Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Systematic Review Article

The Search for Drugs Derived from Natural Products for Toxoplasma gondii Infection Treatment in the Last 20 Years - A Systematic Review

In Press, (this is not the final "Version of Record"). Available online 28 June, 2024
Author(s): Fabielle Marques-Santos, Robson Xavier Faria* and Maria Regina Reis Amendoeira
Published on: 28 June, 2024

DOI: 10.2174/0115680266299409240606062235

Price: $95

Abstract

Introduction: Toxoplasmosis is a worldwide distributed zoonosis caused by Toxo-plasma gondii (T. gondii), an obligate intracellular protozoan. The infection in immunocompetent hosts usually progresses with mild or no symptoms. However, in immunocompromised individu-als, this disease can cause severe or fatal symptoms.

Method: Sulfadiazine and pyrimethamine are two drugs used as standard therapies for human toxoplasmosis. Although they do not cause chronic infection, they may cause hematological tox-icity, hypersensitivity, intolerance, teratogenic effects, gastrointestinal disorders, and bone mar-row suppression.

Result: The limited effect, significant toxicity, and emerging resistance to current drugs available to treat T. gondii infections require investigating other effective, nontoxic, and well-tolerated al-ternatives. Medicinal plants are, traditionally, the most promising sources used to treat infectious diseases.

Conclusion: This review provides data on new therapeutic and prophylactic methods for T. gondii infection based on the use of extracts and/or compounds derived from natural products, which have been reported to be useful as alternative treatment options in the last 20 years.

[1]
Dubey, J.P.; Lago, E.G.; Gennari, S.M.; Su, C.; Jones, J.L. Toxoplasmosis in humans and animals in Brazil: high prevalence, high burden of disease, and epidemiology. Parasitology, 2012, 139(11), 1375-1424.
[http://dx.doi.org/10.1017/S0031182012000765] [PMID: 22776427]
[2]
Sobral, C.A.; Klein, C.H.; Patel, B.N.; Teva, A.; Amendoeira, M.R.R. Seroprevalence of infection with Toxoplasma gondii in indigenous Brazilian populations. Am. J. Trop. Med. Hyg., 2005, 72(1), 37-41.
[http://dx.doi.org/10.4269/ajtmh.2005.72.37] [PMID: 15728865]
[3]
Robert-Gangneux, F.; Dardé, M.L. Epidemiology of and diagnostic strategies for toxoplasmosis. Clin. Microbiol. Rev., 2012, 25(2), 264-296.
[http://dx.doi.org/10.1128/CMR.05013-11] [PMID: 22491772]
[4]
Montazeri, M; Mehrzadi, S; Sharif, M; Sarvi, S; Tanzifi, A; Aghayan, SA Daryani, A Drug Resistance in Toxoplasma gondii. Front. Microbiol., 2018, 29(9), 2587.
[http://dx.doi.org/10.3389/fmicb.2018.02587]
[5]
Martínez, A.F.F.; Teixeira, S.C.; de Souza, G.; Rosini, A.M.; Júnior, J.P.L.; Melo, G.N.; Blandón, K.O.E.; Gomes, A.O.; Ambrósio, S.R.; Veneziani, R.C.S.; Bastos, J.K.; Martins, C.H.G.; Ferro, E.A.V.; Barbosa, B.F. Leaf hydroalcoholic extract and oleoresin from Copaifera multijuga control Toxoplasma gondii infection in human trophoblast cells and placental explants from thirdtrimester pregnancy. Front. Cell. Infect. Microbiol., 2023, 131113896.
[http://dx.doi.org/10.3389/fcimb.2023.1113896] [PMID: 36860986]
[6]
Tomita, T.; Bzik, D.J.; Ma, Y.F.; Fox, B.A.; Markillie, L.M.; Taylor, R.C.; Kim, K.; Weiss, L.M. The Toxoplasma gondii cyst wall protein CST1 is critical for cyst wall integrity and promotes bradyzoite persistence. PLoS Pathog., 2013, 9(12), e1003823.
[http://dx.doi.org/10.1371/journal.ppat.1003823] [PMID: 24385904]
[7]
Barratt, J.L.N.; Harkness, J.; Marriott, D.; Ellis, J.T.; Stark, D. Importance of nonenteric protozoan infections in immunocompromised people. Clin. Microbiol. Rev., 2010, 23(4), 795-836.
[http://dx.doi.org/10.1128/CMR.00001-10] [PMID: 20930074]
[8]
Alanazi, A.D.; Almohammed, H.I. Therapeutic Potential and Safety of the Cinnamomum zeylanicum Methanolic Extract Against Chronic Toxoplasma gondii Infection in Mice. Front. Cell. Infect. Microbiol., 2022, 12900046.
[http://dx.doi.org/10.3389/fcimb.2022.900046] [PMID: 35755846]
[9]
Alanazi, A.D.; Majeed, Q.A.H.; Alnomasy, S.F.; Almohammed, H.I. Potent In Vitro and In Vivo Effects of Stachys lavandulifolia Methanolic Extract against Toxoplasma gondii Infection. Trop. Med. Infect. Dis., 2023, 8(7), 355.
[http://dx.doi.org/10.3390/tropicalmed8070355] [PMID: 37505651]
[10]
Dunay, I.R.; Gajurel, K.; Dhakal, R.; Liesenfeld, O.; Montoya, J.G. Treatment of toxoplasmosis: historical perspective, animal models, and current clinical practice. Clin. Microbiol. Rev., 2018, 31(4), e00057-17.
[http://dx.doi.org/10.1128/CMR.00057-17] [PMID: 30209035]
[11]
Furtado, J.; Smith, J.; Belfort, R., Jr; Gattey, D.; Winthrop, K. Toxoplasmosis: A global threat. J. Glob. Infect. Dis., 2011, 3(3), 281-284.
[http://dx.doi.org/10.4103/0974-777X.83536] [PMID: 21887062]
[12]
Rodriguez, J.B.; Szajnman, S.H. New antibacterials for the treatment of toxoplasmosis; a patent review. Expert Opin. Ther. Pat., 2012, 22(3), 311-333.
[http://dx.doi.org/10.1517/13543776.2012.668886 ] [PMID: 22404108]
[13]
McLeod, R.; Kieffer, F.; Sautter, M.; Hosten, T.; Pelloux, H. Why prevent, diagnose and treat congenital toxoplasmosis? Mem. Inst. Oswaldo Cruz, 2009, 104(2), 320-344.
[http://dx.doi.org/10.1590/S0074-02762009000200029 ] [PMID: 19430661]
[14]
Hamed, E.F.A.; Mostafa, N.E.; Fawzy, E.M.; Ibrahim, M.N.; Attia, R.; Salama, M.A. The delayed death-causing nature of Rosmarinus officinalis leaf extracts and their mixture within experimental chronic toxoplasmosis: Therapeutic and prophylactic implications. Acta Trop., 2021, 221105992.
[http://dx.doi.org/10.1016/j.actatropica.2021.105992 ] [PMID: 34089696]
[15]
Fouad, H.; Hongjie, L.; Hosni, D.; Wei, J.; Abbas, G.; Ga’al, H.; Jianchu, M. Controlling Aedes albopictus and Culex pipiens pallens using silver nanoparticles synthesized from aqueous extract of Cassia fistula fruit pulp and its mode of action. Artif. Cells Nanomed. Biotechnol., 2018, 46(3), 558-567.
[http://dx.doi.org/10.1080/21691401.2017.1329739 ] [PMID: 28541740]
[16]
Kheirandish, F.; Chegeni, R.; Delfan, B.; Jabari, M.; Ebrahimzadeh, F.; Rashidipour, M. The cytotoxic and antileishmanial effects of Satureja Khuzestanica essential oil. Herbal Med J, 2016, 1, 11-17.
[17]
Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov., 2015, 14(2), 111-129.
[http://dx.doi.org/10.1038/nrd4510] [PMID: 25614221]
[18]
Thomford, N.; Senthebane, D.; Rowe, A.; Munro, D.; Seele, P.; Maroyi, A.; Dzobo, K. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. Int. J. Mol. Sci., 2018, 19(6), 1578.
[http://dx.doi.org/10.3390/ijms19061578] [PMID: 29799486]
[19]
Abdullahi, S.A.; Unyah, N.Z.; Nordin, N.; Basir, R.; Nasir, W.M.; Alapid, A.A.; Hassan, Y.; Mustapha, T.; Majid, R.A. Phytochemicals and Potential Therapeutic Targets on Toxoplasma gondii Parasite. Mini Rev. Med. Chem., 2020, 20(9), 739-753.
[http://dx.doi.org/10.2174/1389557519666191029105736] [PMID: 31660810]
[20]
Bhattacharyya, S.; Rana, D.; Bhattacharyya, S.N. Determination of heat of formation of associated systems by calorimetry. J lndian Cllem Soe, 1997, 74, 103-107.
[http://dx.doi.org/10.5281/ZENODO.5875144]
[21]
Ruan, J.; Liu, Z.; Qiu, F.; Shi, H.; Wang, M. Simultaneous Quantification of Five Sesquiterpene Components after Ultrasound Extraction in Artemisia annua L. by an Accurate and Rapid UPLC-PDA Assay. Molecules, 2019, 24(8), 1530.
[http://dx.doi.org/10.3390/molecules24081530] [PMID: 31003442]
[22]
International ethical guidelines for biomedical research involving human subjects. Bull. Med. Ethics, 2002, (182), 17-23.
[PMID: 14983848]
[23]
Youn, H.J.; Lakritz, J.; Rottinghaus, G.E.; Seo, H.S.; Kim, D.Y.; Cho, M.H.; Marsh, A.E. Anti-protozoal efficacy of high performance liquid chromatography fractions of Torilis japonica and Sophora flavescens extracts on Neospora caninum and Toxoplasma gondii. Vet. Parasitol., 2004, 125(3-4), 409-414.
[http://dx.doi.org/10.1016/j.vetpar.2004.08.002] [PMID: 15482896]
[24]
Loo, C.S.N.; Lam, N.S.K.; Yu, D.; Su, X.; Lu, F. Artemisinin and its derivatives in treating protozoan infections beyond malaria. Pharmacol. Res., 2017, 117, 192-217.
[http://dx.doi.org/10.1016/j.phrs.2016.11.012] [PMID: 27867026]
[25]
Banzragchgarav, O.; Ariefta, N.R.; Murata, T.; Myagmarsuren, P.; Battsetseg, B.; Battur, B.; Batkhuu, J.; Nishikawa, Y. Evaluation of Mongolian compound library for potential antimalarial and anti-Toxoplasma agents. Parasitol. Int., 2021, 85102424.
[http://dx.doi.org/10.1016/j.parint.2021.102424] [PMID: 34302982]
[26]
Sarciron, M.E.; Peyron, F.; Saccharin, C.; Petavy, A.F. Effects of artesunate, dihydroartemisinin, and an artesunate-dihydroartemisinin combination against Toxoplasma gondii. Am. J. Trop. Med. Hyg., 2000, 62(1), 73-76.
[http://dx.doi.org/10.4269/ajtmh.2000.62.73] [PMID: 10761727]
[27]
Meshnick, S.R. Artemisinin: mechanisms of action, resistance and toxicity. Int. J. Parasitol., 2002, 32(13), 1655-1660.
[http://dx.doi.org/10.1016/S0020-7519(02)00194-7]
[28]
Räth, K.; Heide, L.; Gleiter, C.H.; Taxis, K.; Li, S.M.; Walz, G. Pharmacokinetic study of artemisinin after oral intake of a traditional preparation of Artemisia annua L. (annual wormwood). Am. J. Trop. Med. Hyg., 2004, 70(2), 128-132.
[http://dx.doi.org/10.4269/ajtmh.2004.70.128] [PMID: 14993622]
[29]
Munyangi, J.; Cornet-Vernet, L.; Idumbo, M.; Lu, C.; Lutgen, P.; Perronne, C.; Ngombe, N.; Bianga, J.; Mupenda, B.; Lalukala, P.; Mergeai, G.; Mumba, D.; Towler, M.; Weathers, P. RETRACTED: Artemisia annua and Artemisia afra tea infusions vs. artesunate-amodiaquine (ASAQ) in treating Plasmodium falciparum malaria in a large scale, double blind, randomized clinical trial. Phytomedicine, 2019, 57, 49-56.
[http://dx.doi.org/10.1016/j.phymed.2018.12.002] [PMID: 30668322]
[30]
Qiu, F.; Wu, S.; Lu, X.; Zhang, C.; Li, J.; Gong, M.; Wang, M. Quality evaluation of the artemisinin-producing plant Artemisia annua L. based on simultaneous quantification of artemisinin and six synergistic components and hierarchical cluster analysis. Ind. Crops Prod., 2018, 118, 131-141.
[http://dx.doi.org/10.1016/j.indcrop.2018.03.043]
[31]
Jones-Brando, L.; D’Angelo, J.; Posner, G.H.; Yolken, R. In vitro inhibition of Toxoplasma gondii by four new derivatives of artemisinin. Antimicrob. Agents Chemother., 2006, 50(12), 4206-4208.
[http://dx.doi.org/10.1128/AAC.00793-06] [PMID: 17060514]
[32]
Schultz, T.L.; Hencken, C.P.; Woodard, L.E.; Posner, G.H.; Yolken, R.H.; Jones-Brando, L.; Carruthers, V.B. A thiazole derivative of artemisinin moderately reduces Toxoplasma gondii cyst burden in infected mice. J. Parasitol., 2014, 100(4), 516-521.
[http://dx.doi.org/10.1645/13-451.1] [PMID: 24524228]
[33]
Dunay, I.R.; Chan, W.C.; Haynes, R.K.; Sibley, L.D. Artemisone and artemiside control acute and reactivated toxoplasmosis in a murine model. Antimicrob. Agents Chemother., 2009, 53(10), 4450-4456.
[http://dx.doi.org/10.1128/AAC.00502-09] [PMID: 19635951]
[34]
D’Angelo, J.G.; Bordón, C.; Posner, G.H.; Yolken, R.; Jones-Brando, L. Artemisinin derivatives inhibit Toxoplasma gondii in vitro at multiple steps in the lytic cycle. J. Antimicrob. Chemother., 2009, 63(1), 146-150.
[http://dx.doi.org/10.1093/jac/dkn451] [PMID: 18988681]
[35]
de Oliveira, T.C.; Silva, D.A.O.; Rostkowska, C.; Béla, S.R.; Ferro, E.A.V.; Magalhães, P.M.; Mineo, J.R. Toxoplasma gondii: Effects of Artemisia annua L. on susceptibility to infection in experimental models in vitro and in vivo. Exp. Parasitol., 2009, 122(3), 233-241.
[http://dx.doi.org/10.1016/j.exppara.2009.04.010] [PMID: 19389400]
[36]
He, X.; Fang, J.; Huang, L.; Wang, J.; Huang, X. Sophora flavescens Ait.: Traditional usage, phytochemistry and pharmacology of an important traditional Chinese medicine. J. Ethnopharmacol., 2015, 172(172), 10-29.
[http://dx.doi.org/10.1016/j.jep.2015.06.010] [PMID: 26087234]
[37]
Fan, R.; Liu, R.; Ma, R.; Bi, K.; Li, Q. Determination of oxymatrine and its active metabolite matrine in human plasma after administration of oxymatrine oral solution by high-performance liquid chromatography coupled with mass spectrometry. Fitoterapia, 2013, 89, 271-277.
[http://dx.doi.org/10.1016/j.fitote.2013.05.024] [PMID: 23747322]
[38]
Lin, Y.; He, F.; Wu, L.; Xu, Y.; Du, Q. Matrine Exerts Pharmacological Effects Through Multiple Signaling Pathways: A Comprehensive Review. Drug Des. Devel. Ther., 2022, 16, 533-569.
[http://dx.doi.org/10.2147/DDDT.S349678] [PMID: 35256842]
[39]
Sun, J.; Mao, J.; Liu, X.; Wang, Y.; Sun, Y.; He, Z. Separation and mechanism elucidation for six structure‐like matrine‐type alkaloids by micellar liquid chromatography. J. Sep. Sci., 2009, 32(12), 2043-2050.
[http://dx.doi.org/10.1002/jssc.200900066] [PMID: 19479753]
[40]
Bi, W.; Tian, M.; Row, K.H. Selective extraction and separation of oxymatrine from Sophora flavescens Ait. extract by silica-confined ionic liquid. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 880(1), 108-113.
[http://dx.doi.org/10.1016/j.jchromb.2011.11.025] [PMID: 22138590]
[41]
Hoang, B.X.; Shaw, D.G.; Levine, S.; Hoang, C.; Pham, P. New approach in asthma treatment using excitatory modulator. Phytother. Res., 2007, 21(6), 554-557.
[http://dx.doi.org/10.1002/ptr.2107] [PMID: 17295384]
[42]
Li, DR; Lin, H.S. Safety and effectiveness of large dose compound Sophora flavescens Ait injection in the treatment of advanced malignant tumors. Zhonghua Zhong Liu Za Zhi, 2011, 33(4), 391-294.
[43]
Choi, K.M.; Gang, J.; Yun, J. Anti-Toxoplasma gondii RH strain activity of herbal extracts used in traditional medicine. Int. J. Antimicrob. Agents, 2008, 32(4), 360-362.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.04.012 ] [PMID: 18619816]
[44]
Youn, H.J.; Lakritz, J.; Kim, D.Y.; Rottinghaus, G.E.; Marsh, A.E. Anti-protozoal efficacy of medicinal herb extracts against Toxoplasma gondii and Neospora caninum. Vet. Parasitol., 2003, 116(1), 7-14.
[http://dx.doi.org/10.1016/S0304-4017(03)00154-7 ] [PMID: 14519322]
[45]
Miao, KL; Zhang, JZ; Dong, Y; Xi, YF Research progress on the chemical compounds and pharmacology of Sophora flavescens. Nat Prod Res Dev, 2001, 13, 69e73.
[46]
Zhang, X.; Jin, L.; Cui, Z.; Zhang, C.; Wu, X.; Park, H.; Quan, H.; Jin, C. Antiparasitic effects of oxymatrine and matrine against Toxoplasma gondii in vitro and in vivo. Exp. Parasitol., 2016, 165, 95-102.
[http://dx.doi.org/10.1016/j.exppara.2016.03.020] [PMID: 26993085]
[47]
Cho, W.C.S.; Leung, K.N. In vitro and in vivo immunomodulating and immunorestorative effects of Astragalus membranaceus. J. Ethnopharmacol., 2007, 113(1), 132-141.
[http://dx.doi.org/10.1016/j.jep.2007.05.020] [PMID: 17611061]
[48]
Zhang, X.; Qu, H.; Yang, T.; Liu, Q.; Zhou, H. Astragaloside IV attenuate MI-induced myocardial fibrosis and cardiac remodeling by inhibiting ROS/caspase-1/GSDMD signaling pathway. Cell Cycle, 2022, 21(21), 2309-2322.
[http://dx.doi.org/10.1080/15384101.2022.2093598 ] [PMID: 35770948]
[49]
Wang, X.; Wang, Y.; Huang, D.; Shi, S.; Pei, C.; Wu, Y.; Shen, Z.; Wang, F.; Wang, Z. Astragaloside IV regulates the ferroptosis signaling pathway via the Nrf2/SLC7A11/GPX4 axis to inhibit PM2.5-mediated lung injury in mice. Int. Immunopharmacol., 2022, 112, 109186.
[http://dx.doi.org/10.1016/j.intimp.2022.109186]
[50]
Yang, H.; Zhao, Z.; Gao, S.; Lei, J.; Jiang, Y. Extraction of astragaloside in Astragali broken-cell pieces by accelerated solvent extraction. Lishizhen Medicine and Materia Medica Research, 2017, 28, 310-312.
[51]
Xu, L.; Wei, K.; Jiang, J.; Zhang, L. Extraction Optimization of Astragaloside IV by Response Surface Methodology and Evaluation of Its Stability during Sterilization and Storage. Molecules, 2021, 26(8), 2400.
[http://dx.doi.org/10.3390/molecules26082400] [PMID: 33924283]
[52]
Yang, X.; Huang, S.; Chen, J.; Song, N.; Wang, L.; Zhang, Z.; Deng, G.; Zheng, H.; Zhu, X.Q.; Lu, F. Evaluation of the adjuvant properties of Astragalus membranaceus and Scutellaria baicalensis GEORGI in the immune protection induced by UV-attenuated Toxoplasma gondii in mouse models. Vaccine, 2010, 28(3), 737-743.
[http://dx.doi.org/10.1016/j.vaccine.2009.10.065] [PMID: 19887128]
[53]
Yang, X.; Huang, B.; Chen, J.; Huang, S.; Zheng, H.; Lun, Z.R.; Shen, J.; Wang, Y.; Lu, F. In vitro effects of aqueous extracts of Astragalus membranaceus and Scutellaria baicalensis GEORGI on Toxoplasma gondii. Parasitol. Res., 2012, 110(6), 2221-2227.
[http://dx.doi.org/10.1007/s00436-011-2752-2] [PMID: 22179265]
[54]
Sönmez, N.; Büyükbaba Boral, Ö.; Kaşali̇, K.; Tekeli̇, F. [Effects of atovaquone and astragalus combination on the treatment and IL-2, IL-12, IFN-γ levels on mouse models of acute toxoplasmosis]. Mikrobiyol. Bul., 2014, 48(4), 639-651.
[http://dx.doi.org/10.5578/mb.8025] [PMID: 25492659]
[55]
Yang, M.; Shen, C.; Zhu, S.J.; Zhang, Y.; Jiang, H.L.; Bao, Y.D.; Yang, G.Y.; Liu, J.P. Chinese patent medicine Aidi injection for cancer care: An overview of systematic reviews and metaanalyses. J. Ethnopharmacol., 2022, 282, 114656.
[http://dx.doi.org/10.1016/j.jep.2021.114656]
[56]
Kuptniratsaikul, V.; Thanakhumtorn, S.; Chinswangwatanakul, P.; Wattanamongkonsil, L.; Thamlikitkul, V. Efficacy and safety of Curcuma domestica extracts in patients with knee osteoarthritis. J. Altern. Complement. Med., 2009, 15(8), 891-897.
[http://dx.doi.org/10.1089/acm.2008.0186] [PMID: 19678780]
[57]
Kuptniratsaikul, V.; Dajpratham, P.; Taechaarpornkul, W.; Buntragulpoontawee, M.; Lukkanapichonchut, P.; Chootip, C.; Saengsuwan, J.; Tantayakom, K.; Laongpech, S. Efficacy and safety of Curcuma domestica extracts compared with ibuprofen in patients with knee osteoarthritis: a multicenter study. Clin. Interv. Aging, 2014, 9(9), 451-458.
[http://dx.doi.org/10.2147/CIA.S58535] [PMID: 24672232]
[58]
Madhu, K.; Chanda, K.; Saji, M.J. Safety and efficacy of Curcuma longa extract in the treatment of painful knee osteoarthritis: a randomized placebo-controlled trial. Inflammopharmacology, 2013, 21(2), 129-136.
[http://dx.doi.org/10.1007/s10787-012-0163-3] [PMID: 23242572]
[59]
Yatoo, M.I.; Gopalakrishnan, A.; Saxena, A.; Parray, O.R.; Tufani, N.A.; Chakraborty, S.; Tiwari, R.; Dhama, K.; Iqbal, H.M.N. Anti-Inflammatory Drugs and Herbs with Special Emphasis on Herbal Medicines for Countering Inflammatory Diseases and Disorders - A Review. Recent Pat. Inflamm. Allergy Drug Discov., 2018, 12(1), 39-58.
[http://dx.doi.org/10.2174/1872213X12666180115153635] [PMID: 29336271]
[60]
Doello, K.; Ortiz, R.; Alvarez, P.J.; Melguizo, C.; Cabeza, L.; Prados, J. Latest in Vitro and in Vivo Assay, Clinical Trials and Patents in Cancer Treatment using Curcumin: A Literature Review. Nutr. Cancer, 2018, 70(4), 569-578.
[http://dx.doi.org/10.1080/01635581.2018.1464347 ] [PMID: 29708445]
[61]
Sarris, J. Herbal medicines in the treatment of psychiatric disorders: 10‐year updated review. Phytother. Res., 2018, 32(7), 1147-1162.
[http://dx.doi.org/10.1002/ptr.6055] [PMID: 29575228]
[62]
Zoi, V.; Galani, V.; Lianos, G.D.; Voulgaris, S.; Kyritsis, A.P.; Alexiou, G.A. The Role of Curcumin in Cancer Treatment. Biomedicines, 2021, 9(9), 1086.
[http://dx.doi.org/10.3390/biomedicines9091086] [PMID: 34572272]
[63]
Haddad, M.; Sauvain, M.; Deharo, E. Curcuma as a parasiticidal agent: a review. Planta Med., 2011, 77(6), 672-678.
[http://dx.doi.org/10.1055/s-0030-1250549] [PMID: 21104602]
[64]
Al-Zanbagi, N. In vivo effect of some home spices extracts on the Toxoplasma gondii Tachyzoites. J. Family Community Med., 2009, 16(2), 59-65.
[http://dx.doi.org/10.4103/2230-8229.96997] [PMID: 23012192]
[65]
Al-Zanbagi, N.A.; Zelai, N.T. Two methods for attenuating Toxoplasma gondii tachyzoites RH strain by using ethanol extract of Curcuma longa. J. Egypt. Soc. Parasitol., 2008, 38(3), 965-976.
[PMID: 19209778]
[66]
Azami, S.J.; Teimouri, A.; Keshavarz, H.; Amani, A.; Esmaeili, F.; Hasanpour, H.; Elikaee, S.; Salehiniya, H.; Shojaee, S. Curcumin nanoemulsion as a novel chemical for the treatment of acute and chronic toxoplasmosis in mice. Int. J. Nanomedicine, 2018, 13(13), 7363-7374.
[http://dx.doi.org/10.2147/IJN.S181896] [PMID: 30519020]
[67]
Sharma, V.; Agrawal, R.C. Glycyrrhiza glabra — a plant for the future. Mint J Pharm Med Sci, 2013, 2(3), 15-20.
[68]
Soeiro, M.N.C.; Vergoten, G.; Bailly, C. Mechanism of action of glycyrrhizin against Plasmodium falciparum. Mem. Inst. Oswaldo Cruz, 2021, 116e210084.
[http://dx.doi.org/10.1590/0074-02760210084] [PMID: 34431854]
[69]
Richard, S.A. Exploring the Pivotal Immunomodulatory and Anti-Inflammatory Potentials of Glycyrrhizic and Glycyrrhetinic Acids. Mediators Inflamm., 2021, 2021, 1-15.
[http://dx.doi.org/10.1155/2021/6699560] [PMID: 33505216]
[70]
Sangkitporn, S.; Shide, L.; Klinbuayaem, V.; Leenasirimakul, P.; Wirayutwatthana, N.A.; Leechanachai, P.; Dettrairat, S.; Kunachiwa, W.; Thamlikitkul, V. Efficacy and safety of zidovudine and zalcitabine combined with a combination of herbs in the treatment of HIV-infected Thai patients. Southeast Asian J. Trop. Med. Public Health, 2005, 36(3), 704-708.
[PMID: 16124442]
[71]
Kelly-Pieper, K.; Patil, S.P.; Busse, P.; Yang, N.; Sampson, H.; Li, X.M.; Wisnivesky, J.P.; Kattan, M. Safety and tolerability of an antiasthma herbal Formula (ASHMI) in adult subjects with asthma: a randomized, double-blinded, placebo-controlled, dose-escalation phase I study. J. Altern. Complement. Med., 2009, 15(7), 735-743.
[http://dx.doi.org/10.1089/acm.2008.0543] [PMID: 19586409]
[72]
Arentz, S.; Smith, C.A.; Abbott, J.; Fahey, P.; Cheema, B.S.; Bensoussan, A. Combined Lifestyle and Herbal Medicine in Overweight Women with Polycystic Ovary Syndrome (PCOS): A Randomized Controlled Trial. Phytother. Res., 2017, 31(9), 1330-1340.
[http://dx.doi.org/10.1002/ptr.5858] [PMID: 28685911]
[73]
Chen, Y.; Luo, D.; Cai, J.F.; Lin, C.H.; Shen, Y.; Zou, J.; Guan, J.L. Effectiveness and safety of Glycyrrhizae Decoction for Purging Stomach-Fire in Behcet disease patients: Study protocol for a randomized controlled and double-blinding trail. Medicine (Baltimore), 2018, 97(13), e0265.
[http://dx.doi.org/10.1097/MD.0000000000010265 ] [PMID: 29595687]
[74]
Rangnekar, H.; Patankar, S.; Suryawanshi, K.; Soni, P. Safety and efficacy of herbal extracts to restore respiratory health and improve innate immunity in COVID-19 positive patients with mild to moderate severity: A structured summary of a study protocol for a randomised controlled trial. Trials, 2020, 21(1), 943.
[http://dx.doi.org/10.1186/s13063-020-04906-x] [PMID: 33225970]
[75]
Saito, H.; Murata, Y.; Nonaka, M.; Kato, K. Screening of a library of traditional Chinese medicines to identify compounds and extracts which inhibit Toxoplasma gondii growth. J. Vet. Med. Sci., 2020, 82(2), 184-187.
[http://dx.doi.org/10.1292/jvms.19-0241] [PMID: 31904004]
[76]
Gol’dberg, VE; Ryzhakov, VM; Matiash, MG; Stepovaia, EA; Boldyshev, DA; Litvinenko, VI; Dygaĭ, AM Dry extract of Scutellaria baicalensis as a hemostimulant in antineoplastic chemotherapy in patents with lung cancer. Eksp Klin Farmakol., 1997, 60(6), 28-30.
[77]
Smol’ianinov, ES; Gol’dberg, VE; Matiash, MG; Ryzhakov, VM; Boldyshev, DA; Litvinenko, VI; Dygaĭ, AM Effect of Scutellaria baicalensis extract on the immunologic status of patients with lung cancer receiving antineoplastic chemotherapy. Eksp Klin Farmakol., 1997, 60(6), 49-51.
[78]
Arjmandi, B.H.; Ormsbee, L.T.; Elam, M.L.; Campbell, S.C.; Rahnama, N.; Payton, M.E.; Brummel-Smith, K.; Daggy, B.P. A combination of Scutellaria baicalensis and Acacia catechu extracts for short-term symptomatic relief of joint discomfort associated with osteoarthritis of the knee. J. Med. Food, 2014, 17(6), 707-713.
[http://dx.doi.org/10.1089/jmf.2013.0010] [PMID: 24611484]
[79]
Kang, K.A.; Zhang, R.; Piao, M.J.; Chae, S.; Kim, H.S.; Park, J.H.; Jung, K.S.; Hyun, J.W. Baicalein inhibits oxidative stress-induced cellular damage via antioxidant effects. Toxicol. Ind. Health, 2012, 28(5), 412-421.
[http://dx.doi.org/10.1177/0748233711413799] [PMID: 21957089]
[80]
Conti, P.; Caraffa, A.; Gallenga, C.E.; Ross, R.; Kritas, S.K.; Frydas, I.; Younes, A.; Di Emidio, P.; Ronconi, G.; Pandolfi, F. Powerful anti‐inflammatory action of luteolin: Potential increase with IL‐38. Biofactors, 2021, 47(2), 165-169.
[http://dx.doi.org/10.1002/biof.1718] [PMID: 33755250]
[81]
Li-Weber, M. New therapeutic aspects of flavones: The anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treat. Rev., 2009, 35(1), 57-68.
[http://dx.doi.org/10.1016/j.ctrv.2008.09.005] [PMID: 19004559]
[82]
Mittra, B.; Saha, A.; Roy Chowdhury, A.; Pal, C.; Mandal, S.; Mukhopadhyay, S.; Bandyopadhyay, S.; Majumder, H.K. Luteolin, an abundant dietary component is a potent anti-leishmanial agent that acts by inducing topoisomerase II-mediated kinetoplast DNA cleavage leading to apoptosis. Mol. Med., 2000, 6(6), 527-541.
[http://dx.doi.org/10.1007/BF03401792] [PMID: 10972088]
[83]
Das, B.B.; Sen, N.; Roy, A.; Dasgupta, S.B.; Ganguly, A.; Mohanta, B.C.; Dinda, B.; Majumder, H.K. Differential induction of Leishmania donovani bi-subunit topoisomerase I-DNA cleavage complex by selected flavones and camptothecin: activity of flavones against camptothecin-resistant topoisomerase I. Nucleic Acids Res., 2006, 34(4), 1121-1132.
[http://dx.doi.org/10.1093/nar/gkj502] [PMID: 16488884]
[84]
Lacombe, O.K.; Zuma, A.A.; da Silva, C.C.; de Souza, W.; Motta, M.C.M. Effects of camptothecin derivatives and topoisomerase dual inhibitors on Trypanosoma cruzi growth and ultrastructure. J. Negat. Results Biomed., 2014, 13(1), 11.
[http://dx.doi.org/10.1186/1477-5751-13-11] [PMID: 24917086]
[85]
Liu, M.; Zhang, D.; Wang, D.; Wu, X.; Zhang, Y.; Yin, J.; Zhu, G. Cost-effective In Vivo and In Vitro Mouse Models for Evaluating Anticryptosporidial Drug Efficacy: Assessing Vorinostat, Docetaxel, and Baicalein. J. Infect. Dis., 2023, 228(10), 1430-1440.
[http://dx.doi.org/10.1093/infdis/jiad243] [PMID: 37418629]
[86]
Mlcek, J.; Jurikova, T.; Skrovankova, S.; Sochor, J. Quercetin and Its Anti-Allergic Immune Response. Molecules, 2016, 21(5), 623.
[http://dx.doi.org/10.3390/molecules21050623] [PMID: 27187333]
[87]
Kianian, F.; Marefati, N.; Boskabady, M.; Ghasemi, S.Z.; Boskabady, M.H. Pharmacological Properties of Allium cepa, Preclinical and Clinical Evidences; A Review. Iran. J. Pharm. Res., 2021, 20(2), 107-134.
[http://dx.doi.org/10.22037/ijpr.2020.112781.13946 ] [PMID: 34567150]
[88]
Helen, A.; Krishnakumar, K.; Vijayammal, P.L.; Augusti, K.T. Antioxidant effect of onion oil (Allium cepa. Linn) on the damages induced by nicotine in rats as compared to alpha-tocopherol. Toxicol. Lett., 2000, 116(1-2), 61-68.
[http://dx.doi.org/10.1016/S0378-4274(00)00208-3 ] [PMID: 10906423]
[89]
M Al-Ansari, M.; Al-Humaid, L.; Aldawsari, M.; Abid, I.F.; Jhanani, G.K.; Shanmuganathan, R. Quercetin extraction from small onion skin (Allium cepa L. var. aggregatum Don.) and its antioxidant activity. Environ. Res., 2023, 224115497.
[http://dx.doi.org/10.1016/j.envres.2023.115497] [PMID: 36805894]
[90]
Gharadaghi, Y.; Shojaee, S.; Khaki, A.; Hatef, A.; Ahmadi Ashtiani, H.R.; Rastegar, H.; Fathiazad, F. Modulating effect of Allium cepa on kidney apoptosis caused by Toxoplasma gondii. Adv. Pharm. Bull., 2012, 2(1), 1-6.
[http://dx.doi.org/10.5681/apb.2012.001] [PMID: 24312764]
[91]
Garedaghi, Y.; Bahavarnia, S.R. Repairing effect of Allium cepa on testis degeneration caused by Toxoplasma gondii in the rat. Int. J. Women’s Health Reprod. Sci., 2014, 2(2), 80-89.
[http://dx.doi.org/10.15296/ijwhr.2014.12]
[92]
Abdul Wahab, S.M.; Jantan, I.; Haque, M.A.; Arshad, L. Exploring the leaves of Annona muricata L. as a source of potential anti-inflammatory and anticancer agents. Front. Pharmacol., 2018, 9, 661.
[http://dx.doi.org/10.3389/fphar.2018.00661] [PMID: 29973884]
[93]
Degli Esposti, M; Ghelli, A; Ratta, M; Cortes, D; Estornell, E Natural substances (acetogenins) from the family Annonaceae are powerful inhibitors of mitochondrial NADH dehydrogenase (Complex I). Biochem. J., 1994, 301, 161-167.
[http://dx.doi.org/10.1042/bj3010161]
[94]
Mutakin, M.; Fauziati, R.; Fadhilah, F.N.; Zuhrotun, A.; Amalia, R.; Hadisaputri, Y.E. Pharmacological Activities of Soursop (Annona muricata Lin.). Molecules, 2022, 27(4), 1201.
[http://dx.doi.org/10.3390/molecules27041201] [PMID: 35208993]
[95]
Ferreira, G.G.; Quaresma, A.C.S.; Brandão, D.L.N.; Marinho, A.M.R.; Siqueira, J.E.S.; Correa, K.L.; Silva-Júnior, J.O.C.; Percario, S.; Dolabela, M.F. Evaluation of Genotoxicity and Toxicity of Annona muricata L. Seeds and In Silico. Molecules, 2022, 28(1), 231.
[http://dx.doi.org/10.3390/molecules28010231] [PMID: 36615425]
[96]
Bonneau, N.; Cynober, T.; Jullian, J.C.; Champy, P. 1 H qNMR Quantification of Annonaceous Acetogenins in Crude Extracts of Annona muricata L. Fruit Pulp. Phytochem. Anal., 2017, 28(4), 251-256.
[http://dx.doi.org/10.1002/pca.2668] [PMID: 28092423]
[97]
Leesombun, A.; Boonmasawai, S.; Nishikawa, Y. Ethanol Extracts from Thai Plants have Anti-Plasmodium and Anti-Toxoplasma Activities In Vitro. Acta Parasitol., 2019, 64(2), 257-261.
[http://dx.doi.org/10.2478/s11686-019-00036-w] [PMID: 30820881]
[98]
Miranda, N.C.; Araujo, E.C.B.; Justino, A.B.; Cariaco, Y.; Mota, C.M.; Costa-Nascimento, L.A.; Espindola, F.S.; Silva, N.M. Anti-parasitic activity of Annona muricata L. leaf ethanolic extract and its fractions against Toxoplasma gondii in vitro and in vivo. J. Ethnopharmacol., 2021, 273114019.
[http://dx.doi.org/10.1016/j.jep.2021.114019] [PMID: 33716084]
[99]
Melo, E.J.T.; Vilela, K.J.; Carvalho, C.S. Effects of aqueous leaf extracts of Azadirachta indica A. Juss. (neem) and Melia azedarach L. (Santa Barbara or cinnamon) on the intracellular development of Toxoplasma gondii. Rev Bras Plantas Med Botucatu, 2011, 13(2), 215-222.
[100]
Srivastava, P.; Yadav, N.; Lella, R.; Schneider, A.; Jones, A.; Marlowe, T.; Lovett, G.; O’Loughlin, K.; Minderman, H.; Gogada, R.; Chandra, D. Neem oil limonoids induces p53-independent apoptosis and autophagy. Carcinogenesis, 2012, 33(11), 2199-2207.
[http://dx.doi.org/10.1093/carcin/bgs269] [PMID: 22915764]
[101]
Fernandes, S.R.; Barreiros, L.; Oliveira, R.F.; Cruz, A.; Prudêncio, C.; Oliveira, A.I.; Pinho, C.; Santos, N.; Morgado, J. Chemistry, bioactivities, extraction and analysis of azadirachtin: State-of-the-art. Fitoterapia, 2019, 134, 141-150.
[http://dx.doi.org/10.1016/j.fitote.2019.02.006] [PMID: 30738093]
[102]
Vanka, A.; Tandon, S.; Rao, S.R.; Udupa, N.; Ramkumar, P. The effect of indigenous Neem Azadirachta indica [correction of (Adirachta indica)] mouth wash on Streptococcus mutans and lactobacilli growth. Indian J. Dent. Res., 2001, 12(3), 133-144.
[PMID: 11808064]
[103]
Pai, M.R.; Acharya, L.D.; Udupa, N. Evaluation of antiplaque activity of Azadirachta indica leaf extract gel—a 6-week clinical study. J. Ethnopharmacol., 2004, 90(1), 99-103.
[http://dx.doi.org/10.1016/j.jep.2003.09.035] [PMID: 14698516]
[104]
Nandlal, B.; Sreenivasan, P.K.; Shashikumar, P.; Devishree, G.; Bettahalli Shivamallu, A. A randomized clinical study to examine the oral hygiene efficacy of a novel herbal toothpaste with zinc over a 6‐month period. Int. J. Dent. Hyg., 2021, 19(4), 440-449.
[http://dx.doi.org/10.1111/idh.12505] [PMID: 33866666]
[105]
Hosny, N.S.; El Khodary, S.A.; El Boghdadi, R.M.; Shaker, O.G. Effect of Neem (Azadirachta indica) versus 2.5% sodium hypochlorite as root canal irrigants on the intensity of post‐operative pain and the amount of endotoxins in mandibular molars with necrotic pulps: a randomized controlled trial. Int. Endod. J., 2021, 54(9), 1434-1447.
[http://dx.doi.org/10.1111/iej.13532] [PMID: 33884661]
[106]
Bandyopadhyay, U.; Biswas, K.; Sengupta, A.; Moitra, P.; Dutta, P.; Sarkar, D.; Debnath, P.; Ganguly, C.K.; Banerjee, R.K. Clinical studies on the effect of Neem (Azadirachta indica) bark extract on gastric secretion and gastroduodenal ulcer. Life Sci., 2004, 75(24), 2867-2878.
[http://dx.doi.org/10.1016/j.lfs.2004.04.050] [PMID: 15454339]
[107]
Pingali, U.; Vuppalanchi, B.; Nutalapati, C.; Gundagani, S. Aqueous Azadirachta indica (Neem) Extract Attenuates Insulin Resistance to Improve Glycemic Control and Endothelial Function in Subjects with Metabolic Syndrome. J. Med. Food, 2021, 24(11), jmf.2020.4838.
[http://dx.doi.org/10.1089/jmf.2020.4838] [PMID: 34582720]
[108]
Benoit-Vical, F.; Santillana-Hayat, M.; Kone-Bamba, D.; Mallie, M.; Derouin, F. Anti- Toxoplasma activity of vegetal extracts used in West African traditional medicine. Parasite, 2000, 7(1), 3-7.
[http://dx.doi.org/10.1051/parasite/2000071003] [PMID: 10743641]
[109]
Yang, C.; Lim, W.; You, S.; Song, G. 4-Methylbenzylidene-camphor inhibits proliferation and induces reactive oxygen species-mediated apoptosis of human trophoblast cells. Reprod. Toxicol., 2019, 84, 49-58.
[http://dx.doi.org/10.1016/j.reprotox.2018.12.011] [PMID: 30597193]
[110]
Lee, S.H.; Kim, D.S.; Park, S.H.; Park, H. Phytochemistry and Applications of Cinnamomum camphora Essential Oils. Molecules, 2022, 27(9), 2695.
[http://dx.doi.org/10.3390/molecules27092695] [PMID: 35566046]
[111]
Rabiul, H.; Subhasish, M.; Parag, G. Investigation of in vitro anthelmintic activity of Cinnamomum camphor leaves. Int J Drug Dev & Res, 2011, 3, 295-300.
[112]
Elazab, S.T.; Soliman, A.F.; Nishikawa, Y. Effect of some plant extracts from Egyptian herbal plants against <i>Toxoplasma gondii</i> tachyzoites in vitro. J. Vet. Med. Sci., 2021, 83(1), 100-107.
[http://dx.doi.org/10.1292/jvms.20-0458] [PMID: 33268605]
[113]
Wu, J.; Luo, Y.; Deng, D.; Su, S.; Li, S.; Xiang, L.; Hu, Y.; Wang, P.; Meng, X. Coptisine from Coptis chinensis exerts diverse beneficial properties: A concise review. J. Cell. Mol. Med., 2019, 23(12), 7946-7960.
[http://dx.doi.org/10.1111/jcmm.14725] [PMID: 31622015]
[114]
Hu, S.; Wang, J.; Liu, E.; Zhang, X.; Xiang, J.; Li, W.; Wei, P.; Zeng, J.; Zhang, Y.; Ma, X. Protective effect of berberine in diabetic nephropathy: A systematic review and meta-analysis revealing the mechanism of action. Pharmacol. Res., 2022, 185106481.
[http://dx.doi.org/10.1016/j.phrs.2022.106481] [PMID: 36195307]
[115]
Ye, M.; Fu, S.; Pi, R.; He, F. Neuropharmacological and pharmacokinetic properties of berberine: a review of recent research. J. Pharm. Pharmacol., 2010, 61(7), 831-837.
[http://dx.doi.org/10.1211/jpp.61.07.0001] [PMID: 19589224]
[116]
Krivogorsky, B; Pernat, JA; Douglas, KA; Czerniecki, NJ; Grundt, P Structure-activity studies of some berberine analogs as inhibitors of Toxoplasma gondii. Bioorg Med Chem Lett., 2012, 22(8), 2980-2982.
[117]
Nakonieczna, S.; Grabarska, A.; Gawel, K.; Wróblewska-Łuczka, P.; Czerwonka, A.; Stepulak, A.; Kukula-Koch, W. Isoquinoline alkaloids from Coptis chinensis Franch: Focus on coptisine as a potential therapeutic candidate against gastric cancer cells. Int. J. Mol. Sci., 2022, 23(18), 10330.
[http://dx.doi.org/10.3390/ijms231810330] [PMID: 36142236]
[118]
Andreadou, I.; Iliodromitis, E.K.; Mikros, E.; Constantinou, M.; Agalias, A.; Magiatis, P.; Skaltsounis, A.L.; Kamber, E.; Tsantili-Kakoulidou, A.; Kremastinos, D.T. The olive constituent oleuropein exhibits anti-ischemic, antioxidative, and hypolipidemic effects in anesthetized rabbits. J. Nutr., 2006, 136(8), 2213-2219.
[http://dx.doi.org/10.1093/jn/136.8.2213] [PMID: 16857843]
[119]
Kim, N.Y.; Pae, H.O.; Ko, Y.S.; Yoo, J.C.; Choi, B.M.; Jun, C.D.; Chung, H.T.; Inagaki, M.; Higuchi, R.; Kim, Y.C. In vitro inducible nitric oxide synthesis inhibitory active constituents from Fraxinus rhynchophylla. Planta Med., 1999, 65(7), 656-658.
[http://dx.doi.org/10.1055/s-2006-960840] [PMID: 10575381]
[120]
Jiang, J.H.; Jin, C.M.; Kim, Y.C.; Kim, H.S.; Park, W.C.; Park, H. Anti-toxoplasmosis effects of oleuropein isolated from Fraxinus rhychophylla. Biol. Pharm. Bull., 2008, 31(12), 2273-2276.
[http://dx.doi.org/10.1248/bpb.31.2273] [PMID: 19043212]
[121]
Yang, G.; Wang, Y.; Sun, J.; Zhang, K.; Liu, J. Ginkgo Biloba for Mild Cognitive Impairment and Alzheimer’s Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Curr. Top. Med. Chem., 2015, 16(5), 520-528.
[http://dx.doi.org/10.2174/1568026615666150813143520] [PMID: 26268332]
[122]
Pohl, F.; Kong Thoo Lin, P. The Potential Use of Plant Natural Products and Plant Extracts with Antioxidant Properties for the Prevention/Treatment of Neurodegenerative Diseases: In Vitro, In Vivo and Clinical Trials. Molecules, 2018, 23(12), 3283.
[http://dx.doi.org/10.3390/molecules23123283] [PMID: 30544977]
[123]
Ryckewaert, L.; Sacconnay, L.; Carrupt, P.A.; Nurisso, A.; Simões-Pires, C. Non-specific SIRT inhibition as a mechanism for the cytotoxicity of ginkgolic acids and urushiols. Toxicol. Lett., 2014, 229(2), 374-380.
[http://dx.doi.org/10.1016/j.toxlet.2014.07.002] [PMID: 24998427]
[124]
Mei, N.; Guo, X.; Ren, Z.; Kobayashi, D.; Wada, K.; Guo, L. Review of Ginkgo biloba -induced toxicity, from experimental studies to human case reports. J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev., 2017, 35(1), 1-28.
[http://dx.doi.org/10.1080/10590501.2016.1278298 ] [PMID: 28055331]
[125]
Lu, J.; Xie, L.; Liu, K.; Zhang, X.; Wang, X.; Dai, X.; Liang, Y.; Cao, Y.; Li, X. Bilobalide: A review of its pharmacology, pharmacokinetics, toxicity, and safety. Phytother. Res., 2021, 35(11), 6114-6130.
[http://dx.doi.org/10.1002/ptr.7220] [PMID: 34342079]
[126]
He, X.; Bernart, M.W.; Nolan, G.S.; Lin, L.; Lindenmaier, M.P. High-performance liquid chromatography-electrospray ionization-mass spectrometry study of ginkgolic acid in the leaves and fruits of the ginkgo tree (Ginkgo biloba). J. Chromatogr. Sci., 2000, 38(4), 169-173.
[http://dx.doi.org/10.1093/chromsci/38.4.169] [PMID: 10766484]
[127]
Boateng, I.D. A critical review of ginkgolic acids in Ginkgo biloba leaf extract (EGb): toxicity and technologies to remove ginkgolic acids and their promising bioactivities. Food Funct., 2022, 13(18), 9226-9242.
[http://dx.doi.org/10.1039/D2FO01827F] [PMID: 36065842]
[128]
Chen, S.X.; Wu, L.; Jiang, X.G.; Feng, Y.Y.; Cao, J.P. Anti-Toxoplasma gondii activity of GAS in vitro. J. Ethnopharmacol., 2008, 118(3), 503-507.
[http://dx.doi.org/10.1016/j.jep.2008.05.023] [PMID: 18602775]
[129]
Napoli, E.; Siracusa, L.; Ruberto, G.; Carrubba, A.; Lazzara, S.; Speciale, A.; Cimino, F.; Saija, A.; Cristani, M. Phytochemical profiles, phototoxic and antioxidant properties of eleven Hypericum species - A comparative study. Phytochemistry, 2018, 152, 162-173.
[http://dx.doi.org/10.1016/j.phytochem.2018.05.003 ] [PMID: 29775867]
[130]
de Andrade, G.P.; de Souza, T.F.M.; Cerchiaro, G.; Pinhal, M.A.S.; Ribeiro, A.O.; Girão, M.J.B.C. Hypericin in photobiological assays: An overview. Photodiagn. Photodyn. Ther., 2021, 35102343.
[http://dx.doi.org/10.1016/j.pdpdt.2021.102343] [PMID: 34038765]
[131]
Denke, A.; Schempp, H.; Weiser, D.; Elstner, E. Biochemical activities of extracts from Hypericum perforatum L. 5th communication: dopamine-beta-hydroxylase-product quantification by HPLC and inhibition by hypericins and flavonoids. Arzneimittelforschung, 2011, 50(5), 415-419.
[http://dx.doi.org/10.1055/s-0031-1300225] [PMID: 10858868]
[132]
Shinjyo, N.; Nakayama, H.; Li, L.; Ishimaru, K.; Hikosaka, K.; Suzuki, N.; Yoshida, H.; Norose, K. Hypericum perforatum extract and hyperforin inhibit the growth of neurotropic parasite Toxoplasma gondii and infection-induced inflammatory responses of glial cells in vitro. J. Ethnopharmacol., 2021, 267113525.
[http://dx.doi.org/10.1016/j.jep.2020.113525] [PMID: 33129946]
[133]
Shinjyo, N.; Nakayama, H.; Ishimaru, K.; Hikosaka, K.; Mi-ichi, F.; Norose, K.; Yoshida, H. Hypericum erectum alcoholic extract inhibits Toxoplasma growth and Entamoeba encystation: an exploratory study on the anti-protozoan potential. J. Nat. Med., 2020, 74(1), 294-305.
[http://dx.doi.org/10.1007/s11418-019-01369-6] [PMID: 31728823]
[134]
Han, H.; Chen, Y.; Bi, H.; Yu, L.; Sun, C.; Li, S.; Oumar, S.A.; Zhou, Y. In vivo antimalarial activity of ginseng extracts. Pharm. Biol., 2011, 49(3), 283-289.
[http://dx.doi.org/10.3109/13880209.2010.511235 ] [PMID: 21323481]
[135]
Lü, J.M.; Yao, Q.; Chen, C. Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr. Vasc. Pharmacol., 2009, 7(3), 293-302.
[http://dx.doi.org/10.2174/157016109788340767] [PMID: 19601854]
[136]
Im, D.S. Pro-Resolving Effect of Ginsenosides as an Anti-Inflammatory Mechanism of Panax ginseng. Biomolecules, 2020, 10(3), 444.
[http://dx.doi.org/10.3390/biom10030444] [PMID: 32183094]
[137]
de Oliveira Zanuso, B.; de Oliveira dos Santos, A.R.; Miola, V.F.B.; Guissoni Campos, L.M.; Spilla, C.S.G.; Barbalho, S.M. Panax ginseng and aging related disorders: A systematic review. Exp. Gerontol., 2022, 161111731.
[http://dx.doi.org/10.1016/j.exger.2022.111731] [PMID: 35143871]
[138]
Qu, DF; Yu, HJ; Liu, Z; Zhang, DF; Zhou, QJ; Zhang, H; Du, AF Ginsenoside Rg1 enhances immune response induced by recombinant Toxoplasma gondiiSAG1 antigen. Vet Parasitol., 2011, 179(1-3), 28-34.
[139]
Lee, N.H.; Yoo, S.R.; Kim, H.G.; Cho, J.H.; Son, C.G. Safety and tolerability of Panax ginseng root extract: a randomized, placebo-controlled, clinical trial in healthy Korean volunteers. J. Altern. Complement. Med., 2012, 18(11), 1061-1069.
[http://dx.doi.org/10.1089/acm.2011.0591] [PMID: 22909282]
[140]
Vohra, S.; Johnston, B.C.; Laycock, K.L.; Midodzi, W.K.; Dhunnoo, I.; Harris, E.; Baydala, L. Safety and tolerability of North American ginseng extract in the treatment of pediatric upper respiratory tract infection: a phase II randomized, controlled trial of 2 dosing schedules. Pediatrics, 2008, 122(2), e402-e410.
[http://dx.doi.org/10.1542/peds.2007-2186] [PMID: 18676527]
[141]
High, K.P.; Case, D.; Hurd, D.; Powell, B.; Lesser, G.; Falsey, A.R.; Siegel, R.; Metzner-Sadurski, J.; Krauss, J.C.; Chinnasami, B.; Sanders, G.; Rousey, S.; Shaw, E.G. A randomized, controlled trial of Panax quinquefolius extract (CVT-E002) to reduce respiratory infection in patients with chronic lymphocytic leukemia. J. Support. Oncol., 2012, 10(5), 195-201.
[http://dx.doi.org/10.1016/j.suponc.2011.10.005] [PMID: 22266154]
[142]
Choi, S.H.; Yang, K.J.; Lee, D.S. Effects of Complementary Combination Therapy of Korean Red Ginseng and Antiviral Agents in Chronic Hepatitis B. J. Altern. Complement. Med., 2016, 22(12), 964-969.
[http://dx.doi.org/10.1089/acm.2015.0206] [PMID: 27603149]
[143]
Shergis, J.L.; Thien, F.; Worsnop, C.J.; Lin, L.; Zhang, A.L.; Wu, L.; Chen, Y.; Xu, Y.; Langton, D.; Da Costa, C.; Fong, H.; Wu, D.; Story, D.; Xue, C.C. 12-month randomised controlled trial of ginseng extract for moderate COPD. Thorax, 2019, 74(6), 539-545.
[http://dx.doi.org/10.1136/thoraxjnl-2018-212665 ] [PMID: 30940771]
[144]
Rekha, V.P.; Kollipara, M.; Gupta, B.R.S.S.; Bharath, Y.; Pulicherla, K. A Review on Piper betle L.: Nature’s Promising Medicinal Reservoir. American Journal of Ethnomedicine, 2014, 1(5), 276-289.
[145]
Derosa, G.; Maffioli, P.; Sahebkar, A. Piperine and Its Role in Chronic Diseases. Adv. Exp. Med. Biol., 2016, 928, 173-184.
[http://dx.doi.org/10.1007/978-3-319-41334-1_8] [PMID: 27671817]
[146]
Haq, I.U.; Imran, M.; Nadeem, M.; Tufail, T.; Gondal, T.A.; Mubarak, M.S. Piperine: A review of its biological effects. Phytother. Res., 2021, 35(2), 680-700.
[http://dx.doi.org/10.1002/ptr.6855] [PMID: 32929825]
[147]
Bravo-Chaucanés, C.P.; Chitiva, L.C.; Vargas-Casanova, Y.; Diaz-Santoyo, V.; Hernández, A.X.; Costa, G.M.; Parra-Giraldo, C.M. Exploring the Potential Mechanism of Action of Piperine against Candida albicans and Targeting Its Virulence Factors. Biomolecules, 2023, 13(12), 1729.
[http://dx.doi.org/10.3390/biom13121729] [PMID: 38136600]
[148]
Leesombun, A.; Boonmasawai, S.; Shimoda, N.; Nishikawa, Y. Effects of extracts from Thai Piperaceae plants against infection with Toxoplasma gondii. PLoS One, 2016, 11(5), e0156116.
[http://dx.doi.org/10.1371/journal.pone.0156116] [PMID: 27213575]
[149]
Suganyadevi, P.; Saravanakumar, M.; Mohandas, S. Characterization of anthocyanin from red sorghum (Sorghum bicolor) bran by liquid chromatography-electron spray ionization mass spectrometry analysis. Eur. J. Mass Spectrom. (Chichester, Eng.), 2021, 27(2-4), 107-114.
[http://dx.doi.org/10.1177/14690667211035720] [PMID: 34325557]
[150]
Abugri, D.A.; Jaynes, J.M.; Witola, W.H. Anti-Toxoplasma activity of Sorghum bicolor-derived lipophilic fractions. BMC Res. Notes, 2019, 12(1), 688.
[http://dx.doi.org/10.1186/s13104-019-4732-z] [PMID: 31651353]
[151]
Owumi, S.E.; Kazeem, A.I.; Wu, B.; Ishokare, L.O.; Arunsi, U.O.; Oyelere, A.K. Apigeninidin-rich Sorghum bicolor (L. Moench) extracts suppress A549 cells proliferation and ameliorate toxicity of aflatoxin B1-mediated liver and kidney derangement in rats. Sci. Rep., 2022, 12(1), 7438.
[http://dx.doi.org/10.1038/s41598-022-10926-1] [PMID: 35523904]
[152]
Boslett, J.; Hemann, C.; Zhao, Y.J.; Lee, H.C.; Zweier, J.L. Luteolinidin Protects the Postischemic Heart through CD38 Inhibition with Preservation of NAD(P)(H). J. Pharmacol. Exp. Ther., 2017, 361(1), 99-108.
[http://dx.doi.org/10.1124/jpet.116.239459] [PMID: 28108596]
[153]
Abugri, D.A.; Witola, W.H.; Jaynes, J.M.; Toufic, N. In vitro activity of Sorghum bicolor extracts, 3-deoxyanthocyanidins, against Toxoplasma gondii. Exp. Parasitol., 2016, 164, 12-19.
[http://dx.doi.org/10.1016/j.exppara.2016.02.001] [PMID: 26855040]
[154]
Wu, Y.; Wang, Y.; Liu, Z.; Wang, J. Extraction, Identification and Antioxidant Activity of 3-Deoxyanthocyanidins from Sorghum bicolor L. Moench Cultivated in China. Antioxidants, 2023, 12(2), 468.
[http://dx.doi.org/10.3390/antiox12020468] [PMID: 36830026]
[155]
Ayuba, G.I.; Jensen, G.S.; Benson, K.F.; Okubena, A.M.; Okubena, O. Clinical efficacy of a West African sorghum bicolor-based traditional herbal preparation Jobelyn shows increased hemoglobin and CD4+ T-lymphocyte counts in HIV-positive patients. J. Altern. Complement. Med., 2014, 20(1), 53-56.
[http://dx.doi.org/10.1089/acm.2013.0125] [PMID: 24283768]
[156]
de Morais Cardoso, L.; Pinheiro, S.S.; Martino, H.S.D. Pinheiro-Sant’Ana, H.M. Sorghum (Sorghum bicolor L.): Nutrients, bioactive compounds, and potential impact on human health. Crit. Rev. Food Sci. Nutr., 2017, 57(2), 372-390.
[http://dx.doi.org/10.1080/10408398.2014.887057 ] [PMID: 25875451]
[157]
Ahmad, W.; Jantan, I.; Bukhari, S.N.A. Tinospora crispa (L.) Hook. f. & Tomson: a review of its ethnobotanical, phytochemical, and pharmacological aspects. Front. Pharmacol., 2016, 7, 59.
[http://dx.doi.org/10.3389/fphar.2016.00059] [PMID: 27047378]
[158]
Sangsuwan, C.; Udompanthurak, S.; Vannasaeng, S.; Thamlikitkul, V. Randomized controlled trial of Tinospora crispa for additional therapy in patients with type 2 diabetes mellitus. J. Med. Assoc. Thai., 2004, 87(5), 543-546.
[PMID: 15222526]
[159]
Klangjareonchai, T.; Roongpisuthipong, C. The effect of Tinospora crispa on serum glucose and insulin levels in patients with type 2 diabetes mellitus. J. Biomed. Biotechnol., 2012, 2012, 1-4.
[http://dx.doi.org/10.1155/2012/808762] [PMID: 22131824]
[160]
Zuhri, U.M.; Purwaningsih, E.H.; Fadilah, F.; Yuliana, N.D. Network pharmacology integrated molecular dynamics reveals the bioactive compounds and potential targets of Tinospora crispa Linn. as insulin sensitizer. PLoS One, 2022, 17(6), e0251837.
[http://dx.doi.org/10.1371/journal.pone.0251837] [PMID: 35737707]
[161]
Lee, W.C.; Mahmud, R.; Noordin, R.; Piaru, S.P.; Perumal, S.; Ismail, S. Alkaloids content, cytotoxicity and anti-<i>Toxoplasma gondii</i> activity of <i>Psidium guajava</i> L. and <i>Tinospora crispa</i>. Bangladesh J. Pharmacol., 2012, 7(4), 272-276.
[http://dx.doi.org/10.3329/bjp.v7i4.12499]
[162]
Sharif, A.A.; Unyah, N.Z.; Nordin, N.; Basir, R.; Wana, M.N.; Alapid Ahmad, A.; Mustapha, T.; Majid, R.A. Susceptibility of Toxoplasma gondii to Ethanolic Extract of Tinospora crispa in Vero Cells. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-10.
[http://dx.doi.org/10.1155/2019/2916547] [PMID: 31827548]
[163]
Rahimpour, Y.; Doorandishan, M.; Dehsheikh, A.B.; Sourestani, M.M.; Mottaghipisheh, J. A Review on Torilis japonica: Ethnomedicinal, Phytochemical, and Biological Features. Chem. Biodivers., 2023, 20(5), e202201071.
[http://dx.doi.org/10.1002/cbdv.202201071] [PMID: 37073927]
[164]
Endale, M.; Kim, T.H.; Kwak, Y.S.; Kim, N.M.; Kim, S.H.; Cho, J.Y.; Yun, B.S.; Rhee, M.H. Torilin Inhibits Inflammation by Limiting TAK1-Mediated MAP Kinase and NF- κ B Activation. Mediators Inflamm., 2017, 2017, 1-13.
[http://dx.doi.org/10.1155/2017/7250968] [PMID: 28316375]
[165]
Nassiri-Asl, M.; Hosseinzadeh, H. Review of the Pharmacological Effects of Vitis vinifera (Grape) and its Bioactive Constituents: An Update. Phytother. Res., 2016, 30(9), 1392-1403.
[http://dx.doi.org/10.1002/ptr.5644] [PMID: 27196869]
[166]
Meng, T.; Xiao, D.; Muhammed, A.; Deng, J.; Chen, L.; He, J. Anti-Inflammatory Action and Mechanisms of Resveratrol. Molecules, 2021, 26(1), 229.
[http://dx.doi.org/10.3390/molecules26010229] [PMID: 33466247]
[167]
Ferreira, C.; Soares, D.C.; Nascimento, M.T.C.; Pinto-da-Silva, L.H.; Sarzedas, C.G.; Tinoco, L.W.; Saraiva, E.M. Resveratrol is active against Leishmania amazonensis: in vitro effect of its association with Amphotericin B. Antimicrob. Agents Chemother., 2014, 58(10), 6197-6208.
[http://dx.doi.org/10.1128/AAC.00093-14] [PMID: 25114129]
[168]
Bottari, N.B.; Baldissera, M.D.; Tonin, A.A.; Rech, V.C.; Nishihira, V.S.K.; Thomé, G.R.; Camillo, G.; Vogel, F.F.; Duarte, M.M.M.F.; Schetinger, M.R.C.; Morsch, V.M.; Tochetto, C.; Fighera, R.; Da Silva, A.S. Effects of sulfamethoxazole-trimethoprim associated to resveratrol on its free form and complexed with 2-hydroxypropyl-β-cyclodextrin on cytokines levels of mice infected by Toxoplasma gondii. Microb. Pathog., 2015, 87, 40-44.
[http://dx.doi.org/10.1016/j.micpath.2015.07.013] [PMID: 26209515]
[169]
Chen, Q.W.; Dong, K.; Qin, H.X.; Yang, Y.K.; He, J.L.; Li, J.; Zheng, Z.W.; Chen, D.L.; Chen, J.P. Direct and Indirect Inhibition Effects of Resveratrol against Toxoplasma gondii Tachyzoites In Vitro. Antimicrob. Agents Chemother., 2019, 63(3), e01233-18.
[http://dx.doi.org/10.1128/AAC.01233-18] [PMID: 30530601]
[170]
Adeyemi, O.S.; Atolani, O.; Awakan, O.J.; Olaolu, T.D.; Nwonuma, C.O.; Alejolowo, O.; Otohinoyi, D.A.; Rotimi, D.; Owolabi, A.; Batiha, G.E. In Vitro Screening to Identify Anti-Toxoplasma compounds and in silico modeling for bioactivities and toxicity. Yale J. Biol. Med., 2019, 92(3), 369-383.
[PMID: 31543702]
[171]
Bottari, N.B.; Baldissera, M.D.; Tonin, A.A.; Rech, V.C.; Alves, C.B.; D’Avila, F.; Thomé, G.R.; Guarda, N.S.; Moresco, R.N.; Camillo, G.; Vogel, F.F.; Luchese, C.; Schetinger, M.R.C.; Morsch, V.M.; Tochetto, C.; Fighera, R.; Nishihira, V.S.K.; Da Silva, A.S. Synergistic effects of resveratrol (free and inclusion complex) and sulfamethoxazole-trimetropim treatment on pathology, oxidant/antioxidant status and behavior of mice infected with Toxoplasma gondii. Microb. Pathog., 2016, 95, 166-174.
[http://dx.doi.org/10.1016/j.micpath.2016.04.002] [PMID: 27057672]
[172]
Rama, J.L.R.; Mallo, N.; Biddau, M.; Fernandes, F.; de Miguel, T.; Sheiner, L.; Choupina, A.; Lores, M. Exploring the powerful phytoarsenal of white grape marc against bacteria and parasites causing significant diseases. Environ. Sci. Pollut. Res. Int., 2021, 28(19), 24270-24278.
[http://dx.doi.org/10.1007/s11356-019-07472-1] [PMID: 31939019]
[173]
Bardagjy, A.S.; Hu, Q.; Giebler, K.A.; Ford, A.; Steinberg, F.M. Effects of grape consumption on biomarkers of inflammation, endothelial function, and PBMC gene expression in obese subjects. Arch. Biochem. Biophys., 2018, 646, 145-152.
[http://dx.doi.org/10.1016/j.abb.2018.04.003] [PMID: 29649425]
[174]
Parandoosh, M.; Yousefi, R.; Khorsandi, H.; Nikpayam, O.; Saidpour, A.; Babaei, H. The effects of grape seed extract (VITIS VINIFERA) supplement on inflammatory markers, neuropeptide Y, anthropometric measures, and appetite in obese or overweight individuals: A randomized clinical trial. Phytother. Res., 2020, 34(2), 379-387.
[http://dx.doi.org/10.1002/ptr.6529] [PMID: 31713941]
[175]
Dani, C.; Dias, K.M.; Trevizol, L.; Bassôa, L.; Fraga, I.; Proença, I.C.T.; Pochmann, D.; Elsner, V.R. The impact of red grape juice (Vitis labrusca)consumption associated with physical training on oxidative stress, inflammatory and epigenetic modulation in healthy elderly women. Physiol. Behav., 2021, 229113215.
[http://dx.doi.org/10.1016/j.physbeh.2020.113215 ] [PMID: 33096120]
[176]
Greenway, F.L.; Liu, Z.; Martin, C.K.; Kai-yuan, W.; Nofziger, J.; Rood, J.C.; Yu, Y.; Amen, R.J. Safety and efficacy of NT, an herbal supplement, in treating human obesity. Int. J. Obes., 2006, 30(12), 1737-1741.
[http://dx.doi.org/10.1038/sj.ijo.0803343] [PMID: 16652135]
[177]
Carvalho, G.C.N.; Lira-Neto, J.C.G.; Araújo, M.F.M.; Freitas, R.W.J.F.; Zanetti, M.L.; Damasceno, M.M.C. Effectiveness of ginger in reducing metabolic levels in people with diabetes: a randomized clinical trial. Rev. Lat. Am. Enfermagem, 2020, 28e3369.
[http://dx.doi.org/10.1590/1518-8345.3870.3369] [PMID: 33053078]
[178]
Bossi, P.; Cortinovis, D.; Fatigoni, S.; Cossu Rocca, M.; Fabi, A.; Seminara, P.; Ripamonti, C.; Alfieri, S.; Granata, R.; Bergamini, C.; Agustoni, F.; Bidoli, P.; Nolè, F.; Pessi, M.A.; Macchi, F.; Michellini, L.; Montanaro, F.; Roila, F. A randomized, double-blind, placebo-controlled, multicenter study of a ginger extract in the management of chemotherapy-induced nausea and vomiting (CINV) in patients receiving high-dose cisplatin. Ann. Oncol., 2017, 28(10), 2547-2551.
[http://dx.doi.org/10.1093/annonc/mdx315] [PMID: 28666335]
[179]
Bhargava, R.; Chasen, M.; Elten, M.; MacDonald, N. The effect of ginger (Zingiber officinale Roscoe) in patients with advanced cancer. Support. Care Cancer, 2020, 28(7), 3279-3286.
[http://dx.doi.org/10.1007/s00520-019-05129-w] [PMID: 31745695]
[180]
Altman, R.D.; Marcussen, K.C. Effects of a ginger extract on knee pain in patients with osteoarthritis. Arthritis Rheum., 2001, 44(11), 2531-2538.
[http://dx.doi.org/10.1002/1529-0131(200111)44:11<2531:AID-ART433>3.0.CO;2-J] [PMID: 11710709]
[181]
Paramdeep, G. Efficacy and tolerability of ginger (Zingiber officinale) in patients of osteoarthritis of knee. Indian J. Physiol. Pharmacol., 2013, 57(2), 177-183.
[PMID: 24617168]
[182]
Aryaeian, N.; Shahram, F.; Mahmoudi, M.; Tavakoli, H.; Yousefi, B.; Arablou, T.; Jafari Karegar, S. The effect of ginger supplementation on some immunity and inflammation intermediate genes expression in patients with active Rheumatoid Arthritis. Gene, 2019, 698, 179-185.
[http://dx.doi.org/10.1016/j.gene.2019.01.048] [PMID: 30844477]
[183]
Yamprasert, R.; Chanvimalueng, W.; Mukkasombut, N.; Itharat, A. Ginger extract versus Loratadine in the treatment of allergic rhinitis: a randomized controlled trial. BMC Complementary Medicine and Therapies, 2020, 20(1), 119.
[http://dx.doi.org/10.1186/s12906-020-2875-z] [PMID: 32312261]
[184]
González-Gross, M.; Quesada-González, C.; Rueda, J.; Sillero-Quintana, M.; Issaly, N.; Díaz, A.E.; Gesteiro, E.; Escobar-Toledo, D.; Torres-Peralta, R.; Roller, M.; Guadalupe-Grau, A. Analysis of Effectiveness of a Supplement Combining Harpagophytum procumbens, Zingiber officinale and Bixa orellana in Healthy Recreational Runners with Self-Reported Knee Pain: A Pilot, Randomized, Triple-Blind, Placebo-Controlled Trial. Int. J. Environ. Res. Public Health, 2021, 18(11), 5538.
[http://dx.doi.org/10.3390/ijerph18115538] [PMID: 34067240]
[185]
Ali, B.H.; Blunden, G.; Tanira, M.O.; Nemmar, A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food Chem. Toxicol., 2008, 46(2), 409-420.
[http://dx.doi.org/10.1016/j.fct.2007.09.085] [PMID: 17950516]
[186]
de Lima, R.M.T.; dos Reis, A.C.; de Menezes, A.A.P.M.; Santos, J.V.O.; Filho, J.W.G.O.; Ferreira, J.R.O.; de Alencar, M.V.O.B.; da Mata, A.M.O.F.; Khan, I.N.; Islam, A.; Uddin, S.J.; Ali, E.S.; Islam, M.T.; Tripathi, S.; Mishra, S.K.; Mubarak, M.S.; Melo-Cavalcante, A.A.C. Protective and therapeutic potential of ginger (ZINGIBER OFFICINALE) extract and [6]‐gingerol in cancer: A comprehensive review. Phytother. Res., 2018, 32(10), 1885-1907.
[http://dx.doi.org/10.1002/ptr.6134] [PMID: 30009484]
[187]
Karatay, K.B.; Kılçar, A.Y.; Derviş, E.; Müftüler, F.Z.B. Radioiodinated Ginger Compounds (6-gingerol and 6-shogaol) and Incorporation Assays on Breast Cancer Cells. Anticancer. Agents Med. Chem., 2020, 20(9), 1129-1139.
[http://dx.doi.org/10.2174/1871520620666200128114215] [PMID: 31994470]
[188]
Choi, W.; Jiang, M.; Chu, J. Antiparasitic effects of Zingiber officinale (Ginger) extract against Toxoplasma gondii. J. Appl. Biomed., 2013, 11(1), 15-26.
[http://dx.doi.org/10.2478/v10136-012-0014-y]
[189]
Filisetti, D; Candofi, E Immune response to Toxoplasma gondii. Ann 1st Super Sanita., 2004, 40(1), 71-80.
[190]
Liu, Q.; Singla, L.D.; Zhou, H. Vaccines against Toxoplasma gondii: Status, challenges and future directions. Hum. Vaccin. Immunother., 2012, 8(9), 1305-1308.
[http://dx.doi.org/10.4161/hv.21006] [PMID: 22906945]
[191]
Roozbehani, M.; Falak, R.; Mohammadi, M.; Hemphill, A.; Razmjou, E.; Meamar, A.; Masoori, L.; Khoshmirsafa, M.; Moradi, M.; Gharavi, M.J. Characterization of a multi-epitope peptide with selective MHC-binding capabilities encapsulated in PLGA nanoparticles as a novel vaccine candidate against Toxoplasma gondii infection. Vaccine, 2018, 36(41), 6124-6132.
[http://dx.doi.org/10.1016/j.vaccine.2018.08.068] [PMID: 30181047]
[192]
Bauri, R.K.; Tigga, M.N.; Kullu, S.S. A review on use of medicinal plants to control parasites. Indian J. Nat. Prod. Resour., 2015, 6(4), 268-277. [IJNPR].
[193]
Kang, S.G.; Ryang, Y.S.; Kim, I. Effects of Gentiana scabra var. buergeri extract on Toxoplasmastic activity of macrophages. J. Exp. Biol. Sci, 2003, 9(2), 85-91.
[194]
Zhang, W.; Fang, F.R.; Liu, Y.J.; Yang, L.D.; Luo, R.Y.; Gong, F.; Lu, H.; Xu, X.X. [In vitro effect of combined traditional Chinese medicine (Changqing capsule) on the tachyzoites of Toxoplasma gondii.]. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi, 2006, 24(1), 56-58.
[PMID: 16866146]
[195]
Al-Zanbagi, N. Effectiveness of myrrh and spiramycin as inhibitors for Toxoplasma gondii tachyzoites in vivo. Mansoura J. Forensic Med. Clin. Toxicol., 2007, 15(2), 117-128.
[http://dx.doi.org/10.21608/mjfmct.2007.48856]
[196]
Khoushzaban, F.; Ghazanfari, T.; Ghaffarif, F.; Sharifi, M.; Ghasemi, N.S. The effect of garlic extract on acute toxoplasmosis in mice. Iranian J. Med. Arom. Plant, 2007, 3(37), 295-306.
[197]
Nagamune, K.; Beatty, W.L.; Sibley, L.D. Artemisinin induces calcium-dependent protein secretion in the protozoan parasite Toxoplasma gondii. Eukaryot. Cell, 2007, 6(11), 2147-2156.
[http://dx.doi.org/10.1128/EC.00262-07] [PMID: 17766463]
[198]
Nagamune, K.; Moreno, S.N.J.; Sibley, L.D. Artemisinin-resistant mutants of Toxoplasma gondii have altered calcium homeostasis. Antimicrob. Agents Chemother., 2007, 51(11), 3816-3823.
[http://dx.doi.org/10.1128/AAC.00582-07] [PMID: 17698618]
[199]
Khoshzaban, F.; Ghaffarifar, F.; Sharafi, M.; Ghasemi Nikou, S. Effect of Peganum harmala on acute toxoplasmosis in mice. Daneshvar Med, 2008, 15(75), 27-36.
[200]
Krivogorsky, B.; Grundt, P.; Yolken, R.; Jones-Brando, L. Inhibition of Toxoplasma gondii by indirubin and tryptanthrin analogs. Antimicrob. Agents Chemother., 2008, 52(12), 4466-4469.
[http://dx.doi.org/10.1128/AAC.00903-08] [PMID: 18824607]
[201]
Dahbi, A.; Bellete, B.; Flori, P.; Hssaine, A.; Elhachimi, Y.; Raberin, H.; Chait, A.; Tran Manh Sung, R.; Hafid, J. The effect of essential oils from Thymus broussonetii Boiss on transmission of Toxoplasma gondii cysts in mice. Parasitol. Res., 2010, 107(1), 55-58.
[http://dx.doi.org/10.1007/s00436-010-1832-z] [PMID: 20336317]
[202]
De Pablos, L.M.; González, G.; Rodrigues, R.; García Granados, A.; Parra, A.; Osuna, A. Action of a pentacyclic triterpenoid, maslinic acid, against Toxoplasma gondii. J. Nat. Prod., 2010, 73(5), 831-834.
[http://dx.doi.org/10.1021/np900749b] [PMID: 20441162]
[203]
Al-Zanbagi, N.A. Noticeable effect of Juniperus procera as Toxoplasma gondii tachyzoites inhibitor in vivo. Int. J. Health Wellness Soc., 2011, 1(2), 197-204.
[http://dx.doi.org/10.18848/2156-8960/CGP/v01i02/41159]
[204]
Rayan, H.Z.; Wagih, H.M.; Atwa, M.M. Efficacy of black seed oil from Nigella sativa against murine infection with cysts of Me49 strain of Toxoplasma gondii. PUJ, 2011, 4(2), 165-176.
[205]
Gomes, T.C.; Andrade Júnior, H.F.; Lescano, S.A.Z.; Amato-Neto, V. In vitro action of antiparasitic drugs, especially artesunate, against Toxoplasma gondii. Rev. Soc. Bras. Med. Trop., 2012, 45(4), 485-490.
[http://dx.doi.org/10.1590/S0037-86822012000400014 ] [PMID: 22930046]
[206]
Kavitha, N; Noordin, R; Chan, K-L In vitro anti-Toxoplasma gondii activity of root extract/fractions of Eurycoma longifolia Jack. Molecules, 2012, 17, 9207-9019.
[http://dx.doi.org/10.3390/molecules17089207] [PMID: 22858841]
[207]
Pillai, S.; Mahmud, R.; Lee, W.C.; Perumal, S. Anti-parasitic activity of Myristica fragrans Houtt. essential oil against Toxoplasma gondii parasite. APCBEE Procedia, 2012, 2, 92-96.
[http://dx.doi.org/10.1016/j.apcbee.2012.06.017]
[208]
Qu, D.; Han, J.; Du, A. Enhancement of protective immune response to recombinant Toxoplasma gondii ROP18 antigen by ginsenoside Re. Exp. Parasitol., 2013, 135(2), 234-239.
[http://dx.doi.org/10.1016/j.exppara.2013.07.013] [PMID: 23896123]
[209]
Hong, S.; Lee, H.A.; Lee, Y.; Chung, Y.H.; Kim, O. Anti-toxoplasmosis effect of Dictamnus dasycarpus extract against Toxoplasma Gondii. J. Biomed. Res. (Cheongju), 2014, 15(1), 7-11.
[http://dx.doi.org/10.12729/jbr.2014.15.1.007]
[210]
Oliveira, C.; Meurer, Y.; Oliveira, M.; Medeiros, W.; Silva, F.; Brito, A.; Pontes, D.; Andrade-Neto, V. Comparative study on the antioxidant and anti-Toxoplasma activities of vanillin and its resorcinarene derivative. Molecules, 2014, 19(5), 5898-5912.
[http://dx.doi.org/10.3390/molecules19055898] [PMID: 24810805]
[211]
Daryani, A.; Ebrahimzadeh, M.A.; Sharif, M.; Ahmadpour, E.; Edalatian, S. Anti-Toxoplasma activities of methanolic extract of Sambucus nigra (Caprifoliaceae) fruits and leaves. Rev. Biol. Trop., 2015, 63(1), 7-12.
[http://dx.doi.org/10.15517/rbt.v63i1.14545] [PMID: 26299111]
[212]
Soares, A.M.S.; Carvalho, L.P.; Melo, E.J.T.; Costa, H.P.S.; Vasconcelos, I.M.; Oliveira, J.T.A. A protein extract and a cysteine protease inhibitor enriched fraction from Jatropha curcas seed cake have in vitro anti-Toxoplasma gondii activity. Exp. Parasitol., 2015, 153, 111-117.
[http://dx.doi.org/10.1016/j.exppara.2015.03.011] [PMID: 25816973]
[213]
Eraky, M.A.; El-Fakahany, A.F.; El-Sayed, N.M.; Abou-Ouf, E.A.R.; Yaseen, D.I. Effects of Thymus vulgaris ethanolic extract on chronic toxoplasmosis in a mouse model. Parasitol. Res., 2016, 115(7), 2863-2871.
[http://dx.doi.org/10.1007/s00436-016-5041-2] [PMID: 27098159]
[214]
Gasparotto Junior, A.; Cosmo, M.L.A.; Reis, M.P.; dos Santos, P.S.; Gonçalves, D.D.; Gasparotto, F.M.; Navarro, I.T.; Lourenço, E.L.B. Effects of extracts from Echinacea purpurea (L) MOENCH on mice infected with different strains of Toxoplasma gondii. Parasitol. Res., 2016, 115(10), 3999-4005.
[http://dx.doi.org/10.1007/s00436-016-5167-2] [PMID: 27277433]
[215]
Ramos, E.L.P.; Santana, S.S.; Silva, M.V.; Santiago, F.M.; Mineo, T.W.P.; Mineo, J.R.; Mineo, J.R. Lectins from Synadenium carinatum (ScLL) and Artocarpus heterophyllus (ArtinM) are able to induce beneficial immunomodulatory effects in a murine model for treatment of Toxoplasma gondii infection. Front. Cell. Infect. Microbiol., 2016, 6, 164.
[http://dx.doi.org/10.3389/fcimb.2016.00164] [PMID: 27933277]
[216]
Palharini, J.G.; Richter, A.C.; Silva, M.F.; Ferreira, F.B.; Pirovani, C.P.; Naves, K.S.C.; Goulart, V.A.; Mineo, T.W.P.; Silva, M.J.B.; Santiago, F.M. Eutirucallin: a lectin with antitumor and antimicrobial properties. Front. Cell. Infect. Microbiol., 2017, 7, 136.
[http://dx.doi.org/10.3389/fcimb.2017.00136] [PMID: 28487845]
[217]
Pereira, A.V.; Góis, M.B.; Lera, K.R.J.L.; Falkowski-Temporini, G.J.; Massini, P.F.; Drozino, R.N.; Aleixo, D.L.; Miranda, M.M.; da Silva Watanabe, P.; Conchon-Costa, I.; da Costa, I.N.; dos Anjos Neto Filho, M.; de Araújo, S.M.; Pavanelli, W.R. Histopathological lesions in encephalon and heart of mice infected with Toxoplasma gondii increase after Lycopodium clavatum 200dH treatment. Pathol. Res. Pract., 2017, 213(1), 50-57.
[http://dx.doi.org/10.1016/j.prp.2016.11.003] [PMID: 27894616]
[218]
Choi, W.; Lee, I. Evaluation of Anti-Toxoplasma gondii Effect of Ursolic Acid as a Novel Toxoplasmosis Inhibitor. Pharmaceuticals, 2018, 11(2), 43.
[http://dx.doi.org/10.3390/ph11020043] [PMID: 29747388]
[219]
Dégbé, M.; Debierre-Grockiego, F.; Tété-Bénissan, A.; Débare, H.; Aklikokou, K.; Dimier-Poisson, I.; Gbeassor, M. Extracts of Tectona grandis and Vernonia amygdalina have anti- Toxoplasma and pro-inflammatory properties in vitro. Parasite, 2018, 25, 11.
[http://dx.doi.org/10.1051/parasite/2018014] [PMID: 29533762]
[220]
El-Tantawy, N.L.; Soliman, A.F.; Abdel-Magied, A.; Ghorab, D.; Khalil, A.T.; Naeem, Z.M.; Shimizu, K.; El-Sharkawy, S.H. Could Araucaria heterophylla resin extract be used as a new treatment for toxoplasmosis? Exp. Parasitol., 2018, 195, 44-53.
[http://dx.doi.org/10.1016/j.exppara.2018.10.003] [PMID: 30339984]
[221]
Mirzaalizadeh, B.; Sharif, M.; Daryani, A.; Ebrahimzadeh, M.A.; Zargari, M.; Sarvi, S.; Mehrzadi, S.; Rahimi, M.T.; Mirabediny, Z.; Golpour, M.; Montazeri, M. Effects of Aloe vera and Eucalyptus methanolic extracts on experimental toxoplasmosis in vitro and in vivo. Exp. Parasitol., 2018, 192, 6-11.
[http://dx.doi.org/10.1016/j.exppara.2018.07.010] [PMID: 30031121]
[222]
Ahmadpour, E.; Ebrahimzadeh, M.A; Sharif, M.; Edalatian, S.; Sarvi, S.; Montazeri, M.; Mehrzadi, S.; Akbari, M.; Rahimi, MT.; Daryani, A. Anti-Toxoplasma Activities of Zea Mays and Eryngium Caucasicum Extracts, In Vitro and In Vivo. J. Pharmacopuncture, 2019, 22(3), 154-159.
[http://dx.doi.org/10.3831/KPI.2019.22.020] [PMID: 31673445]
[223]
Alajmi, RA; Al-Megrin, WA; Metwally, D; Al-Subaie, H; Altamrah, N; Barakat, AM; Abdel Moneim, AE; Al-Otaibi, TT; El-Khadragy, M Anti-Toxoplasma activity of silver nanoparticles green synthesized with Phoenix dactylifera and Ziziphus spinachristi extracts which inhibits inflammation through liver regulation of cytokines in Balb/c mice. Biosci. Rep., 2019, 39(5), BSR20190379.
[http://dx.doi.org/10.1042/BSR20190379]
[224]
Atolani, O.; Oguntoye, H.; Areh, E.T.; Adeyemi, O.S.; Kambizi, L. Chemical composition, anti-toxoplasma, cytotoxicity, antioxidant, and anti-inflammatory potentials of Cola gigantea seed oil. Pharm. Biol., 2019, 57(1), 154-160.
[http://dx.doi.org/10.1080/13880209.2019.1577468 ] [PMID: 30905238]
[225]
Choi, WH; Lee, IA The mechanism of action of ursolic acid as a potential anti-toxoplasmosis agent, and its immunomodulatory effects. Pathogens, 2019, 8(2), 61.
[http://dx.doi.org/10.3390/pathogens8020061]
[226]
Luan, T.; Jin, C.; Jin, C.M.; Gong, G.H.; Quan, Z.S. Synthesis and biological evaluation of ursolic acid derivatives bearing triazole moieties as potential anti- Toxoplasma gondii agents. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 761-772.
[http://dx.doi.org/10.1080/14756366.2019.1584622 ] [PMID: 30836795]
[227]
Koko, W.S.; Al Nasr, I.S.; Khan, T.; Elghazali, G. In vitro antitoxoplasmal activity of some medicinal plants. Pharmacogn. Mag., 2019, 15(65), 568-572.
[http://dx.doi.org/10.4103/pm.pm_646_18]
[228]
Rosenberg, A.; Luth, M.R.; Winzeler, E.A.; Behnke, M.; Sibley, L.D. Evolution of resistance in vitro reveals mechanisms of artemisinin activity in Toxoplasma gondii. Proc. Natl. Acad. Sci. USA, 2019, 116(52), 26881-26891.
[http://dx.doi.org/10.1073/pnas.1914732116] [PMID: 31806760]
[229]
Atolani, O.; Adamu, N.; Oguntoye, O.S.; Zubair, M.F.; Fabiyi, O.A.; Oyegoke, R.A.; Adeyemi, O.S.; Areh, E.T.; Tarigha, D.E.; Kambizi, L.; Olatunji, G.A. Chemical characterization, antioxidant, cytotoxicity, Anti-Toxoplasma gondii and antimicrobial potentials of the Citrus sinensis seed oil for sustainable cosmeceutical production. Heliyon, 2020, 6(2), e03399.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03399] [PMID: 32099925]
[230]
Nasr, A.I. Evaluation of in vitro antitoxoplasmal activity of some medicinal plants collected from Al Qassim, Saudi Arabia. Indian J. Tradit. Knowl., 2020, 19(4), 744-750.
[231]
Spalenka, J.; Hubert, J.; Voutquenne-Nazabadioko, L.; Escotte-Binet, S.; Borie, N.; Velard, F.; Villena, I.; Aubert, D.; Renault, J.H. In Vitro and In Vivo Activity of Anogeissus leiocarpa Bark Extract and Isolated Metabolites against Toxoplasma gondii. Planta Med., 2020, 86(4), 294-302.
[http://dx.doi.org/10.1055/a-1088-8449] [PMID: 31994148]
[232]
Teixeira, S.C.; de Souza, G.; Borges, B.C.; de Araújo, T.E.; Rosini, A.M.; Aguila, F.A.; Ambrósio, S.R.; Veneziani, R.C.S.; Bastos, J.K.; Silva, M.J.B.; Martins, C.H.G.; de Freitas Barbosa, B.; Ferro, E.A.V. Copaifera spp. oleoresins impair Toxoplasma gondii infection in both human trophoblastic cells and human placental explants. Sci. Rep., 2020, 10(1), 15158.
[http://dx.doi.org/10.1038/s41598-020-72230-0] [PMID: 32938966]
[233]
Banzragchgarav, O.; Batkhuu, J.; Myagmarsuren, P.; Battsetseg, B.; Battur, B.; Nishikawa, Y. In Vitro Potently Active Anti-Plasmodium and Anti-Toxoplasma Mongolian Plant Extracts. Acta Parasitol., 2021, 66(4), 1442-1447.
[http://dx.doi.org/10.1007/s11686-021-00401-8] [PMID: 34023977]
[234]
Huang, S.Y.; Yao, N.; He, J.K.; Pan, M.; Hou, Z.F.; Fan, Y.M.; Du, A.; Tao, J.P. In vitro anti-parasitic activity of Pelargonium X. asperum essential oil against Toxoplasma gondii. Front. Cell Dev. Biol., 2021, 9616340.
[http://dx.doi.org/10.3389/fcell.2021.616340] [PMID: 33681197]
[235]
Khan, T.A.; Al Nasr, I.S.; Mujawah, A.H.; Koko, W.S. Assessment of Euphorbia retusa and Pulicaria undulata activity against Leishmania major and Toxoplasma gondii. Trop. Biomed., 2021, 38(1), 135-141.
[http://dx.doi.org/10.47665/tb.38.1.023] [PMID: 33797536]
[236]
Nishi, L; Sanfelice, RS; da Silva Bortoleti, BT Moringa oleifera extract promotes apoptosis-like death in Toxoplasma gondii tachyzoites in vitro. Parasitology, 2021, 148(12), 1447-1457.
[http://dx.doi.org/10.1017/S0031182021001086]
[237]
Saadatmand, M.; Al-Awsi, G.R.L.; Alanazi, A.D.; Sepahvand, A.; Shakibaie, M.; Shojaee, S.; Mohammadi, R.; Mahmoudvand, H. Green synthesis of zinc nanoparticles using Lavandula angustifolia Vera. Extract by microwave method and its prophylactic effects on Toxoplasma gondii infection. Saudi J. Biol. Sci., 2021, 28(11), 6454-6460.
[http://dx.doi.org/10.1016/j.sjbs.2021.07.007] [PMID: 34764762]
[238]
Abdou, AM; Seddek, AS; Abdelmageed, N; Badry, MO Nishikawa, Y Extracts of wild Egyptian plants from the desert inhibit the growth of Toxoplasma gondii and Neospora caninumin vitro. J Vet Med Sci, 2022, 84(7), 1034-1040.
[http://dx.doi.org/10.1292/jvms.22-0159]
[239]
Darme, P.; Spalenka, J.; Hubert, J.; Escotte-Binet, S.; Debelle, L.; Villena, I.; Sayagh, C.; Borie, N.; Martinez, A.; Bertaux, B.; Voutquenne-Nazabadioko, L.; Renault, J.H.; Aubert, D. Investigation of Antiparasitic Activity of 10 European Tree Bark Extracts on Toxoplasma gondii and Bioguided Identification of Triterpenes in Alnus glutinosa Barks. Antimicrob. Agents Chemother., 2022, 66(1), e01098-21.
[http://dx.doi.org/10.1128/AAC.01098-21] [PMID: 34633849]
[240]
Elazab, S.T.; Arafa, F.M. Anti-Toxoplasma Activities of Some Egyptian Plant Extracts: An In Vitro Study. Acta Parasitol., 2022, 67(4), 1800-1806.
[http://dx.doi.org/10.1007/s11686-022-00633-2] [PMID: 36309926]
[241]
Ghanadian, M.; Khamesipour, F.; Hejazi, S.H.; Razavi, S.M.; Sadraei, H.; Namdar, F. In Vitro and In Vivo Anti-Toxoplasma Activities of Dracocephalum kotschyi Extract in Experimental Models of Acute Toxoplasmosis. Acta Parasitol., 2022, 67(1), 487-495.
[http://dx.doi.org/10.1007/s11686-021-00491-4] [PMID: 34800216]
[242]
Hematizadeh, A.; Ebrahimzadeh, M.A.; Sarvi, S.; Sadeghi, M.; Daryani, A.; Gholami, S.; Nayeri, T.; Hosseini, S.A. In Vitro and In Vivo Anti-parasitic Activity of Sambucus ebulus and Feijoa sellowiana Extracts Silver Nanoparticles on Toxoplasma gondii Tachyzoites. Acta Parasitol., 2023, 68(3), 557-565.
[http://dx.doi.org/10.1007/s11686-023-00689-8] [PMID: 37330943]
[243]
Teixeira, S.C.; Rosini, A.M.; de Souza, G.; Martínez, A.F.; Silva, R.J.; Ambrósio, S.R.; Veneziani, R.C.; Bastos, J.K.; Martins, C.H.; Barbosa, B.F.; Ferro, E.A. Polyalthic acid and oleoresin from Copaifera trapezifolia Hayne reduce Toxoplasma gondii growth in human villous explants, even triggering an anti-inflammatory profile. Exp. Parasitol., 2023, 250108534.
[http://dx.doi.org/10.1016/j.exppara.2023.108534] [PMID: 37100271]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy