Generic placeholder image

Current Respiratory Medicine Reviews

Editor-in-Chief

ISSN (Print): 1573-398X
ISSN (Online): 1875-6387

Review Article

Association Between Respiratory Infections and Risk of Autism Spectrum Disorder

In Press, (this is not the final "Version of Record"). Available online 28 June, 2024
Author(s): Laura Turriziani*, Arianna Mancini, Maria Midiri, Maria Ludovica Albertini and Ambra Butera
Published on: 28 June, 2024

DOI: 10.2174/011573398X281954240614075538

Price: $95

Abstract

Autism Spectrum Disorder (ASD) is a complex and heterogeneous neurodevelopmental disorder. Its incidence has dramatically risen during the last few decades. ASD is a multifactorial disorder. In addition to genetic factors, the environment plays a key role during critical periods of neurodevelopment. The prenatal environment, as well as perinatal and postnatal exposures to infection and inflammation, are increasingly identified as potential risk factors for autism and can influence development and increase neurodevelopmental disorders. Immune dysfunction and dysregulation are considered an important factor contributing to the pathogenesis of autism and may influence the course and severity of the disease. This study aims to analyze the data available in the scientific literature regarding the correlation between respiratory infections and autism.

[1]
Diagnostic and Statistical Manual of Mental Disorders. (5th ed.). Arlington, VA: American Psychiatric Publishing 2013; pp. 5-25.
[2]
Moore DJ. Acute pain experience in individuals with autism spectrum disorders: A review. Autism 2015; 19(4): 387-99.
[http://dx.doi.org/10.1177/1362361314527839] [PMID: 24687688]
[3]
Maenner MJ, Warren Z, Williams AR, et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites, United States, 2020. MMWR Surveill Summ 2023; 72(2): 1-14.
[http://dx.doi.org/10.15585/mmwr.ss7202a1]
[4]
Hertz-Picciotto I, Schmidt R J, Krakowiak P. Understanding environmental contributions to autism: Causal concepts and the state of science. Autism Res 2018; 11(4): 554-86.
[http://dx.doi.org/10.1002/aur.1938]
[5]
Newschaffer CJ, Croen LA, Daniels J, et al. The epidemiology of autism spectrum disorders. Annu Rev Public Health 2007; 28(1): 235-58.
[http://dx.doi.org/10.1146/annurev.publhealth.28.021406.144007] [PMID: 17367287]
[6]
Ornoy A, Weinstein-Fudim L, Ergaz Z. Prenatal factors associated with autism spectrum disorder (ASD). Reprod Toxicol 2015; 56: 155-69.
[http://dx.doi.org/10.1016/j.reprotox.2015.05.007] [PMID: 26021712]
[7]
Ornoy A, Weinstein-Fudim L, Ergaz Z. Genetic syndromes, maternal diseases and antenatal factors associated with autism spectrum disorders (ASD). Front Neurosci 2016; 10: 316.
[http://dx.doi.org/10.3389/fnins.2016.00316] [PMID: 27458336]
[8]
Angelidou A, Asadi S, Alysandratos KD, Karagkouni A, Kourembanas S, Theoharides TC. Perinatal stress, brain inflammation and risk of autism-Review and proposal. BMC Pediatr 2012; 12(1): 89.
[http://dx.doi.org/10.1186/1471-2431-12-89] [PMID: 22747567]
[9]
Rossignol DA, Frye RE. A review of research trends in physiological abnormalities in autism spectrum disorders: Immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Mol Psychiatry 2012; 17(4): 389-401.
[http://dx.doi.org/10.1038/mp.2011.165] [PMID: 22143005]
[10]
Siniscalco D, Schultz S, Brigida A, Antonucci N. Inflammation and neuro-immune dysregulations in autism spectrum disorders. Pharmaceuticals 2018; 11(2): 56.
[http://dx.doi.org/10.3390/ph11020056] [PMID: 29867038]
[11]
Hughes HK, Mills Ko E, Rose D, Ashwood P. Immune dysfunction and autoimmunity as pathological mechanisms in autism spectrum disorders. Front Cell Neurosci 2018; 12: 405.
[http://dx.doi.org/10.3389/fncel.2018.00405] [PMID: 30483058]
[12]
Manti S, Xerra F, Spoto G, et al. Neurotrophins: Expression of brain–lung axis development. Int J Mol Sci 2023; 24(8): 7089.
[http://dx.doi.org/10.3390/ijms24087089] [PMID: 37108250]
[13]
Manti S, Brown P, Perez MK, Piedimonte G. The role of neurotrophins in inflammation and allergy. Vitam Horm 2017; 104: 313-41.
[http://dx.doi.org/10.1016/bs.vh.2016.10.010] [PMID: 28215300]
[14]
Mead J, Ashwood P. Evidence supporting an altered immune response in ASD. Immunol Lett 2015; 163(1): 49-55.
[http://dx.doi.org/10.1016/j.imlet.2014.11.006] [PMID: 25448709]
[15]
Patterson PH. Immune involvement in schizophrenia and autism: Etiology, pathology and animal models. Behav Brain Res 2009; 204(2): 313-21.
[http://dx.doi.org/10.1016/j.bbr.2008.12.016] [PMID: 19136031]
[16]
Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 2005; 57(1): 67-81.
[http://dx.doi.org/10.1002/ana.20315] [PMID: 15546155]
[17]
Braunschweig D, Krakowiak P, Duncanson P, et al. Autism-specific maternal autoantibodies recognize critical proteins in developing brain. Transl Psychiatry 2013; 3(7): e277.
[http://dx.doi.org/10.1038/tp.2013.50] [PMID: 23838888]
[18]
Theoharides TC, Tsilioni I, Patel AB, Doyle R. Atopic diseases and inflammation of the brain in the pathogenesis of autism spectrum disorders. Transl Psychiatry 2016; 6(6): e844.
[http://dx.doi.org/10.1038/tp.2016.77] [PMID: 27351598]
[19]
Robinson-Agramonte MA, Noris García E, Fraga Guerra J, et al. Immune dysregulation in autism spectrum disorder: What do we know about it? Int J Mol Sci 2022; 23(6): 3033.
[http://dx.doi.org/10.3390/ijms23063033] [PMID: 35328471]
[20]
Shibata A, Hitomi Y, Kambayashi Y, et al. Epidemiological study on the involvements of environmental factors and allergy in child mental health using the autism screening questionnaire. Res Autism Spectr Disord 2013; 7(1): 132-40.
[http://dx.doi.org/10.1016/j.rasd.2012.06.003]
[21]
Nardone S, Elliott E. The interaction between the immune system and epigenetics in the etiology of autism spectrum disorders. Front Neurosci 2016; 10: 329.
[http://dx.doi.org/10.3389/fnins.2016.00329] [PMID: 27462204]
[22]
Davidson M. Vaccination as a cause of autism-Myths and controversies. Dialogues Clin Neurosci 2017; 19(4): 403-7.
[http://dx.doi.org/10.31887/DCNS.2017.19.4/mdavidson] [PMID: 29398935]
[23]
Smith SEP, Li J, Garbett K, Mirnics K, Patterson PH. Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci 2007; 27(40): 10695-702.
[http://dx.doi.org/10.1523/JNEUROSCI.2178-07.2007] [PMID: 17913903]
[24]
Tordjman S, Charrier A, Kazatchkine M, et al. Natural IgG Anti-F (ab’)2 autoantibody activity in children with autism. Biomedicines 2023; 11(3): 715.
[http://dx.doi.org/10.3390/biomedicines11030715] [PMID: 36979694]
[25]
Usui N, Kobayashi H, Shimada S. Neuroinflammation and oxidative stress in the pathogenesis of autism spectrum disorder. Int J Mol Sci 2023; 24(6): 5487.
[http://dx.doi.org/10.3390/ijms24065487] [PMID: 36982559]
[26]
Shimizu Y, Sakata-Haga H, Saikawa Y, Hatta T. Influence of immune system abnormalities caused by maternal immune activation in the postnatal period. Cells 2023; 12(5): 741.
[http://dx.doi.org/10.3390/cells12050741] [PMID: 36899877]
[27]
Arad M, Piontkewitz Y, Albelda N, Shaashua L, Weiner I. Immune activation in lactating dams alters suckling's brain cytokines and produces non-overlapping behavioral deficits in adult female and male offspring: A novel neurodevelopmental model of sex-specific psychopathology. Brain Behav Immun 2017; 63: 35-49.
[http://dx.doi.org/10.1016/j.bbi.2017.01.015] [PMID: 28189716]
[28]
Cordeiro CN, Tsimis M, Burd I. Infections and brain development. Obstet Gynecol Surv 2015; 70(10): 644-55.
[http://dx.doi.org/10.1097/OGX.0000000000000236] [PMID: 26490164]
[29]
Beopoulos A, Gea M, Fasano A, Iris F. Autonomic nervous system neuroanatomical alterations could provoke and maintain gastrointestinal dysbiosis in autism spectrum disorder (ASD): A novel microbiome-host interaction mechanistic hypothesis. Nutrients 2021; 14(1): 65.
[http://dx.doi.org/10.3390/nu14010065] [PMID: 35010940]
[30]
Kong X, Liu J, Liu K, et al. Altered autonomic functions and gut microbiome in individuals with autism spectrum disorder (ASD): Implications for assisting ASD screening and diagnosis. J Autism Dev Disord 2021; 51(1): 144-57.
[http://dx.doi.org/10.1007/s10803-020-04524-1] [PMID: 32410097]
[31]
Xiong Y, Chen J, Li Y. Microglia and astrocytes underlie neuroinflammation and synaptic susceptibility in autism spectrum disorder. Front Neurosci 2023; 17: 1125428.
[http://dx.doi.org/10.3389/fnins.2023.1125428] [PMID: 37021129]
[32]
Brookman-Frazee L, Stadnick N, Chlebowski C, Baker-Ericzén M, Ganger W. Characterizing psychiatric comorbidity in children with autism spectrum disorder receiving publicly funded mental health services. Autism 2018; 22(8): 938-52.
[http://dx.doi.org/10.1177/1362361317712650] [PMID: 28914082]
[33]
Lecavalier L, McCracken CE, Aman MG, et al. An exploration of concomitant psychiatric disorders in children with autism spectrum disorder. Compr Psychiatry 2019; 88: 57-64.
[http://dx.doi.org/10.1016/j.comppsych.2018.10.012] [PMID: 30504071]
[34]
Sesso G, Cristofani C, Berloffa S, et al. Autism spectrum disorder and disruptive behavior disorders comorbidities delineate clinical phenotypes in attention-deficit hyperactivity disorder: Novel insights from the assessment of psychopathological and neuropsychological profiles. J Clin Med 2020; 9(12): 3839.
[http://dx.doi.org/10.3390/jcm9123839] [PMID: 33256132]
[35]
Kangarani-Farahani M, Malik MA, Zwicker JG. Motor impairments in children with autism spectrum disorder: A systematic review and meta-analysis. J Autism Dev Disord 2024; 54(5): 1977-97. Advance online publication
[http://dx.doi.org/10.1007/s10803-023-05948-1] [PMID: 36949273]
[36]
Mainieri G, Montini A, Nicotera A, Di Rosa G, Provini F, Loddo G. The genetics of sleep disorders in children: A narrative review. Brain Sci 2021; 11(10): 1259.
[http://dx.doi.org/10.3390/brainsci11101259] [PMID: 34679324]
[37]
McCauley JB, Elias R, Lord C. Trajectories of co-occurring psychopathology symptoms in autism from late childhood to adulthood. Dev Psychopathol 2020; 32(4): 1287-302.
[http://dx.doi.org/10.1017/S0954579420000826] [PMID: 32677592]
[38]
Laverty C, Agar G, Sinclair-Burton L, et al. The 10-year trajectory of aggressive behaviours in autistic individuals. J Intellect Disabil Res 2023; 67(4): 295-309.
[http://dx.doi.org/10.1111/jir.13004] [PMID: 36654499]
[39]
Goncalves MVM, Harger R, Braatz V, et al. Pediatric acute-onset neuropsychiatric syndrome (PANS) misdiagnosed as autism spectrum disorder. Immunol Lett 2018; 203: 52-3.
[http://dx.doi.org/10.1016/j.imlet.2018.09.009] [PMID: 30222991]
[40]
Gesundheit B, Zisman PD, Hochbaum L, et al. Autism spectrum disorder diagnosis using a new panel of immune- and inflammatory-related serum biomarkers: A case-control multicenter study. Front Pediatr 2023; 11: 967954.
[http://dx.doi.org/10.3389/fped.2023.967954] [PMID: 36896401]
[41]
Kordulewska NK, Kostyra E, Piskorz-Ogórek K, et al. Serum cytokine levels in children with spectrum autism disorder: Differences in pro- and anti-inflammatory balance. J Neuroimmunol 2019; 337: 577066.
[http://dx.doi.org/10.1016/j.jneuroim.2019.577066] [PMID: 31629288]
[42]
Trifonova EA, Mustafin ZS, Lashin SA, Kochetov AV. Abnormal mTOR activity in pediatric autoimmune neuropsychiatric and MIA-associated autism spectrum disorders. Int J Mol Sci 2022; 23(2): 967.
[http://dx.doi.org/10.3390/ijms23020967] [PMID: 35055151]
[43]
Han VX, Patel S, Jones HF, et al. Maternal acute and chronic inflammation in pregnancy is associated with common neurodevelopmental disorders: A systematic review. Transl Psychiatry 2021; 11(1): 71.
[http://dx.doi.org/10.1038/s41398-021-01198-w] [PMID: 33479207]
[44]
Lyall K, Van de Water J, Ashwood P, Hertz-Picciotto I. Asthma and allergies in children with autism spectrum disorders: Results from the charge study. Autism Res 2015; 8(5): 567-74.
[http://dx.doi.org/10.1002/aur.1471]
[45]
Akintunde ME, Rose M, Krakowiak P, et al. Increased production of IL-17 in children with autism spectrum disorders and co-morbid asthma. J Neuroimmunol 2015; 286: 33-41.
[http://dx.doi.org/10.1016/j.jneuroim.2015.07.003] [PMID: 26298322]
[46]
Chua RXY, Tay MJY, Ooi DSQ, et al. Understanding the link between allergy and neurodevelopmental disorders: A current review of factors and mechanisms. Front Neurol 2021; 11: 603571.
[http://dx.doi.org/10.3389/fneur.2020.603571] [PMID: 33658968]
[47]
Zheng Z, Zhang L, Zhu T, Huang J, Qu Y, Mu D. Association between asthma and autism spectrum disorder: A meta-analysis. PLoS One 2016; 11(6): e0156662.
[http://dx.doi.org/10.1371/journal.pone.0156662] [PMID: 27257919]
[48]
Patterson PH. Maternal infection and immune involvement in autism. Trends Mol Med 2011; 17(7): 389-94.
[http://dx.doi.org/10.1016/j.molmed.2011.03.001] [PMID: 21482187]
[49]
Manti S, Esper F, Alejandro-Rodriguez M, et al. Respiratory syncytial virus seropositivity at birth is associated with adverse neonatal respiratory outcomes. Pediatr Pulmonol 2020; 55(11): 3074-9.
[http://dx.doi.org/10.1002/ppul.25001] [PMID: 32741145]
[50]
Manti S, Leonardi S, Rezaee F, Harford TJ, Perez MK, Piedimonte G. Effects of vertical transmission of respiratory viruses to the offspring. Front Immunol 2022; 13: 853009.
[http://dx.doi.org/10.3389/fimmu.2022.853009] [PMID: 35359954]
[51]
Song JY, Park KV, Han SW, et al. Paradoxical long-term impact of maternal influenza infection on neonates and infants. BMC Infect Dis 2020; 20(1): 502.
[http://dx.doi.org/10.1186/s12879-020-05236-8] [PMID: 32652939]
[52]
Gunnes N, Gjessing HK, Bakken IJ, et al. Seasonal and pandemic influenza during pregnancy and risk of fetal death: A Norwegian registry-based cohort study. Eur J Epidemiol 2020; 35(4): 371-9.
[http://dx.doi.org/10.1007/s10654-020-00600-z] [PMID: 31950373]
[53]
al-Haddad BJS, Jacobsson B, Chabra S, et al. Long-term risk of neuropsychiatric disease after exposure to infection in utero. JAMA Psychiatry 2019; 76(6): 594-602.
[http://dx.doi.org/10.1001/jamapsychiatry.2019.0029] [PMID: 30840048]
[54]
Spoto G, Amore G, Vetri L, et al. Cerebellum and prematurity: A complex interplay between disruptive and dysmaturational events. Front Syst Neurosci 2021; 15: 655164.
[http://dx.doi.org/10.3389/fnsys.2021.655164] [PMID: 34177475]
[55]
Al-Haddad BJS, Oler E, Armistead B, et al. The fetal origins of mental illness. Am J Obstet Gynecol 2019; 221(6): 549-62.
[http://dx.doi.org/10.1016/j.ajog.2019.06.013] [PMID: 31207234]
[56]
Manti S, Marseglia L, D’Angelo G, et al. Cumulative stress: The effects of maternal and neonatal oxidative stress and oxidative stress-inducible genes on programming of atopy. Oxid Med Cell Longev 2016; 2016: 1-7.
[http://dx.doi.org/10.1155/2016/8651820] [PMID: 27504149]
[57]
Mazina V, Gerdts J, Trinh S, et al. Epigenetics of autism-related impairment: Copy number variation and maternal infection. J Dev Behav Pediatr 2015; 36(2): 61-7.
[http://dx.doi.org/10.1097/DBP.0000000000000126] [PMID: 25629966]
[58]
Wong H, Hoeffer C. Maternal IL-17A in autism. Exp Neurol 2018; 299(Pt A): 228-40.
[http://dx.doi.org/10.1016/j.expneurol.2017.04.010]
[59]
Choi GB, Yim YS, Wong H, et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science 2016; 351(6276): 933-9.
[http://dx.doi.org/10.1126/science.aad0314] [PMID: 26822608]
[60]
Fung SG, Fakhraei R, Condran G, et al. Neuropsychiatric outcomes in offspring after fetal exposure to maternal influenza infection during pregnancy: A systematic review. Reprod Toxicol 2022; 113: 155-69.
[http://dx.doi.org/10.1016/j.reprotox.2022.09.002] [PMID: 36100136]
[61]
Brucato M, Ladd-Acosta C, Li M, et al. Prenatal exposure to fever is associated with autism spectrum disorder in the boston birth cohort. Autism Res 2017; 10(11): 1878-90.
[http://dx.doi.org/10.1002/aur.1841]
[62]
Hornig M, Bresnahan MA, Che X, et al. Prenatal fever and autism risk. Mol Psychiatry 2018; 23(3): 759-66.
[http://dx.doi.org/10.1038/mp.2017.119] [PMID: 28607458]
[63]
Zerbo O, Iosif AM, Walker C, Ozonoff S, Hansen RL, Hertz-Picciotto I. Is maternal influenza or fever during pregnancy associated with autism or developmental delays? Results from the CHARGE (CHildhood Autism Risks from Genetics and Environment) study. J Autism Dev Disord 2013; 43(1): 25-33.
[http://dx.doi.org/10.1007/s10803-012-1540-x] [PMID: 22562209]
[64]
Zerbo O, Qian Y, Yoshida C, Fireman BH, Klein NP, Croen LA. Association between influenza infection and vaccination during pregnancy and risk of autism spectrum disorder. JAMA Pediatr 2017; 171(1): e163609.
[http://dx.doi.org/10.1001/jamapediatrics.2016.3609] [PMID: 27893896]
[65]
Becerra-Culqui TA, Getahun D, Chiu V, Sy LS, Tseng HF. Prenatal influenza vaccination or influenza infection and autism spectrum disorder in offspring. Clin Infect Dis 2022; 75(7): 1140-8.
[http://dx.doi.org/10.1093/cid/ciac101] [PMID: 35174388]
[66]
Bührer C, Endesfelder S, Scheuer T, Schmitz T. Paracetamol (Acetaminophen) and the developing brain. Int J Mol Sci 2021; 22(20): 11156.
[http://dx.doi.org/10.3390/ijms222011156] [PMID: 34681816]
[67]
Yu T, Lien YJ, Liang FW, Kuo PL. Parental socioeconomic status and autism spectrum disorder in offspring: A population-based cohort study in Taiwan. Am J Epidemiol 2021; 190(5): 807-16.
[http://dx.doi.org/10.1093/aje/kwaa241] [PMID: 33128070]
[68]
Christian L M, Porter K, Karlsson E, Schultz-Cherry S, Iams J D. Serum proinflammatory cytokine responses to influenza virus vaccine among women during pregnancy versus non-pregnancy. Am J Reprod Immunol 2013; 70(1): 45-53.
[http://dx.doi.org/10.1111/aji.12117]
[69]
Ludvigsson JF, Winell H, Sandin S, Cnattingius S, Stephansson O, Pasternak B. Maternal influenza A(H1N1) immunization during pregnancy and risk for autism spectrum disorder in offspring. Ann Intern Med 2020; 173(8): 597-604.
[http://dx.doi.org/10.7326/M20-0167] [PMID: 32866418]
[70]
Mehrabadi A, Dodds L, MacDonald NE, et al. Association of maternal influenza vaccination during pregnancy with early childhood health outcomes. JAMA 2021; 325(22): 2285-93.
[http://dx.doi.org/10.1001/jama.2021.6778] [PMID: 34100870]
[71]
Regan AK, Munoz FM. Efficacy and safety of influenza vaccination during pregnancy: Realizing the potential of maternal influenza immunization. Expert Rev Vaccines 2021; 20(6): 649-60.
[http://dx.doi.org/10.1080/14760584.2021.1915138] [PMID: 33832397]
[72]
Naidu SAG, Clemens RA, Pressman P, et al. COVID-19 during pregnancy and postpartum. J Diet Suppl 2022; 19(1): 115-42.
[http://dx.doi.org/10.1080/19390211.2020.1834049] [PMID: 33164601]
[73]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[74]
Perrone S, Cannavò L, Manti S, et al. Pediatric multisystem syndrome associated with SARS-CoV-2 (MIS-C): The interplay of oxidative stress and inflammation. Int J Mol Sci 2022; 23(21): 12836.
[http://dx.doi.org/10.3390/ijms232112836] [PMID: 36361640]
[75]
Lokken EM, Taylor GG, Huebner EM, et al. Higher severe acute respiratory syndrome coronavirus 2 infection rate in pregnant patients. Am J Obstet Gynecol 2021; 225(1): 75.e1-75.e16.
[http://dx.doi.org/10.1016/j.ajog.2021.02.011] [PMID: 33607103]
[76]
Fenizia C, Biasin M, Cetin I, et al. Analysis of SARS-CoV-2 vertical transmission during pregnancy. Nat Commun 2020; 11(1): 5128.
[http://dx.doi.org/10.1038/s41467-020-18933-4] [PMID: 33046695]
[77]
Hosier H, Farhadian SF, Morotti RA, et al. SARS–CoV-2 infection of the placenta. J Clin Invest 2020; 130(9): 4947-53.
[http://dx.doi.org/10.1172/JCI139569] [PMID: 32573498]
[78]
Patanè L, Morotti D, Giunta MR, et al. Vertical transmission of coronavirus disease 2019: Severe acute respiratory syndrome coronavirus 2 RNA on the fetal side of the placenta in pregnancies with coronavirus disease 2019–positive mothers and neonates at birth. Am J Obstet Gynecol MFM 2020; 2(3): 100145.
[http://dx.doi.org/10.1016/j.ajogmf.2020.100145] [PMID: 32427221]
[79]
Figueiredo CP, Fontes-Dantas FL, da Poian AT, Clarke JR. SARS-CoV-2-associated cytokine storm during pregnancy as a possible risk factor for neuropsychiatric disorder development in post-pandemic infants. Neuropharmacology 2021; 201: 108841.
[http://dx.doi.org/10.1016/j.neuropharm.2021.108841] [PMID: 34666076]
[80]
Hutsler JJ, Zhang H. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res 2010; 1309: 83-94.
[http://dx.doi.org/10.1016/j.brainres.2009.09.120] [PMID: 19896929]
[81]
Marchetto MC, Belinson H, Tian Y, et al. Altered proliferation and networks in neural cells derived from idiopathic autistic individuals. Mol Psychiatry 2017; 22(6): 820-35.
[http://dx.doi.org/10.1038/mp.2016.95] [PMID: 27378147]
[82]
Tang G, Gudsnuk K, Kuo SH, et al. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 2014; 83(5): 1131-43.
[http://dx.doi.org/10.1016/j.neuron.2014.07.040] [PMID: 25155956]
[83]
Presti S, Manti S, Parisi GF, et al. Lactoferrin: Cytokine modulation and application in clinical practice. J Clin Med 2021; 10(23): 5482.
[http://dx.doi.org/10.3390/jcm10235482] [PMID: 34884183]
[84]
Male V. SARS-CoV-2 infection and COVID-19 vaccination in pregnancy. Nat Rev Immunol 2022; 22(5): 277-82.
[http://dx.doi.org/10.1038/s41577-022-00703-6] [PMID: 35304596]
[85]
Beharier O, Plitman Mayo R, Raz T, et al. Efficient maternal to neonatal transfer of antibodies against SARS-CoV-2 and BNT162b2 mRNA COVID-19 vaccine. J Clin Invest 2021; 131(13): e150319.
[http://dx.doi.org/10.1172/JCI150319] [PMID: 34014840]
[86]
Mithal LB, Otero S, Shanes ED, Goldstein JA, Miller ES. Cord blood antibodies following maternal coronavirus disease 2019 vaccination during pregnancy. Am J Obstet Gynecol 2021; 225(2): 192-4.
[http://dx.doi.org/10.1016/j.ajog.2021.03.035] [PMID: 33812808]
[87]
Prahl M, Golan Y, Cassidy AG, et al. Evaluation of transplacental transfer of mRNA vaccine products and functional antibodies during pregnancy and infancy. Nat Commun 2022; 13(1): 4422.
[http://dx.doi.org/10.1038/s41467-022-32188-1] [PMID: 35908075]
[88]
Kalafat E, Heath P, Prasad S, O’Brien P, Khalil A. COVID-19 vaccination in pregnancy. Am J Obstet Gynecol 2022; 227(2): 136-47.
[http://dx.doi.org/10.1016/j.ajog.2022.05.020] [PMID: 35568189]
[89]
Cannavò L, Perrone S, Viola V, Marseglia L, Di Rosa G, Gitto E. Oxidative stress and respiratory diseases in preterm newborns. Int J Mol Sci 2021; 22(22): 12504.
[http://dx.doi.org/10.3390/ijms222212504] [PMID: 34830385]
[90]
Markowitz PI. Autism in a child with congenital cytomegalovirus infection. J Autism Dev Disord 1983; 13(3): 249-53.
[http://dx.doi.org/10.1007/BF01531564] [PMID: 6315673]
[91]
Yamashita Y, Fujimoto C, Nakajima E, Isagai T, Matsuishi T. Possible association between congenital cytomegalovirus infection and autistic disorder. J Autism Dev Disord 2003; 33(4): 455-9.
[http://dx.doi.org/10.1023/A:1025023131029] [PMID: 12959425]
[92]
Lintas C, Altieri L, Lombardi F, Sacco R, Persico AM. Association of autism with polyomavirus infection in postmortem brains. J Neurovirol 2010; 16(2): 141-9.
[http://dx.doi.org/10.3109/13550281003685839] [PMID: 20345322]
[93]
Chess S, Fernandez P, Korn S. Behavioral consequences of congenital rubella. J Pediatr 1978; 93(4): 699-703.
[http://dx.doi.org/10.1016/S0022-3476(78)80921-4] [PMID: 702254]
[94]
Deykin E, MacMahon B. Viral exposure and autism. Am J Epidemiol 1979; 109(6): 628-38.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a112726] [PMID: 222139]
[95]
Libbey J, Sweeten T, McMahon W, Fujinami R. Autistic disorder and viral infections. J Neurovirol 2005; 11(1): 1-10.
[http://dx.doi.org/10.1080/13550280590900553] [PMID: 15804954]
[96]
van den Pol AN. Viral infections in the developing and mature brain. Trends Neurosci 2006; 29(7): 398-406.
[http://dx.doi.org/10.1016/j.tins.2006.06.002] [PMID: 16806513]
[97]
Shuid AN, Jayusman PA, Shuid N, Ismail J, Kamal Nor N, Mohamed IN. Association between viral infections and risk of autistic disorder: An overview. Int J Environ Res Public Health 2021; 18(6): 2817.
[http://dx.doi.org/10.3390/ijerph18062817] [PMID: 33802042]
[98]
Di Rosa G, Cavallaro T, Alibrandi A, et al. Predictive role of early milestones-related psychomotor profiles and long-term neurodevelopmental pitfalls in preterm infants. Early Hum Dev 2016; 101: 49-55.
[http://dx.doi.org/10.1016/j.earlhumdev.2016.04.012] [PMID: 27405056]
[99]
Taylor LE, Swerdfeger AL, Eslick GD. Vaccines are not associated with autism: An evidence-based meta-analysis of case-control and cohort studies. Vaccine 2014; 32(29): 3623-9.
[http://dx.doi.org/10.1016/j.vaccine.2014.04.085] [PMID: 24814559]
[100]
Langford NJ, Ferner RE. Toxicity of mercury. J Hum Hypertens 1999; 13(10): 651-6.
[http://dx.doi.org/10.1038/sj.jhh.1000896] [PMID: 10516733]
[101]
Persico AM, Cucinotta F, Ricciardello A, Turriziani L. Chapter 3 - Autisms. Neurodevelopmental Disorders. Academic Press 2020; pp. 35-77.
[102]
Jain N, Lodha R, Kabra SK. Upper respiratory tract infections. Indian J Pediatr 2001; 68(12): 1135-8.
[http://dx.doi.org/10.1007/BF02722930] [PMID: 11838568]
[103]
le Roux DM, Zar HJ. Community-acquired pneumonia in children — A changing spectrum of disease. Pediatr Radiol 2017; 47(11): 1392-8.
[http://dx.doi.org/10.1007/s00247-017-3827-8] [PMID: 29043417]
[104]
Kyu HH, Pinho C, Wagner JA, et al. Global and national burden of diseases and injuries among children and adolescents between 1990 and 2013. JAMA Pediatr 2016; 170(3): 267-87.
[http://dx.doi.org/10.1001/jamapediatrics.2015.4276] [PMID: 26810619]
[105]
de Benedictis FM, Bush A. Recurrent lower respiratory tract infections in children. BMJ 2018; 362: k2698.
[http://dx.doi.org/10.1136/bmj.k2698] [PMID: 30002015]
[106]
Rosen NJ, Yoshida CK, Croen LA. Infection in the first 2 years of life and autism spectrum disorders. Pediatrics 2007; 119(1): e61-9.
[http://dx.doi.org/10.1542/peds.2006-1788] [PMID: 17200260]
[107]
Lamberti M, Siracusano R, Italiano D, et al. Head-to-head comparison of aripiprazole and risperidone in the treatment of ADHD symptoms in children with autistic spectrum disorder and ADHD: A pilot, open-label, randomized controlled study. Paediatr Drugs 2016; 18(4): 319-29.
[http://dx.doi.org/10.1007/s40272-016-0183-3] [PMID: 27278054]
[108]
Mason-Brothers A, Ritvo ER, Freeman BJ, et al. The UCLA-University of Utah epidemiologic survey of autism: Recurrent infections. Eur Child Adolesc Psychiatry 1993; 2(2): 79-90.
[http://dx.doi.org/10.1007/BF02098863] [PMID: 29871451]
[109]
Ruben RJ, Bagger-Sjoback D, Downs MP, et al. Recent advances in otitis media. Complications and sequelae. Ann Otol Rhinol Laryngol Suppl 1989; 139: 46-55.
[http://dx.doi.org/10.1177/00034894890980S412] [PMID: 2494931]
[110]
Samsam M, Ahangari R, Naser SA. Pathophysiology of autism spectrum disorders: Revisiting gastrointestinal involvement and immune imbalance. World J Gastroenterol 2014; 20(29): 9942-51.
[http://dx.doi.org/10.3748/wjg.v20.i29.9942] [PMID: 25110424]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy