Nature, 2010, 468(7327), 1067-1073.
[http://dx.doi.org/10.1038/nature09504] [PMID: 20871596]
[82]
Kargbo, R.B. PROTAC compounds targeting α-synuclein protein for treating neurogenerative disorders: Alzheimer’s and Parkinson’s diseases; ACS Publications, 2020, pp. 1086-1087.
[83]
Tomoshige, S.; Ishikawa, M. PROTACs and other chemical protein degradation technologies for the treatment of neurodegenerative disorders. Angew. Chem. Int. Ed., 2021, 60(7), 3346-3354.
[http://dx.doi.org/10.1002/anie.202004746] [PMID: 32410219]
[84]
Lu, M.; Liu, T.; Jiao, Q.; Ji, J.; Tao, M.; Liu, Y.; You, Q.; Jiang, Z. Discovery of a Keap1-dependent peptide PROTAC to knockdown Tau by ubiquitination-proteasome degradation pathway. Eur. J. Med. Chem., 2018, 146, 251-259.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.063] [PMID: 29407955]
[85]
Silva, M.C.; Ferguson, F.M.; Cai, Q.; Donovan, K.A.; Nandi, G.; Patnaik, D. Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models. eLife, 2019, 8, e45457.
[86]
Richard-Eaglin, A.; Smallheer, B.A. Immunosuppressive/auto-] immune disorders. Nurs. Clin. North Am., 2018, 53(3), 319-334.
[http://dx.doi.org/10.1016/j.cnur.2018.04.002] [PMID: 30099999]
[87]
Wang, L.; Wang, F.S.; Gershwin, M.E. Human autoimmune diseases: A comprehensive update. J. Intern. Med., 2015, 278(4), 369-395.
[http://dx.doi.org/10.1111/joim.12395] [PMID: 26212387]
[88]
Wang, Z.; Wesche, H.; Stevens, T.; Walker, N.; Yeh, W.C. IRAK-4 inhibitors for inflammation. Curr. Top. Med. Chem., 2009, 9(8), 724-737.
[http://dx.doi.org/10.2174/156802609789044407] [PMID: 19689377]
[89]
Nunes, J.; McGonagle, G.A.; Eden, J.; Kiritharan, G.; Touzet, M.; Lewell, X.; Emery, J.; Eidam, H.; Harling, J.D.; Anderson, N.A. Targeting IRAK4 for degradation with PROTACs. ACS Med. Chem. Lett., 2019, 10(7), 1081-1085.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00219] [PMID: 31312412]
[90]
Bassi, Z.I.; Fillmore, M.C.; Miah, A.H.; Chapman, T.D.; Maller, C.; Roberts, E.J.; Davis, L.C.; Lewis, D.E.; Galwey, N.W.; Waddington, K.E.; Parravicini, V.; Macmillan-Jones, A.L.; Gongora, C.; Humphreys, P.G.; Churcher, I.; Prinjha, R.K.; Tough, D.F. Modulating PCAF/GCN5 immune cell function through a PROTAC approach. ACS Chem. Biol., 2018, 13(10), 2862-2867.
[http://dx.doi.org/10.1021/acschembio.8b00705] [PMID: 30200762]
[91]
Hayden, M.R. Overview and new insights into the metabolic syndrome: risk factors and emerging variables in the development of type 2 diabetes and cerebrocardiovascular disease. Medicina, 2023, 59(3), 561.
[http://dx.doi.org/10.3390/medicina59030561] [PMID: 36984562]
[92]
Romeo, S.; Sanyal, A.; Valenti, L. Leveraging human genetics to identify potential new treatments for fatty liver disease. Cell Metab., 2020, 31(1), 35-45.
[http://dx.doi.org/10.1016/j.cmet.2019.12.002] [PMID: 31914377]
[93]
Wang, Y.; Kory, N. BasuRay, S.; Cohen, J.C.; Hobbs, H.H. PNPLA3, CGI‐58, and inhibition of hepatic triglyceride hydrolysis in mice. Hepatology, 2019, 69(6), 2427-2441.
[http://dx.doi.org/10.1002/hep.30583] [PMID: 30802989]
[94]
Cherubini, A.; Casirati, E.; Tomasi, M.; Valenti, L. PNPLA3 as a therapeutic target for fatty liver disease: The evidence to date. Expert Opin. Ther. Targets, 2021, 25(12), 1033-1043.
[http://dx.doi.org/10.1080/14728222.2021.2018418] [PMID: 34904923]
[95]
Unalp-Arida, A.; Ruhl, C.E. Patatin‐like phospholipase domain‐containing protein 3 I148M and liver fat and fibrosis scores predict liver disease mortality in the US population. Hepatology, 2020, 71(3), 820-834.
[http://dx.doi.org/10.1002/hep.31032] [PMID: 31705824]
[96]
Pingitore, P.; Romeo, S. The role of PNPLA3 in health and disease. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2019, 1864(6), 900-906.
[http://dx.doi.org/10.1016/j.bbalip.2018.06.018] [PMID: 29935383]
[97]
BasuRay. S.; Wang, Y.; Smagris, E.; Cohen, J.C.; Hobbs, H.H. Accumulation of PNPLA3 on lipid droplets is the basis of associated hepatic steatosis. Proc. Natl. Acad. Sci. USA, 2019, 116(19), 9521-9526.
[http://dx.doi.org/10.1073/pnas.1901974116] [PMID: 31019090]
[98]
Cheng, J.; Li, Y.; Wang, X.; Dong, G.; Sheng, C. Discovery of novel PDEδ degraders for the treatment of KRAS mutant colorectal cancer. J. Med. Chem., 2020, 63(14), 7892-7905.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00929] [PMID: 32603594]
[99]
Winzker, M.; Friese, A.; Koch, U.; Janning, P.; Ziegler, S.; Waldmann, H. Development of a pdeδ‐targeting PROTACs that impair lipid metabolism. Angew. Chem. Int. Ed., 2020, 59(14), 5595-5601.
[http://dx.doi.org/10.1002/anie.201913904] [PMID: 31829492]
[100]
Shao, W.; Espenshade, P.J. Expanding roles for SREBP in metabolism. Cell Metab., 2012, 16(4), 414-419.
[http://dx.doi.org/10.1016/j.cmet.2012.09.002] [PMID: 23000402]
[101]
Tang, J.J.; Li, J.G.; Qi, W.; Qiu, W.W.; Li, P.S.; Li, B.L.; Song, B.L. Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques. Cell Metab., 2011, 13(1), 44-56.
[http://dx.doi.org/10.1016/j.cmet.2010.12.004] [PMID: 21195348]
[102]
Zhao, Y.; Qian, Y.; Sun, Z.; Shen, X.; Cai, Y.; Li, L.; Wang, Z. Role of PI3K in the progression and regression of atherosclerosis. Front. Pharmacol., 2021, 12, 632378.
[http://dx.doi.org/10.3389/fphar.2021.632378] [PMID: 33767629]
[103]
Yan, J.; Wang, C.; Jin, Y.; Meng, Q.; Liu, Q.; Liu, Z.; Liu, K.; Sun, H. Catalpol ameliorates hepatic insulin resistance in type 2 diabetes through acting on AMPK/NOX4/PI3K/AKT pathway. Pharmacol. Res., 2018, 130, 466-480.
[http://dx.doi.org/10.1016/j.phrs.2017.12.026] [PMID: 29284152]
[104]
Li, W.; Gao, C.; Zhao, L.; Yuan, Z.; Chen, Y.; Jiang, Y. Phthalimide conjugations for the degradation of oncogenic PI3K. Eur. J. Med. Chem., 2018, 151, 237-247.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.066] [PMID: 29625382]
[105]
Wang, H.; Li, C.; Liu, X.; Ma, M. Design, synthesis and activity study of a novel PI3K degradation by hijacking VHL E3 ubiquitin ligase. Bioorg. Med. Chem., 2022, 61, 116707.
[http://dx.doi.org/10.1016/j.bmc.2022.116707] [PMID: 35344835]
[106]
Li, M.X.; Yang, Y.; Zhao, Q.; Wu, Y.; Song, L.; Yang, H.; He, M.; Gao, H.; Song, B.L.; Luo, J.; Rao, Y. Degradation versus inhibition: Development of proteolysis-targeting chimeras for overcoming statin-induced compensatory upregulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase. J. Med. Chem., 2020, 63(9), 4908-4928.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00339] [PMID: 32321253]
[107]
Moreau, K.; Coen, M.; Zhang, A.X.; Pachl, F.; Castaldi, M.P.; Dahl, G.; Boyd, H.; Scott, C.; Newham, P. Proteolysis‐targeting chimeras in drug development: A safety perspective. Br. J. Pharmacol., 2020, 177(8), 1709-1718.
[http://dx.doi.org/10.1111/bph.15014] [PMID: 32022252]
[108]
Trapotsi, M.A.; Mervin, L.H.; Afzal, A.M.; Sturm, N.; Engkvist, O.; Barrett, I.P.; Bender, A. Comparison of chemical structure and cell morphology information for multitask bioactivity predictions. J. Chem. Inf. Model., 2021, 61(3), 1444-1456.
[http://dx.doi.org/10.1021/acs.jcim.0c00864] [PMID: 33661004]
[109]
Trapotsi, M.A.; Mouchet, E.; Williams, G.; Monteverde, T.; Juhani, K.; Turkki, R.; Miljković, F.; Martinsson, A.; Mervin, L.; Pryde, K.R.; Müllers, E.; Barrett, I.; Engkvist, O.; Bender, A.; Moreau, K. Cell morphological profiling enables high-throughput screening for PROteolysis TArgeting Chimera (PROTAC) phenotypic signature. ACS Chem. Biol., 2022, 17(7), 1733-1744.
[http://dx.doi.org/10.1021/acschembio.2c00076] [PMID: 35793809]
[110]
Zeng, M.; Xiong, Y.; Safaee, N.; Nowak, R.P.; Donovan, K.A.; Yuan, C.J. Exploring targeted degradation strategy for oncogenic KRASG12C. Cell Chem. Biol., 2020, 27(1), 19-31.
[111]
Foley, C.A.; Potjewyd, F.; Lamb, K.N.; James, L.I.; Frye, S.V. Assessing the cell permeability of bivalent chemical degraders using the chloroalkane penetration assay. ACS Chem. Biol., 2020, 15(1), 290-295.
[http://dx.doi.org/10.1021/acschembio.9b00972] [PMID: 31846298]
[112]
Li, J.; Liu, J. PROTAC: A novel technology for drug development. ChemistrySelect, 2020, 5(42), 13232-13247.
[http://dx.doi.org/10.1002/slct.202003162]
[113]
Nowak, R.P.; DeAngelo, S.L.; Buckley, D.; He, Z.; Donovan, K.A.; An, J.; Safaee, N.; Jedrychowski, M.P.; Ponthier, C.M.; Ishoey, M.; Zhang, T.; Mancias, J.D.; Gray, N.S.; Bradner, J.E.; Fischer, E.S. Plasticity in binding confers selectivity in ligand-induced protein degradation. Nat. Chem. Biol., 2018, 14(7), 706-714.
[http://dx.doi.org/10.1038/s41589-018-0055-y] [PMID: 29892083]
[114]
Farnaby, W.; Koegl, M.; Roy, M.J.; Whitworth, C.; Diers, E.; Trainor, N.; Zollman, D.; Steurer, S.; Karolyi-Oezguer, J.; Riedmueller, C.; Gmaschitz, T.; Wachter, J.; Dank, C.; Galant, M.; Sharps, B.; Rumpel, K.; Traxler, E.; Gerstberger, T.; Schnitzer, R.; Petermann, O.; Greb, P.; Weinstabl, H.; Bader, G.; Zoephel, A.; Weiss-Puxbaum, A.; Ehrenhöfer-Wölfer, K.; Wöhrle, S.; Boehmelt, G.; Rinnenthal, J.; Arnhof, H.; Wiechens, N.; Wu, M.Y.; Owen-Hughes, T.; Ettmayer, P.; Pearson, M.; McConnell, D.B.; Ciulli, A. Publisher correction: BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design. Nat. Chem. Biol., 2019, 15(8), 846.
[http://dx.doi.org/10.1038/s41589-019-0329-z] [PMID: 31267096]
[115]
Zorba, A.; Nguyen, C.; Xu, Y.; Starr, J.; Borzilleri, K.; Smith, J.; Zhu, H.; Farley, K.A.; Ding, W.; Schiemer, J.; Feng, X.; Chang, J.S.; Uccello, D.P.; Young, J.A.; Garcia-Irrizary, C.N.; Czabaniuk, L.; Schuff, B.; Oliver, R.; Montgomery, J.; Hayward, M.M.; Coe, J.; Chen, J.; Niosi, M.; Luthra, S.; Shah, J.C.; El-Kattan, A.; Qiu, X.; West, G.M.; Noe, M.C.; Shanmugasundaram, V.; Gilbert, A.M.; Brown, M.F.; Calabrese, M.F. Delineating the role of cooperativity in the design of potent PROTACs for BTK. Proc. Natl. Acad. Sci. USA, 2018, 115(31), E7285-E7292.
[http://dx.doi.org/10.1073/pnas.1803662115] [PMID: 30012605]
[116]
Daniels, D.L.; Riching, K.M.; Urh, M. Monitoring and deciphering protein degradation pathways inside cells. Drug Discov. Today. Technol., 2019, 31, 61-68.
[http://dx.doi.org/10.1016/j.ddtec.2018.12.001] [PMID: 31200861]
[117]
Machleidt, T.; Woodroofe, C.C.; Schwinn, M.K.; Méndez, J.; Robers, M.B.; Zimmerman, K.; Otto, P.; Daniels, D.L.; Kirkland, T.A.; Wood, K.V. NanoBRET-A novel BRET platform for the analysis of protein–protein interactions. ACS Chem. Biol., 2015, 10(8), 1797-1804.
[http://dx.doi.org/10.1021/acschembio.5b00143] [PMID: 26006698]
[118]
Wang, Y.; Jiang, X.; Feng, F.; Liu, W.; Sun, H. Degradation of proteins by PROTACs and other strategies. Acta Pharm. Sin. B, 2020, 10(2), 207-238.
[http://dx.doi.org/10.1016/j.apsb.2019.08.001] [PMID: 32082969]
[119]
Bond, M.J. Crews, CM Proteolysis targeting chimeras (PROTACs) come of age: Entering the third decade of targeted protein degradation RSC. Chem. Biol., 2021, 2(3), 725-742.
[120]
Bondeson, D.P.; Smith, B.E.; Burslem, G.M.; Buhimschi, A.D.; Hines, J. Jaime-Figueroa, S Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem. Biol., 2018, 25(1), 78-87.
[http://dx.doi.org/10.1016/j.chembiol.2017.09.010]
[121]
Moore, A.R.; Rosenberg, S.C.; McCormick, F.; Malek, S. RAS-targeted therapies: Is the undruggable drugged? Nat. Rev. Drug Discov., 2020, 19(8), 533-552.
[http://dx.doi.org/10.1038/s41573-020-0068-6] [PMID: 32528145]
[122]
Bond, M.J.; Chu, L.; Nalawansha, D.A.; Li, K.; Crews, C.M. Targeted degradation of oncogenic KRASG12C by VHL-recruiting PROTACs. ACS Cent. Sci., 2020, 6(8), 1367-1375.
[http://dx.doi.org/10.1021/acscentsci.0c00411] [PMID: 32875077]
[123]
Neklesa, T.K.; Winkler, J.D.; Crews, C.M. Targeted protein degradation by PROTACs. Pharmacol. Ther., 2017, 174, 138-144.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.027] [PMID: 28223226]
[124]
Zhang, X.; Crowley, V.M.; Wucherpfennig, T.G.; Dix, M.M.; Cravatt, B.F. Electrophilic PROTACs that degrade nuclear proteins by engaging DCAF16. Nat. Chem. Biol., 2019, 15(7), 737-746.
[http://dx.doi.org/10.1038/s41589-019-0279-5] [PMID: 31209349]
[125]
Crew, A.P.; Raina, K.; Dong, H.; Qian, Y.; Wang, J.; Vigil, D.; Serebrenik, Y.V.; Hamman, B.D.; Morgan, A.; Ferraro, C.; Siu, K.; Neklesa, T.K.; Winkler, J.D.; Coleman, K.G.; Crews, C.M. Identification and characterization of Von Hippel-Lindau-recruiting proteolysis targeting chimeras (PROTACs) of TANK-binding kinase 1. J. Med. Chem., 2018, 61(2), 583-598.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00635] [PMID: 28692295]
[126]
Burslem, G.M.; Schultz, A.R.; Bondeson, D.P.; Eide, C.A.; Savage Stevens, S.L.; Druker, B.J.; Crews, C.M. Targeting BCR-ABL1 in chronic myeloid leukemia by PROTAC-mediated targeted protein degradation. Cancer Res., 2019, 79(18), 4744-4753.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-1236] [PMID: 31311809]
[127]
Sun, X.; Wang, J.; Yao, X.; Zheng, W.; Mao, Y.; Lan, T.; Wang, L.; Sun, Y.; Zhang, X.; Zhao, Q.; Zhao, J.; Xiao, R.P.; Zhang, X.; Ji, G.; Rao, Y. A chemical approach for global protein knockdown from mice to non-human primates. Cell Discov., 2019, 5(1), 10.
[http://dx.doi.org/10.1038/s41421-018-0079-1] [PMID: 30729032]
[128]
Burslem, G.M.; Crews, C.M. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell, 2020, 181(1), 102-114.
[http://dx.doi.org/10.1016/j.cell.2019.11.031] [PMID: 31955850]
[129]
Jacobsen, L.B.; Calvin, S.A.; Lobenhofer, E.K. Transcriptional effects of transfection: The potential for misinterpretation of gene expression data generated from transiently transfected cells. Biotechniques, 2009, 47(1), 617-624.
[http://dx.doi.org/10.2144/000113132] [PMID: 19594446]
[130]
Bruhn, M.A.; Pearson, R.B.; Hannan, R.D.; Sheppard, K.E. Second AKT: The rise of SGK in cancer signalling. Growth Factors, 2010, 28(6), 394-408.
[http://dx.doi.org/10.3109/08977194.2010.518616] [PMID: 20919962]
[131]
Tovell, H.; Testa, A.; Zhou, H.; Shpiro, N.; Crafter, C.; Ciulli, A.; Alessi, D.R. Design and characterization of SGK3-PROTAC1, an isoform specific SGK3 kinase PROTAC degrader. ACS Chem. Biol., 2019, 14(9), 2024-2034.
[http://dx.doi.org/10.1021/acschembio.9b00505] [PMID: 31461270]
[132]
Cantrill, C.; Chaturvedi, P.; Rynn, C.; Petrig Schaffland, J.; Walter, I.; Wittwer, M.B. Fundamental aspects of DMPK optimization of targeted protein degraders. Drug Discov. Today, 2020, 25(6), 969-982.
[http://dx.doi.org/10.1016/j.drudis.2020.03.012] [PMID: 32298797]
[133]
Han, X.; Wang, C.; Qin, C.; Xiang, W.; Fernandez-Salas, E.; Yang, C.Y.; Wang, M.; Zhao, L.; Xu, T.; Chinnaswamy, K.; Delproposto, J.; Stuckey, J.; Wang, S. Discovery of ARD-69 as a highly potent proteolysis targeting chimera (PROTAC) degrader of androgen receptor (AR) for the treatment of prostate cancer. J. Med. Chem., 2019, 62(2), 941-964.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01631] [PMID: 30629437]
[134]
Cromm, P.M.; Samarasinghe, K.T.G.; Hines, J.; Crews, C.M. Addressing kinase-independent functions of Fak via PROTAC-mediated degradation. J. Am. Chem. Soc., 2018, 140(49), 17019-17026.
[http://dx.doi.org/10.1021/jacs.8b08008] [PMID: 30444612]
[135]
Liu, X.; Zhang, X.; Lv, D.; Yuan, Y.; Zheng, G.; Zhou, D. Assays and technologies for developing proteolysis targeting chimera degraders. Future Med. Chem., 2020, 12(12), 1155-1179.
[http://dx.doi.org/10.4155/fmc-2020-0073] [PMID: 32431173]
[136]
Zhang, L.; Riley-Gillis, B.; Vijay, P.; Shen, Y. Acquired resistance to BET-PROTACs (proteolysis-targeting chimeras) caused by genomic alterations in core components of E3 ligase complexes. Mol. Cancer Ther., 2019, 18(7), 1302-1311.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-1129] [PMID: 31064868]
[137]
Barankiewicz, J.; Salomon-Perzyński, A.; Misiewicz-Krzemińska, I.; Lech-Marańda, E. CRL4CRBN E3 ligase complex as a therapeutic target in multiple myeloma. Cancers, 2022, 14(18), 4492.
[http://dx.doi.org/10.3390/cancers14184492] [PMID: 36139651]
[138]
Schapira, M.; Calabrese, M.F.; Bullock, A.N.; Crews, C.M. Targeted protein degradation: Expanding the toolbox. Nat. Rev. Drug Discov., 2019, 18(12), 949-963.
[http://dx.doi.org/10.1038/s41573-019-0047-y] [PMID: 31666732]
[139]
Smith, B.E.; Wang, S.L.; Jaime-Figueroa, S.; Harbin, A.; Wang, J.; Hamman, B.D.; Crews, C.M. Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase. Nat. Commun., 2019, 10(1), 131.
[http://dx.doi.org/10.1038/s41467-018-08027-7] [PMID: 30631068]
[140]
Shah, R.R.; Redmond, J.M.; Mihut, A.; Menon, M.; Evans, J.P.; Murphy, J.A.; Bartholomew, M.A.; Coe, D.M. Hi-JAK-ing the ubiquitin system: The design and physicochemical optimisation of JAK PROTACs. Bioorg. Med. Chem., 2020, 28(5), 115326.
[http://dx.doi.org/10.1016/j.bmc.2020.115326] [PMID: 32001089]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy